Associations between Longitudinal Maternal and Cord Blood Vitamin D Status and Child Growth Trajectories Up to 4 Years of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. 25-Hydroxyvitamin D Measurements
2.3. Anthropometric Measurements
2.4. Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Giustina, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Formenti, A.M.; Lazaretti-Castro, M.; et al. Consensus statement from 2(nd) International Conference on Controversies in Vitamin D. Rev. Endocr. Metab. Disord. 2020, 21, 89–116. [Google Scholar] [CrossRef] [PubMed]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.F. Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes. Rev. 2022, 23, e13453. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.; Sitrin, M.D. Vitamin D’s role in cell proliferation and differentiation. Nutr. Rev. 2008, 66, S116–S124. [Google Scholar] [CrossRef]
- Mulligan, M.L.; Felton, S.K.; Riek, A.E.; Bernal-Mizrachi, C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet. Gynecol. 2010, 202, 429.e1–429.e9. [Google Scholar] [CrossRef]
- Wagner, C.L.; Hollis, B.W. The Implications of Vitamin D Status During Pregnancy on Mother and her Developing Child. Front. Endocrinol. 2018, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhou, L.; Wang, S.; Yin, H.; Yang, X.; Hao, L. Effect of maternal vitamin D status on risk of adverse birth outcomes: A systematic review and dose-response meta-analysis of observational studies. Eur. J. Nutr. 2022, 61, 2881–2907. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.D.; Christensen, M.E.; Dalgard, C.; Lykkedegn, S.; Andersen, L.B.; Andersen, M.S.; Glintborg, D.; Christesen, H.T. Pregnancy or cord 25-hydroxyvitamin D is not associated with measures of body fat or adiposity in children from three months to three years of age. An Odense Child Cohort study. Clin. Nutr. 2020, 39, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Razaghi, M.; Gharibeh, N.; Vanstone, C.A.; Sotunde, O.F.; Wei, S.Q.; McNally, D.; Rauch, F.; Jones, G.; Weiler, H.A. Maternal excess adiposity and serum 25-hydroxyvitamin D < 50 nmol/L are associated with elevated whole body fat mass in healthy breastfed neonates. BMC Pregnancy Childbirth 2022, 22, 83. [Google Scholar] [CrossRef]
- Daraki, V.; Roumeliotaki, T.; Chalkiadaki, G.; Katrinaki, M.; Karachaliou, M.; Leventakou, V.; Vafeiadi, M.; Sarri, K.; Vassilaki, M.; Papavasiliou, S.; et al. Low maternal vitamin D status in pregnancy increases the risk of childhood obesity. Pediatr. Obes. 2018, 13, 467–475. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, J.; Zhang, Y.; Teng, H.; Pei, J.; Zhang, C.; Guo, B.; Yin, J. Association between maternal vitamin D status with pregnancy outcomes and offspring growth in a population of Wuxi, China. Asia Pac. J. Clin. Nutr. 2021, 30, 464–476. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wojcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Cavrak, V.; Lopez-Valcarcel, B.G.; Brzezinski, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, M.; Yang, L.; Zhao, M.; Yan, Y.; Xi, B. Weight status change from childhood to early adulthood and the risk of adult hypertension. J. Hypertens. 2019, 37, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hodge, A.; Hendryx, M.; Byles, J.E. Age of obesity onset, cumulative obesity exposure over early adulthood and risk of type 2 diabetes. Diabetologia 2020, 63, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.C.; Whitrow, M.J.; Davies, M.J.; Davies, C.E.; Rumbold, A.R.; Moore, V.M. Growth trajectories in early childhood, their relationship with antenatal and postnatal factors, and development of obesity by age 9 years: Results from an Australian birth cohort study. Int. J. Obes. 2015, 39, 1049–1056. [Google Scholar] [CrossRef]
- Liu, J.X.; Liu, J.H.; Frongillo, E.A.; Boghossian, N.S.; Cai, B.; Hazlett, L.J. Body mass index trajectories during infancy and pediatric obesity at 6 years. Ann. Epidemiol. 2017, 27, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Correia-Branco, A.; Keating, E.; Martel, F. Maternal undernutrition and fetal developmental programming of obesity: The glucocorticoid connection. Reprod. Sci. 2015, 22, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Hauta-Alus, H.H.; Kajantie, E.; Holmlund-Suila, E.M.; Rosendahl, J.; Valkama, S.M.; Enlund-Cerullo, M.; Helve, O.M.; Hytinantti, T.K.; Viljakainen, H.; Andersson, S.; et al. High Pregnancy, Cord Blood, and Infant Vitamin D Concentrations May Predict Slower Infant Growth. J. Clin. Endocrinol. Metab. 2019, 104, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, C.L.; Gernand, A.D.; Roth, D.E.; Bodnar, L.M. Maternal vitamin D status and infant anthropometry in a US multi-centre cohort study. Ann. Hum. Biol. 2015, 42, 215–222. [Google Scholar] [CrossRef]
- Crozier, S.R.; Harvey, N.C.; Inskip, H.M.; Godfrey, K.M.; Cooper, C.; Robinson, S.M.; Group, S.W.S.S. Maternal vitamin D status in pregnancy is associated with adiposity in the offspring: Findings from the Southampton Women’s Survey. Am. J. Clin. Nutr. 2012, 96, 57–63. [Google Scholar] [CrossRef]
- Francis, E.C.; Hinkle, S.N.; Song, Y.; Rawal, S.; Donnelly, S.R.; Zhu, Y.; Chen, L.; Zhang, C. Longitudinal Maternal Vitamin D Status during Pregnancy Is Associated with Neonatal Anthropometric Measures. Nutrients 2018, 10, 1631. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Wang, W.; Ouyang, F.; Xu, J.; Yu, X.; Luo, Z.; Jiang, F.; Huang, H.; Shen, X.; et al. Cohort profile: The Shanghai Birth Cohort. Int. J. Epidemiol. 2019, 48, 21-21g. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Yuan, Y.; Wang, X.; Li, J.; Liu, B.; Yuan, T.; Yu, X. Development of a sensitive HPLC-MS/MS method for 25-hydroxyvitamin D2 and D3 measurement in capillary blood. J. Clin. Lab. Anal. 2020, 34, e23451. [Google Scholar] [CrossRef]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. (Eds.) Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Kiely, M.; O’Donovan, S.M.; Kenny, L.C.; Hourihane, J.O.; Irvine, A.D.; Murray, D.M. Vitamin D metabolite concentrations in umbilical cord blood serum and associations with clinical characteristics in a large prospective mother-infant cohort in Ireland. J. Steroid Biochem. Mol. Biol. 2017, 167, 162–168. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, X.; Tian, Y.; Zhang, J.; Zhang, Y.; Li, J.; Yang, F.; Xu, M.; Yu, X.; Shanghai Birth Cohort, S. Associations between maternal vitamin D status during three trimesters and cord blood 25(OH)D concentrations in newborns: A prospective Shanghai birth cohort study. Eur. J. Nutr. 2021, 60, 3473–3483. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Nagin, D.S.; Jones, B.L.; Passos, V.L.; Tremblay, R.E. Group-based multi-trajectory modeling. Stat. Methods Med. Res. 2018, 27, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Song, M. Trajectory analysis in obesity epidemiology: A promising life course approach. Curr. Opin. Endocr. Metab. Res. 2019, 4, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Amberntsson, A.; Barebring, L.; Winkvist, A.; Lissner, L.; Meltzer, H.M.; Brantsaeter, A.L.; Papadopoulou, E.; Augustin, H. Maternal vitamin D status in relation to infant BMI growth trajectories up to 2 years of age in two prospective pregnancy cohorts. Obes. Sci. Pract. 2022, 8, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Hyde, N.K.; Brennan-Olsen, S.L.; Wark, J.D.; Hosking, S.M.; Holloway-Kew, K.L.; Pasco, J.A. Vitamin D during pregnancy and offspring body composition: A prospective cohort study. Pediatr. Obes. 2018, 13, 514–521. [Google Scholar] [CrossRef]
- Wong, R.S.; Tung, K.T.S.; Mak, R.T.W.; Leung, W.C.; Yam, J.C.; Chua, G.T.; Fung, G.P.G.; Ho, M.H.K.; Wong, I.C.K.; Ip, P. Vitamin D concentrations during pregnancy and in cord blood: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 2225–2236. [Google Scholar] [CrossRef]
- The American College of Obstetricians and Gynecologists. Prenatal Development: How the Baby Grows during Pregnancy. Available online: https://www.acog.org/womens-health/faqs/how-your-fetus-grows-during-pregnancy (accessed on 30 June 2023).
- Renault, K.M.; Carlsen, E.M.; Norgaard, K.; Nilas, L.; Pryds, O.; Secher, N.J.; Cortes, D.; Jensen, J.E.; Olsen, S.F.; Halldorsson, T.I. Intake of carbohydrates during pregnancy in obese women is associated with fat mass in the newborn offspring. Am. J. Clin. Nutr. 2015, 102, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Brei, C.; Stecher, L.; Meyer, D.M.; Young, V.; Much, D.; Brunner, S.; Hauner, H. Impact of Dietary Macronutrient Intake during Early and Late Gestation on Offspring Body Composition at Birth, 1, 3, and 5 Years of Age. Nutrients 2018, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Noviandhari, A.; Faisal, F.; Dhamayanti, M. Correlation of Maternal Prenatal Vitamin D Level with Postnatal Infant Growth in Length and Head Circumference: A Cohort Study on Vitamin D Status and Its Impact During Pregnancy and Childhood in Indonesia. Int. J. Gen. Med. 2022, 15, 7631–7637. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.F.; Anderson, A.J.; Yelland, L.N.; Smithers, L.G.; Skeaff, C.M.; Zhou, S.J.; Gibson, R.A.; Makrides, M. Association of cord blood vitamin D with early childhood growth and neurodevelopment. J. Paediatr. Child Health 2017, 53, 75–83. [Google Scholar] [CrossRef]
- Maugeri, A.; Barchitta, M.; Blanco, I.; Agodi, A. Effects of Vitamin D Supplementation During Pregnancy on Birth Size: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Hauta-Alus, H.H.; Holmlund-Suila, E.M.; Kajantie, E.; Rosendahl, J.; Valkama, S.M.; Enlund-Cerullo, M.; Andersson, S.; Makitie, O. The Effects of Vitamin D Supplementation During Infancy on Growth During the First 2 Years of Life. J. Clin. Endocrinol. Metab. 2021, 106, e1140–e1155. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, R.; Mao, D.; Chen, J.; Li, M.; Li, W.; Yang, Y.; Zhao, L.; Zhang, J.; Piao, J.; et al. Vitamin D Nutritional Status of Chinese Pregnant Women, Comparing the Chinese National Nutrition Surveillance (CNHS) 2015–2017 with CNHS 2010–2012. Nutrients 2021, 13, 2237. [Google Scholar] [CrossRef]
Characteristics | Overall (959) | LAZ (n = 950) | WAZ (n = 959) | HCZ (n = 895) | WLZ (n = 948) |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | |
Serum 25(OH)D (ng/mL) | |||||
25(OH)D at T1 (Mean ± SD) | 26.16 ± 10.20 | 26.18 ± 10.18 | 26.16 ± 10.20 | 25.96 ± 10.13 | 26.15 ± 10.18 |
25(OH)D at T2 (Mean ± SD) | 31.93 ± 11.37 | 31.91 ± 11.37 | 31.93 ± 11.37 | 31.74 ± 11.37 | 31.88 ± 11.35 |
25(OH)D at T3 (Mean ± SD) | 35.75 ± 13.33 | 35.78 ± 13.32 | 35.75 ± 13.33 | 35.59 ± 13.33 | 35.75 ± 13.31 |
25(OH)D in CB (Mean ± SD) | 19.87 ± 9.07 | 19.91 ± 9.09 | 19.87 ± 9.07 | 19.85 ± 9.09 | 19.90 ± 9.10 |
25(OH)D categories at T1 (ng/mL) | |||||
<20 | 291 (30.86) | 288 (30.84) | 291 (30.86) | 277 (31.51) | 288 (30.90) |
≥20, <30 | 309 (32.77) | 305 (32.66) | 309 (32.77) | 289 (32.88) | 305 (32.73) |
≥30 | 343 (36.37) | 341 (36.51) | 343 (36.37) | 313 (35.61) | 339 (36.37) |
25(OH)D categories at T2 (ng/mL) | |||||
<20 | 142 (16.38) | 141 (16.41) | 142 (16.38) | 137 (16.91) | 141 (16.45) |
≥20, <30 | 251 (28.95) | 249 (28.99) | 251 (28.95) | 236 (29.14) | 249 (29.05) |
≥30 | 474 (54.67) | 469 (54.60) | 474 (54.67) | 437 (53.95) | 467 (54.49) |
25(OH)D categories at T3 (ng/mL) | |||||
<20 | 112 (11.99) | 111 (11.97) | 112 (11.99) | 106 (12.17) | 111 (12.00) |
≥20, <30 | 218 (23.34) | 214 (23.09) | 218 (23.34) | 204 (23.42) | 214 (23.14) |
≥30 | 604 (64.67) | 602 (64.94) | 604 (64.67) | 561 (64.41) | 600 (64.86) |
25(OH)D categories in CB (ng/mL) | |||||
<12 | 182 (18.98) | 180 (18.95) | 182 (18.98) | 173 (19.35) | 180 (18.99) |
≥12, <20 | 370 (38.58) | 365 (38.42) | 370 (38.58) | 343 (38.37) | 365 (38.50) |
≥20 | 407 (42.44) | 405 (42.63) | 407 (42.44) | 378 (42.28) | 403 (42.51) |
Maternal characteristics | |||||
Maternal age (y) | |||||
<25 | 76 (8.08) | 76 (8.14) | 76 (8.08) | 74 (8.42) | 76 (8.15) |
≥25, <30 | 520 (55.26) | 515 (55.14) | 520 (55.26) | 488 (55.52) | 513 (55.04) |
≥30, <35 | 289 (30.71) | 287 (30.73) | 289 (30.71) | 264 (30.03) | 287 (30.79) |
≥35 | 56 (5.95) | 56 (6.00) | 56 (5.95) | 53 (6.03) | 56 (6.01) |
Maternal educational level | |||||
Below high school | 71 (7.57) | 70 (7.52) | 71 (7.57) | 67 (7.65) | 70 (7.53) |
High school | 207 (22.07) | 207 (22.23) | 207 (22.07) | 194 (22.15) | 206 (22.17) |
College | 524 (55.86) | 520 (55.85) | 524 (55.86) | 491 (56.05) | 519 (55.87) |
Bachelor’s degree or above | 136 (14.50) | 134 (14.39) | 136 (14.50) | 124 (14.16) | 134 (14.42) |
Prepregnancy BMI (kg/m2) | |||||
<18.5 | 141 (15.02) | 141 (15.13) | 141 (15.02) | 136 (15.51) | 141 (15.16) |
≥18.5, <25 | 716 (76.25) | 709 (76.07) | 716 (76.25) | 664 (75.71) | 707 (76.02) |
≥25 | 82 (8.73) | 82 (8.80) | 82 (8.73) | 77 (8.78) | 82 (8.82) |
Gestational weight gain (kg) | |||||
<12 | 386 (42.60) | 383 (42.51) | 386 (42.60) | 362 (42.69) | 382 (42.49) |
≥12, <15 | 289 (31.90) | 288 (31.96) | 289 (31.90) | 268 (31.60) | 288 (32.04) |
≥15, <18 | 155 (17.11) | 155 (17.20) | 155 (17.11) | 146 (17.22) | 155 (17.24) |
≥18 | 76 (8.39) | 75 (8.32) | 76 (8.39) | 72 (8.49) | 74 (8.23) |
GDM | |||||
No | 754 (84.34) | 749 (84.35) | 754 (84.34) | 703 (84.09) | 747 (84.31) |
Yes | 140 (15.66) | 139 (15.65) | 140 (15.66) | 133 (15.91) | 139 (15.69) |
Child characteristics | |||||
Child gender | |||||
Male | 496 (51.72) | 492 (51.79) | 496 (51.72) | 465 (52.01) | 491 (51.79) |
Female | 463 (48.28) | 458 (48.21) | 463 (48.28) | 429 (47.99) | 457 (48.21) |
Delivery mode | |||||
Natural delivery | 553 (60.44) | 547 (60.24) | 553 (60.44) | 514 (60.12) | 545 (60.15) |
Cesarean delivery | 362 (39.56) | 361 (39.76) | 362 (39.56) | 341 (39.88) | 361 (39.85) |
Breastfeeding duration | |||||
<6 months | 147 (25.70) | 146 (25.66) | 147 (25.70) | 139 (25.32) | 146 (25.70) |
≥6 months | 425 (74.30) | 423 (74.34) | 425 (74.30) | 410 (74.68) | 422 (74.30) |
Growth Trajectories | 25(OH)D, 10 ng/mL | |
---|---|---|
OR (95% CI) | p | |
Weight-for-age z-score (WAZ) | ||
Low-stable (n = 220) | Reference | |
Moderate-increasing (n = 543) | 1.04 (0.94,1.15) | 0.82 |
High-increasing (n = 197) | 0.87 (0.76,0.99) | 0.08 |
Length-for-age z-score (LAZ) | ||
Low-stable (n = 402) | Reference | |
Low-decreasing (n = 133) | 1.03 (0.91,1.17) | 1.00 |
Moderate-increasing (n = 340) | 0.94 (0.86, 1.03) | 0.60 |
High-increasing (n = 75) | 1.07 (0.93, 1.24) | 1.00 |
Head circumference-for-age z-score (HCZ) | ||
Moderate-increasing (n = 552) | Reference | |
Low-stable (n = 232) | 0.99 (0.90, 1.09) | 1.00 |
High-increasing (n = 111) | 1.00 (0.88, 1.14) | 1.00 |
Weight-for-length z-score (WLZ) | ||
Low-increasing (n = 331) | Reference | |
Moderate-increasing (n = 560) | 0.95 (0.87, 1.04) | 0.50 |
High-increasing vs. (n = 57) | 1.00 (0.93, 1.07) | 1.00 |
Trajectory Groups | T1, 10 ng/mL | T2, 10 ng/mL | T3, 10 ng/mL | CB, 10 ng/mL | ||||
---|---|---|---|---|---|---|---|---|
Adjusted OR (95% CI) | p | Adjusted OR (95% CI) | p | Adjusted OR (95% CI) | p | Adjusted OR (95% CI) | p | |
WAZ | ||||||||
Low-stable (n = 220) | Reference | Reference | Reference | Reference | ||||
Moderate-increasing (n = 543) | 1.06 (0.90, 1.25) | 0.84 | 1.01 (0.87, 1.17) | 1.00 | 1.05 (0.92, 1.20) | 0.90 | 0.82 (0.69, 0.98) | 0.06 |
High-increasing (n = 197) | 1.01 (0.81, 1.26) | 1.00 | 0.91 (0.74, 1.12) | 0.74 | 0.75 (0.62, 0.91) | <0.01 | 0.57 (0.43, 0.76) | <0.01 |
LAZ | ||||||||
Low-stable (n = 402) | Reference | Reference | Reference | Reference | ||||
Low-decreasing (n = 133) | 1.04 (0.85, 1.28) | 1.00 | 1.04 (0.86, 1.25) | 1.00 | 1.10 (0.95, 1.28) | 0.63 | 1.15 (0.93, 1.42) | 0.63 |
Moderate-increasing (n = 340) | 0.98 (0.84, 1.15) | 1.00 | 0.95 (0.82, 1.11) | 1.00 | 0.94 (0.83, 1.06) | 0.96 | 0.81 (0.67, 0.96) | 0.06 |
High-increasing vs. low-stable (n = 75 vs. n = 402) | 1.20 (0.94, 1.54) | 0.42 | 1.07 (0.83, 1.37) | 1.00 | 1.01 (0.81, 1.25) | 1.00 | 0.84 (0.60, 1.16) | 0.84 |
HCZ | ||||||||
Moderate-increasing (n = 552) | Reference | Reference | Reference | Reference | ||||
Low-stable (n = 232) | 0.94 (0.80, 1.11) | 1.00 | 1.03 (0.88, 1.20) | 1.00 | 0.96 (0.85, 1.09) | 1.00 | 1.08 (0.91, 1.28) | 0.80 |
High-increasing (n = 111) | 0.96 (0.60, 1.53) | 1.00 | 0.74 (0.47, 1.16) | 0.38 | 1.02 (0.64, 1.63) | 1.00 | 1.21 (0.77, 1.90) | 0.80 |
WLZ | ||||||||
Low-increasing (n = 331) | Reference | Reference | Reference | Reference | ||||
Moderate-increasing (n = 560) | 0.99 (0.85, 1.14) | 1.00 | 1.00 (0.87, 1.14) | 1.00 | 0.93 (0.83, 1.05) | 0.48 | 0.85 (0.72, 1.00) | 0.08 |
High-increasing (n = 57) | 1.10 (0.81, 1.48) | 1.00 | 0.73 (0.53, 1.00) | 0.10 | 0.77 (0.59, 1.01) | 0.12 | 0.64 (0.42, 0.98) | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhou, C.; Zhang, J.; Tian, Y.; Wang, X.; Jiao, X.; Zhang, Y.; Yu, X. Associations between Longitudinal Maternal and Cord Blood Vitamin D Status and Child Growth Trajectories Up to 4 Years of Age. Nutrients 2024, 16, 2410. https://doi.org/10.3390/nu16152410
Chen C, Zhou C, Zhang J, Tian Y, Wang X, Jiao X, Zhang Y, Yu X. Associations between Longitudinal Maternal and Cord Blood Vitamin D Status and Child Growth Trajectories Up to 4 Years of Age. Nutrients. 2024; 16(15):2410. https://doi.org/10.3390/nu16152410
Chicago/Turabian StyleChen, Chen, Chunyan Zhou, Jun Zhang, Ying Tian, Xirui Wang, Xianting Jiao, Yue Zhang, and Xiaodan Yu. 2024. "Associations between Longitudinal Maternal and Cord Blood Vitamin D Status and Child Growth Trajectories Up to 4 Years of Age" Nutrients 16, no. 15: 2410. https://doi.org/10.3390/nu16152410
APA StyleChen, C., Zhou, C., Zhang, J., Tian, Y., Wang, X., Jiao, X., Zhang, Y., & Yu, X. (2024). Associations between Longitudinal Maternal and Cord Blood Vitamin D Status and Child Growth Trajectories Up to 4 Years of Age. Nutrients, 16(15), 2410. https://doi.org/10.3390/nu16152410