Changes in the Fatty Acid Profile of Lactating Women Living in Poland—A Comparison with the Fatty Acid Profile of Selected Infant Formulas
Abstract
:1. Introduction
- (1)
- Determine the differences between the fatty acid profile of colostrum, transitional milk, and mature milk of Polish women living in the Warmia and Mazury region;
- (2)
- Compare the fatty acid profile of breast milk from different periods of lactation with that of commercially available infant formulas in Poland;
- (3)
- Determine, using multivariate methods, which fatty acids are most responsible for the differences indicated between breast milk samples from different lactation periods and between breast milk and infant formulas.
2. Materials and Methods
2.1. Chemicals
2.2. Milk Sample Collection
2.3. Fat Extraction
2.4. Determination of the Fatty Acid Profile Using Gas Chromatography (GC)
2.5. Statistical Analysis
3. Results
3.1. Fatty Acid Profiles
3.1.1. Saturated Fatty Acids (SFAs)
3.1.2. Monounsaturated Fatty Acids (MUFAs)
3.1.3. Polyunsaturated Fatty Acids (PUFAs)
3.1.4. Branched-Chain Fatty Acids (BCFAs)
3.1.5. Trans Fatty Acids (TFAs)
3.2. The Average Content of SFAs, MUFAs, PUFAs, BCFAs, and TFAs, and the Relationship between Selected Fatty Acids
3.2.1. Human Milk
3.2.2. Infant Formulas
3.3. Associations between Obtained Data—Multivariate Analysis
3.3.1. Principal Component Analysis (PCA)
3.3.2. Cluster Analysis (CA)
4. Discussion
4.1. Fatty Acid Profiles
4.1.1. Saturated Fatty Acids (SFAs)
4.1.2. Monounsaturated Fatty Acids (MUFAs)
4.1.3. Polyunsaturated Fatty Acids (PUFAs)
Human Milk
Infant Formulas
4.1.4. Branched-Chain Fatty Acids (BCFAs)
4.1.5. Trans Fatty Acids (TFAs)
4.2. The Average Content of SFAs, MUFAs, PUFAs, BCFAs, and TFAs, and the Relationship between Selected Fatty Acids
4.2.1. Human Milk
4.2.2. Infant Formulas
4.3. Associations between Obtained Data—Multivariate Analysis (Principal Component Analysis and Cluster Analysis)
4.4. Limitations and Strengths of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
ALA | α-linoleic acid |
BCFA | branched-chain fatty acid |
C | colostrum |
C10:0 | capric acid |
C12:0 | lauric acid |
C14:0 | myristic acid |
C14:1 n-5 | myristoleic acid |
C15:0 | pentadecylic acid |
C16:0 | palmitic acid |
C16:1 n-7 | palmitoleic acid |
C16:1 t7 | palmitelaidic acid |
C17:0 | margaric acid |
C18:0 | stearic acid |
C18:1 n6+n9 t | petroselaidic and elaidic acids |
C18:1 n-9 | oleic acid |
C18:1 t11 | vaccenic acid |
C18:2 c9t11 | rumenic acid |
C18:2 n-6 | linoleic acid |
C18:3 n-3 | α-linoleic acid |
C20:0 | arachidic acid |
C20:1 n-9 | eicosenoic acid |
C20:4 n-6 | arachidonic acid |
C20:5 n-3 | eicosapentaenoic acid |
C22:1 n-9 | ercucic acid |
C22:6 n-3 | docosahexaenoic acid |
C6:0 | caproic acid |
C8:0 | caprylic acid |
CA | cluster analysis |
CLA | conjugated linoleic acid |
DHA | docosahexaenoic acid |
EPA | eicosapentaenoic acid |
HM | human milk |
IF | infant formula |
iso C15:0 | isopentadecylic acid |
iso C16:0 | isopalmitic acid |
LA | linoleic acid |
LCPUFA | long-chain polyunsaturated fatty acid |
MCFA | medium-chain fatty acid |
MM | mature milk |
MUFA | monounsaturated fatty acid |
PCA | principal component analysis |
PUFA n-3 | polyunsaturated fatty acid n-3 |
PUFA n-6 | polyunsaturated fatty acid n-6 |
RA | rumenic acid |
SCFA | short-chain fatty acid |
SFA | saturated fatty acid |
TFA | trans fatty acid |
TM | transitional milk |
VA | vaccenic acid |
References
- Siziba, L.P.; Lorenz, L.; Stahl, B.; Mank, M.; Marosvölgyi, T.; Decsi, T.; Rothenbacher, D.; Genuneit, J. Changes in human milk fatty acid composition during lactation: The ulm SPATZ health study. Nutrients 2019, 11, 2842. [Google Scholar] [CrossRef]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102023. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yi, D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef]
- Kiprop, V.J.; Girard, A.W.; Gogo, L.A.; Omwamba, M.N.; Mahungu, S.M. Determination of the Fatty Acid Profile of Breast Milk from Nursing Mothers in Bungoma County, Kenya. Food Nutr. Sci. 2016, 07, 661–670. [Google Scholar] [CrossRef]
- Sarkadi, S.L.; Zhang, M.; Muránszky, G.; Vass, R.A.; Matsyura, O.; Benes, E.; Vari, S.G. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life 2022, 12, 1093. [Google Scholar] [CrossRef]
- Khor, G.L.; Tan, S.S.; Stoutjesdijk, E.; Kock, W.T.N.; Khouw, I.; Bragt, M.; Schaafsma, A.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients 2021, 13, 101. [Google Scholar] [CrossRef]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734S–741S. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kang, S.; Jung, B.M.; Yi, H.; Jung, J.A.; Chang, N. Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea. Br. J. Nutr. 2017, 117, 556–561. [Google Scholar] [CrossRef]
- Muskiet, F.A.J.; Van Goor, S.A.; Kuipers, R.S.; Velzing-Aarts, F.V.; Smit, E.N.; Bouwstra, H.; Janneke Dijck-Brouwer, D.A.; Rudy Boersma, E.; Hadders-Algra, M. Long-chain polyunsaturated fatty acids in maternal and infant nutrition. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; Pablo, Á.L.L.; De Pipaón, M.S.; Ramiro-Cortijo, D. A review of bioactive factors in human breastmilk: A focus on prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Maryniak, N.Z.; Sancho, A.I.; Hansen, E.B.; Bøgh, K.L. Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Purkiewicz, A.; Stasiewicz, M.; Nowakowski, J.J.; Pietrzak-Fiećko, R. The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas. Foods 2023, 12, 3674. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2016/ 127—of 25 September 2015—Supplementing Regulation (EU) No 609/ 2013 of the European Parliament and of the Council as Regards the Specific Compositional and Information Requirements for Infant Formula and Follow-on Formula and as Regards Requirements on Information Relating to Infant and Young Child Feeding. Available online: https://eur-lex.europa.eu/eli/reg_del/2016/127/oj (accessed on 21 July 2024).
- Mendonca, M.A.; Araujo, W.M.C.; Borgo, L.A.; Alencar, E.D.R. Lipid profile of different infant formulas for infants. PLoS ONE 2017, 12, e0177812. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, S.; Estaban-Muñoz, A.; Giménez-Martínez, R.; Aguilar-Cordero, M.J.; Miralles-Buraglia, B.; Olalla-Hrrera, M. A Comparison of Changes in the Fatty Acid Profile of Human Milk of Spanish Lactating Women during the First Month of Lactation Using Gas Chromatography-Mass Spectrometry. A Comparison with Infant Formulas. Nutrients 2019, 11, 3055. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Cortijo, D.; Singh, P.; Liu, Y.; Medina-Morales, E.; Yakah, W.; Freedman, S.D.; Martin, C.R. Breast milk lipids and fatty acids in regulating neonatal intestinal development and protecting against intestinal injury. Nutrients 2020, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, F.; Fleith, M.; Goyer, A.; Samuel, T.M.; Elmelegy-Masserey, I.; Fontannaz, P.; Cruz-Hernandez, C.; Thakkar, S.K.; Monnard, C.; De Castro, C.A.; et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur. J. Nutr. 2022, 61, 2167–2182. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wu, K.; Yu, Z.; Ren, Y.; Zhao, Y.; Jiang, Y.; Xu, X.; Li, W.; Jin, Y.; Yuan, J.; et al. Changes in fatty acid composition of human milk over lactation stages and relationship with dietary intake in Chinese women. Food Funct. 2016, 7, 3154–3162. [Google Scholar] [CrossRef]
- ISO PN-EN ISO 1211:2011; Milk-Determination of Fat Content-Gravimetric Method (Reference Method). ISO: Geneva, Switzerland, 2011.
- ISO 15884:2002 (IDF 182:2002); Milkfat: Preparation of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2002.
- Barman, M.; Gio-Batta, M.; Andreux, L.; Stråvik, M.; Saalman, R.; Fristedt, R.; Rabe, H.; Sandin, A.; Wold, A.E.; Sandberg, A.-S. Short-chain fatty acids (SCFA) in infants’ plasma and corresponding mother’s milk and plasma in relation to subsequent sensitisation and atopic disease. eBioMedicine 2024, 101, 104999. [Google Scholar] [CrossRef]
- German, J.B.; Dillard, C.J. Saturated Fats: A Perspective from Lactation and Milk Composition. Lipids 2010, 45, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Purkiewicz, A.; Pietrzak-Fiećko, R. Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas. Molecules 2024, 29, 2044. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Wang, L.; Jin, J.; Mi, L.; Pang, J.; Liu, Z.; Gong, J.; Sun, C.; Li, J.; Wei, W.; et al. Role Medium-Chain Fatty Acids in the Lipid Metabolism of Infants. Front. Nutr. 2022, 9, 804880. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Li, D.; Yi, H.; Xu, T.; Li, S.; Zhang, L. Fatty acid and triacylglycerol comparison of infant formulas on the Chinese market. Int. Dairy J. 2019, 95, 35–43. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.; Zhang, Y.; Shi, J.; Tan, C.P.; Zheng, Z.; Liu, Y. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study. Foods 2023, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- Béghin, L.; Marchandise, X.; Lien, E.; Bricout, M.; Bernet, J.P.; Lienhardt, J.F.; Jeannerot, F.; Menet, V.; Requillart, J.C.; Marx, J.; et al. Growth, stool consistency and bone mineral content in healthy term infants fed sn-2-palmitate-enriched starter infant formula: A randomized, double-blind, multicentre clinical trial. Clin. Nutr. 2019, 38, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Bousset-Alféres, C.M.; Chávez-Servín, J.L.; Vázquez-Landaverde, P.A.; Betancourt-López, C.A.; Del Carmen Caamaño, M.; Ferriz-Martínez, R.A.; Chávez-Alabat, E.F.; Lovatón-Cabrera, M.G.; De la Torre-Carbot, K. Content of industrially produced trans fatty acids in breast milk: An observational study. Food Sci. Nutr. 2022, 10, 2568–2581. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Sun, J.; Xia, Y.; Yu, R.; Wei, W.; Xiang, J.; Jin, Q.; Xiao, H.; Wang, X. Fatty Acid Profile and the sn-2 Position Distribution in Triacylglycerols of Breast Milk during Different Lactation Stages. J. Agric. Food Chem. 2018, 66, 3118–3126. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Puigmartí, C.; Castellote, A.I.; Carbonell-Estrany, X.; López-Sabater, M.C. Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants. Clin. Nutr. 2011, 30, 116–123. [Google Scholar] [CrossRef]
- Zou, L.; Pande, G.; Akoh, C.C. Infant Formula Fat Analogs and Human Milk Fat: New Focus on Infant Developmental Needs. Annu. Rev. Food Sci. Technol. 2016, 7, 139–165. [Google Scholar] [CrossRef]
- Nilsson, A.; Löfqvist, C.; Najm, S.; Hellgren, G.; Sävman, K.; Andersson, M.X.; Smith, L.E.H.; Hellström, A. Long-chain polyunsaturated fatty acids decline rapidly in milk from mothers delivering extremely preterm indicating the need for supplementation. Acta Paediatr. 2018, 107, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. ALA and LA and growth and development of children. Scientific substantiation of a health claim related to α-linolenic acid and linoleic acid and growth and development of children pursuant to Article 14 of Regulation (EC) No 1924/20061. EFSA J. 2008, 783, 1–9. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2008.783 (accessed on 11 July 2024).
- Xu, W.-H.; Chen, Y.-R.; Tian, H.-M.; Chen, Y.-F.; Gong, J.-Y.; Yu, H.-T.; Liu, G.-L.; Xie, L. Effects of dietary PUFA patterns and FADS genotype on breast milk PUFAs in Chinese lactating mothers. Genes Nutr. 2023, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Bobiński, R.; Bobińska, J. Fatty acids of human milk—A review. Int. J. Vitam. Nutr. Res. 2020, 92, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Uniacke-Lowe, T.; Lanfranchi, E.; Meehan, G.; O’Shea, C.-A.; Dennehy, T.; Ryan, A.C.; Stanton, C.; Kelly, A.L. A longitudinal study of fatty acid profiles, macronutrient levels, and plasmin activity in human milk. Front. Nutr. 2023, 10, 1172613. [Google Scholar] [CrossRef] [PubMed]
- Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Volkovs, V. Fish intake reflects on DHA level in breast milk among lactating women in Latvia. Int. Breastfeed. J. 2018, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Isesele, P.; Enstad, S.; Huong, P.; Thomas, R.; Wagner, C.L.; Sen, S.; Cheema, S.K. Breast Milk from Non-Obese Women with a High Omega-6 to Omega-3 Fatty Acid Ratio, but Not from Women with Obesity, Increases Lipogenic Gene Expression in 3T3-L1 Preadipocytes, Suggesting Adipocyte Dysfunction. Biomedicines 2022, 10, 1129. [Google Scholar] [CrossRef] [PubMed]
- Decsi, T.; Marosvölgyi, T.; Szabo, É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life 2023, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Juber, B.A.; Jackson, K.H.; Johnson, K.B.; Harris, W.S.; Baack, M.L. Breast milk DHA levels may increase after informing women: A community-based cohort study from South Dakota USA. Int. Breastfeed. J. 2017, 12, 7. [Google Scholar] [CrossRef]
- Koletzko, B. Human milk lipids. Ann. Nutr. Metab. 2017, 69, 28–40. [Google Scholar] [CrossRef]
- Hua, M.-C.; Su, H.-M.; Yao, T.-C.; Liao, S.-L.; Tsai, M.-H.; Su, K.-W.; Chen, L.-C.; Lai, S.-H.; Chiu, C.-Y.; Yeh, K.-W.; et al. The association between human milk fatty acid composition in mothers with an elevated body mass index and infant growth changes. Clin. Nutr. 2024, 43, 203–210. [Google Scholar] [CrossRef]
- Amaral, Y.; Silva, L.; Soares, F.; Marano, D.; Nehab, S.; Abranches, A.; Costa, A.C.; Moreira, M.E. What Are the Maternal Factors that Potentially Intervenes in the Nutritional Composition of Human Milk? Nutrients 2021, 13, 1587. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, X.; Zhou, B.; Jiang, A.C.; Chai, L. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr. 2016, 19, 2675–2687. [Google Scholar] [CrossRef]
- Forsyth, S.; Gautier, S.; Salem, N. Dietary Intakes of Arachidonic Acid and Docosahexaenoic Acid in Early Life—With a Special Focus on Complementary Feeding in Developing Countries. Ann. Nutr. Metab. 2017, 70, 217–227. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Li, F.; Xu, F.; Hu, P.; Xie, Z.; Lu, X.; Ding, Y.; Wang, Z. Impact of DHA from Algal Oil on the Breast Milk DHA Levels of Lactating Women: A Randomized Controlled Trial in China. Nutrients 2022, 14, 3410. [Google Scholar] [CrossRef] [PubMed]
- Tarar, O.M.; Ahmed, K.M.; Nishtar, N.A.; Achakzai, A.B.K.; Gulzar, Y.; Delles, C.; Al-Jawaldeh, A. Understanding the complexities of prevalence of trans fat and its control in food supply in Pakistan. J. Clin. Hypertens. 2020, 22, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, A.; Briend, A.; Chouraqui, J.-P.; Darmaun, D.; Feillet, F.; Frelut, M.-L.; Guimber, D.; Hankard, R.; Lapillonne, A.; Peretti, N.; et al. The new European regulatory framework for infant and follow-on formulas: Comments from the Committee of Nutrition of the French Society of Pediatrics (CN-SFP). Arch. Pediatr. 2020, 27, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Tounian, P.; Bellaïche, M.; Legrand, P. ARA or no ARA in infant formulae, that is the question. Arch. Pediatr. 2021, 28, 69–74. [Google Scholar] [CrossRef]
- Delplanque, B.; Gibson, R.; Koletzko, B.; Lapillonne, A.; Strandvik, B. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 8–17. [Google Scholar] [CrossRef]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Jasińska-Melon, E.; Mojska, H.; Olêdzka, G.; Węgierek, A.; Szostak-Wêgierek, D. The concentration of omega-3 fatty acids in human milk is related to their habitual but not current intake. Nutrients 2019, 11, 1585. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef]
- Koletzko, B.; Bergmann, K.; Thomas Brenna, J.; Calder, P.C.; Campoy, C.; Clandinin, M.T.; Colombo, J.; Daly, M.; Decsi, T.; on behalf of the European Academy of Paediatrics and the Child Health Foundation; et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020, 111, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius. Standard for Follow-Up Formula for Older Infants and Product for Young Children. CXS 156-1987. Adopted in 1987. Amended in 1989, 2011, 2017. Revised in 2023. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B156-1987%252FCXS_156e.pdf (accessed on 11 July 2024).
- Dingess, K.A.; Valentine, C.J.; Ollberding, N.J.; Davidson, B.S.; Woo, J.G.; Summer, S.; Peng, Y.M.; Guerrero, M.L.; Ruiz-Palacios, G.M.; Ran-Ressler, R.R.; et al. Branched-chain fatty acid composition of human milk and the impact of maternal diet: The Global Exploration of Human Milk (GEHM) Study. Am. J. Clin. Nutr. 2017, 105, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Ran-Ressler, R.R.; Bae, S.E.; Lawrence, P.; Wang, D.H.; Brenna, T. Branched-chain fatty acid content of foods and estimated intake in the USA. Br. J. Nutr. 2014, 112, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://worldpopulationreview.com/country-rankings/milk-consumption-by-country (accessed on 20 June 2024).
- Wang, X.; Wang, X.; Chen, Y.; Jin, W.; Jin, Q.; Wang, X. Enrichment of branched chain fatty acids from lanolin via urea complexation for infant formula use. LWT-Food Sci. Technol. 2020, 117, 108627. [Google Scholar] [CrossRef]
- Lucas, A.; Cole, T.J. Breast milk and neonatal necrotising enterocolitis. Lancet 1990, 336, 1519–1523. [Google Scholar] [CrossRef]
- McGuire, W.; Anthony, M.Y. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: Systematic review. Arch. Dis. Child 2003, 88, 11F–14F. [Google Scholar] [CrossRef]
- Ran-Ressler, R.R.; Khailova, L.; Arganbright, K.M.; Adkins-Rieck, C.K.; Jouni, Z.E.; Koren, O.; Ley, R.E.; Brenna, T.; Dvorak, B. Branched Chain Fatty Acids Reduce the Incidence of Necrotizing Enterocolitis and Alter Gastrointestinal Microbial Ecology in a Neonatal Rat Model. PLoS ONE 2021, 6, e29032. [Google Scholar] [CrossRef]
- Aumeistere, L.; Beluško, A.; Ciproviča, I.; Zavadska, D. Trans Fatty Acids in Human Milk in Latvia: Association with Dietary Habits during the Lactation Period. Nutrients 2021, 13, 2967. [Google Scholar] [CrossRef]
- De Souza Santos da Costa, R.; Da Silva Santos, F.; De Barros Mucci, D.; De Souza, T.V.; De Carvalho Sardinha, F.L.; Moutinho de Miranda Chaves, C.R.; das Graças Tavares do Carmo, M. trans Fatty Acids in Colostrum, Mature Milk and Diet of Lactating Adolescents. Lipids 2016, 51, 1363–1373. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Kiełbratowska, B.; Szlagatys-Sidorkiewicz, A. The content of conjugated linoleic acid and vaccenic acid in the breast milk of women from Gdansk and the surrounding district, as well as in, infant formulas and follow-up formulas. nutritional recommendation for nursing women. J. Mother Child 2021, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Van Hekken, D.L.; Tunick, M.H.; Tomasula, P.M. Impact of processing on the healthy fatty acids in milk and other dairy products. Dairy Funct. Foods Res. 2017, 3, 113–122. [Google Scholar]
- Dachev, M.; Bryndová, J.; Jakubek, M.; Moučka, Z.; Urban, M. The effects of conjugated linoleic acids on cancer. Processes 2021, 9, 454. [Google Scholar] [CrossRef]
- Bahreynian, M.; Feizi, A.; Kelishadi, R. Is fatty acid composition of breast milk different in various populations? A systematic review and meta-analysis. Int. J. Food Sci. Nutr. 2020, 71, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Wang, L.; Pan, Y.; Hao, X.; Zhang, G.; Li, X.; Hussain, M. Comparative Lipidomics Analysis of Human Milk and Infant Formulas Using UHPLC-Q-TOF-MS. J. Agric. Food Chem. 2021, 69, 1146–1155. [Google Scholar] [CrossRef]
- Halimah, S.N.; Roosita, K.; Briawan, D.; Dewi, M. The Association Between Saturated Fatty Acids (SFAs) Level in Dietary and Blood During Pregnancy and SFAs Level in Breast Milk of Postpartum Mothers. Int. J. Sci. Basic Appl. Res. 2021, 60, 93–104. [Google Scholar]
- Petersohn, I.; Hellinga, A.H.; Van Lee, L.; Keukens, N.; Bont, L.; Hettinga, K.A.; Feskens, E.J.M.; Brouwer-Brolsma, E.M. Maternal diet and human milk composition: An updated systematic review. Front. Nutr. 2023, 10, 1320560. [Google Scholar] [CrossRef] [PubMed]
- Di Maso, M.; Bravi, F.; Ferraroni, M.; Agostoni, C.; Eussen, S.R.B.M.; Decsi, T.; Quitadamo, P.A.; Tonetto, P.; Peila, C.; Profeti, C.; et al. Adherence to Mediterranean diet of breastfeeding mothers and fatty acids composition of their human milk: Results from the Italian MEDIDIET Study. Front. Nutr. 2022, 9, 891376. [Google Scholar] [CrossRef]
- Makela, J.; Linderborg, K.; Niinikoski, H.; Yang, B.; Lagstrom, H. Breast milk fatty acid composition differs between overweight and normal weight of women: The STEPS Study. Eur. J. Nutr. 2012, 52, 727–737. [Google Scholar] [CrossRef]
- Guesnet, P.; Marmonier, C.; Boyer, C.; Delplanque, B. Impact of maternal dietary lipids on human health. OCL Oilseeds Fats Crop. Lipids 2018, 25, D302. [Google Scholar] [CrossRef]
- Krešić, G.; Dujmović, M.; Mandić, M.L.; Delaš, I. Relationship between Mediterranean diet and breast milk farty acid profile: A study in breastfeeding women in Croatia. Dairy Sci. Technol. 2013, 93, 287–301. [Google Scholar] [CrossRef]
- Jagodic, M.; Tratnik, J.S.; Potočnik, D.; Mazej, D.; Ogrinc, N.; Horvat, M. Dietary habits of Slovenian inland and coastal primiparous women and fatty acid composition of their human milk samples. Food Chem. Toxicol. 2020, 141, 111299. [Google Scholar] [CrossRef]
- Nishimura, R.Y.; De Castro, G.S.F.; Junior, A.A.J.; Sartorelli, D.S. Breast milk fatty acid composition of women living far from the coastal area in Brazil. J. Pediatr. 2013, 89, 263–268. [Google Scholar] [CrossRef]
- Silva, M.H.L.; Silva, M.T.C.; Brandão, S.C.C.; Gomes, J.C.; Peternelli, L.A.; Franceschini, S.C.C. Fatty acid composition of mature breast milk in Brazilian women. Food Chem. 2005, 93, 297–303. [Google Scholar] [CrossRef]
- Utri-Khodadady, Z.; Skolmowska, D.; Głąbska, D. Determinants of Fish Intake and Complying with Fish Consumption Recommendations—A Nationwide Cross-Sectional Study among Secondary School Students in Poland. Nutrients 2024, 16, 853. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://aquaculture.ec.europa.eu/country-information/poland (accessed on 18 June 2024).
- Ratnayake, W.N.; Swist, E.; Zoka, R.; Gagnon, C.; Lillycrop, W.; Pantazapoulos, P. Mandatory trans fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women’s breast milk samples collected in 2009–2011. Am. J. Clin. Nutr. 2014, 100, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zou, Q.; Liu, B.; Ye, W.; Zhuo, C.; Chen, L.I.; Deng, Z.-Y.; Fan, Y.-W.; Li, J. Fatty acid positional distribution in colostrum and mature milk of women living in Inner Mongolia, North Jiangsu and Guangxi of China. Food Funct. 2018, 9, 4234–4245. [Google Scholar] [CrossRef]
- Perrin, M.T.; Pawlak, R.; Dean, L.L.; Christis, A.; Friend, L. A cross-sectional study of fatty acids and brain-derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur. J. Nutr. 2018, 58, 2401–2410. [Google Scholar] [CrossRef]
- Krešić, G.; Dujmović, M.; Mandić, M.L.; Delaš, I. Dietary and breast milk trans fatty acids seen in Croatian breastfeeding women from Adriatic region. J. Food Nutr. Res. 2013, 52, 156–163. [Google Scholar]
- Hatem, O.; Kaçar, Ö.F.; Kaçar, H.K.; Szentpéteri, J.L.; Marosvölgyi, T.; Szabó, E. Trans isomeric fatty acids in human milk and their role in infant health and development. Front Nutr. 2024, 11, 1379772. [Google Scholar] [CrossRef]
- Mojska, H.; Socha, P.; Socha, J.; Soplińska, E.; Jaroszewska-Balicka, W.; Szponar, L. Trans fatty acids in human milk in Poland and their association with breastfeeding mothers’ diets. Acta Paediatr. 2003, 92, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Chisaguano, A.M.; Montes, R.; Castellote, A.I.; Morales, E.; Júlvez, J.; Vioque, J.; Sunyer, J.; López-Sabater, M.C. Elaidic, vaccenic, and rumenic acid status during pregnancy: Association with maternal plasmatic LC-PUFAs and atopic manifestations in infants. Pediatr. Res. 2014, 76, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Lassek, W.D.; Gaulin, S.J.C. Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries. Prostaglandins Leukot. Essent. Fat. Acids 2014, 91, 195–201. [Google Scholar] [CrossRef]
- Nguyen, M.T.T.; Kim, J.; Seo, N.; Lee, A.H.; Kim, Y.-K.; Jung, J.A.; Li, D.; To, X.H.M.; Huynh, K.T.N.; Le, T.V.; et al. Comprehensive analysis of fatty acids in human milk of four Asian countries. J. Dairy Sci. 2021, 104, 6496–6507. [Google Scholar] [CrossRef] [PubMed]
- Yakes, E.A.; Arsenault, J.E.; Islam, M.M.; Hossain, M.B.; Ahmed, T.; German, B.; Gillies, L.A.; Rahman, A.S.; Drake, C.; Jamil, K.M.; et al. Intakes and breast-milk concentrations of essential fatty acids are low among Bangladeshi women with 24–48-month-old children. Br. J. Nutr. 2011, 105, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Balter, A.; Vodsky, V.; Odetallh, Y.; Ben-Dror, G.; Zhang, Y.; Zhao, A. Chinese Breast Milk Fat Composition and Its Associated Dietary Factors: A Pilot Study on Lactating Mothers in Beijing. Front. Nutr. 2021, 8, 606950. [Google Scholar] [CrossRef]
- Ćwiek, D.; Zimny, M.; Szymoniak, K.; Czechowska, K.; Sipak-Szmigiel, O. Assessment of Fatty Acid Content in the Milk of Women from the West Pomeranian Region of Poland with Regard to Supplementation and the Amount of Adipose Tissue. Nutrients 2023, 15, 1110. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Żóralska, K.; Zagierski, M.; Szlagatys-Sidorkiewicz, A. Fatty acid composition in breast milk of women from Gdansk and the surrounding district in the course of lactation. Med. Wieku Rozw. 2011, 15, 167–177. [Google Scholar]
- Household Budget Survey in 2018; Statistics Poland, Social Surveys Department: Warsaw, Poland, 2019; p. 227.
- Koletzko, B.; Baker, S.; Cleghorn, G.; Neto, U.F.; Gopalan, S.; Hernell, O.; Hock, Q.S.; Jirapinyo, P.; Lonnerdal, B.; Pencharz, P.; et al. Global Standard for the Composition of Infant Formula: Recommendations of an ESPGHAN Coordinated International Expert Group. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 584–599. [Google Scholar] [CrossRef]
- Jasińska-Melon, E.; Mojska, H.; Stoś, K. Trans Fatty Acids Content in Whole-Day Diets Intended for Pregnant and Breastfeeding Women in Gynaecological and Obstetric Wards: Findings from the Study under the “Mum’s Diet” Pilot Program in Poland. Nutrients 2022, 14, 3360. [Google Scholar] [CrossRef]
- Yu, J.; Yuan, T.; Zhang, X.; Jin, Q.; Wei, W.; Wang, X. Quantification of Nervonic Acid in Human Milk in the First 30 Days of Lactation: Influence of Lactation Stages and Comparison with Infant Formulae. Nutrients 2019, 11, 1892. [Google Scholar] [CrossRef] [PubMed]
- Delplanque, B.; Du, Q.; Martin, J.-C.; Guesnet, P. Lipids for infant formulas. OCL Oilseeds Fats Crop. Lipids 2018, 25, D305. [Google Scholar] [CrossRef]
- Einerhand, A.W.C.; Mi, W.; Haandrikman, A.; Sheng, X.-Y.; Calder, P.C. The Impact of Linoleic Acid on Infant Health in the Absence or Presence of DHA in Infant Formulas. Nutrients 2023, 15, 2187. [Google Scholar] [CrossRef] [PubMed]
- StatSoft Electronic Statistics Textbook. Principal Components and Factor Analysis. Available online: https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstfacan.html (accessed on 13 July 2024).
- StatSoft Electronic Statistics Textbook. Cluster Analysis. Available online: https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstcluan.html (accessed on 13 July 2024).
- Zhang, M.; Sarkadi, L.S.; Üveges, M.; Tormási, J.; Benes, E.; Vass, R.A.; Vari, S.G. Gas chromatographic determination of fatty acid composition in breast milk of mothers with different health conditions. Acta Aliment. 2022, 51, 625–635. [Google Scholar] [CrossRef]
Nutritional Value in 100 g of Powder * | IF-I | IF-II |
---|---|---|
Energy (kcal) | 482 | 511 |
Fat (g), of which | 25 | 27.8 |
Saturated fatty acids (g) | 11 | 12.4 |
Monounsaturated fatty acids (g) | 10 | 11 |
Polyunsaturated fatty acids (g) | 4.2 | 4.4 |
Carbohydrates (g), of which | 51 | 54.3 |
Sugars (g) | 24 | 23.1 |
Protein (g) | 11 | 9.8 |
Preparation of 100 mL of milk | 13.8 g of powder + 90 mL of water | 12.8 g of powder + 100 mL of water |
Group of Fatty Acids | IF-I | IF-II | ||
---|---|---|---|---|
In 100 mL of the Prepared Milk * | % of Total Fatty Acids | In 100 mL of Prepared Milk | % of Total Fatty Acids | |
Saturated fatty acids | 1.52 | 43.65 | 1.59 | 44.60 |
Monounsaturated fatty acids | 1.38 | 39.68 | 1.41 | 39.57 |
Polyunsaturated fatty acids | 0.58 | 16.67 | 0.56 | 15.83 |
Fatty Acid | Common Name | Colostrum | Transitional Milk | Mature Milk | IF-I | IF-II |
---|---|---|---|---|---|---|
C6:0 | Caproic | ND | 0.03 ± 0.05 b | 0.01 ± 0.05 b | 0.21 ± 0.02 a | 0.17 ± 0.00 a |
C8:0 | Caprylic | 0.08 ± 0.06 c | 0.26 ± 0.19 b | 0.33 ± 0.32 b | 2.25 ± 0.20 a | 1.78 ± 0.00 a |
C10:0 | Capric | 0.92 ± 0.40 b | 1.65 ± 0.63 a | 2.06 ± 1.04 a | 1.77 ± 0.13 a | 1.40 ± 0.01 a |
C12:0 | Lauric | 3.99 ± 1.69 c | 5.99 ± 2.94 b | 6.09 ± 2.30 b | 12.95 ± 0.41 a | 10.26 ± 0.06 a |
C14:0 | Myristic | 5.94 ± 1.52 b | 7.43 ± 2.47 b | 9.21 ± 2.22 a | 5.38 ± 0.05 b | 4.47 ± 0.02 b |
C15:0 | Pentadecylic | 0.36 ± 0.17 a | 0.40 ± 0.17 a | 0.40 ± 0.18 a | 0.06 ± 0.00 b | 0.04 ± 0.00 b |
C16:0 | Palmitic | 28.10 ± 6.06 a | 29.24 ± 6.14 a | 26.58 ± 8.75 a | 18.82 ± 0.17 a | 21.68 ± 1.44 a |
C17:0 | Margaric | 0.36 ± 0.11 a | 0.39 ± 0.11 a | 0.38 ± 0.15 a | 0.07 ± 0.00 b | 0.09 ± 0.00 b |
C18:0 | Stearic | 6.72 ± 1.55 a | 7.13 ± 2.03 a | 7.58 ± 2.01 a | 3.17 ± 0.02 b | 3.88 ± 0.10 b |
C20:0 | Arachidic | 0.03 ± 0.08 b | 0.02 ± 0.04 b | 0.07 ± 0.09 b | 0.33 ± 0.00 a | 0.29 ± 0.01 a |
C14:1 n5 | Myristoleic | 0.14 ± 0.10 a | 0.17 ± 0.06 a | 0.17 ± 0.09 a | 0.02 ± 0.00 b | 0.03 ± 0.02 b |
C16:1 n7 | Palmitoleic | 1.90 ± 0.66 a | 2.43 ± 3.53 a | 1.89 ± 0.76 a | 0.20 ± 0.01 b | 0.16 ± 0.00 b |
C17:1 n9 | cis-10-Heptadecenoic acid | 0.14 ± 0.03 a | 0.13 ± 0.03 a | 0.15 ± 0.05 a | 0.04 ± 0.01 b | 0.03 ± 0.00 b |
C18:1 n9 | Oleic | 31.46 ± 6.35 b | 30.05 ± 4.83 b | 29.18 ± 8.19 b | 37.34 ± 0.14 a | 35.10 ± 0.20 a |
C20:1 n9 | Eicosenoic | 0.46 ± 0.36 a | 0.40 ± 0.36 a | 0.39 ± 0.25 a | 0.43 ± 0.00 a | 0.15 ± 0.01 b |
C22:1 n9 | Ercucic | 0.14 ± 0.04 a | 0.09 ± 0.16 b | 0.10 ± 0.19 b | ND | ND |
C18:2 n6 | Linoleic (LA) | 8.49 ± 1.77 b | 8.59 ± 1.86 b | 8.83 ± 2.58 b | 12.76 ± 0.21 a | 16.62 ± 0.07 a |
C20:4 n6 | Arachidonic (AA) | 0.61 ± 0.18 a | 0.52 ± 0.22 b | 0.47 ± 0.28 b | 0.52 ± 0.11 b | 0.49 ± 0.07 b |
C18:3 n3 | α-linoleic (ALA) | 0.72 ± 0.52 c | 0.84 ± 0.69 c | 0.94 ± 0.60 c | 2.11 ± 0.03 a | 1.55 ± 0.01 b |
C20:5 n3 | Eicosapentaenoic (EPA) | 0.17 ± 0.21 a | 0.18 ± 0.26 a | 0.15 ± 0.28 a | 0.03 ± 0.01 b | 0.04 ± 0.02 b |
C22:6 n3 | Docosahexaenoic (DHA) | 0.44 ± 0.14 a | 0.41 ± 0.04 b | 0.33 ± 0.06 b | 0.42 ± 0.10 a | 0.45 ± 0.07 a |
iso C15:0 | Isopentadecylic | 0.06 ± 0.03 a | 0.07 ± 0.03 a | 0.07 ± 0.04 a | ND | ND |
anteiso C15:0 | Anteisopentadecylic | 0.10 ± 0.07 a | 0.12 ± 0.06 a | 0.10 ± 0.07 a | ND | 0.01 ± 0.00 b |
iso C16:0 | Isopalmitic | 0.07 ± 0.05 a | 0.09 ± 0.05 a | 0.08 ± 0.04 a | 0.06 ± 0.00 a | ND |
C18:1 n6+n9 t | Petroselaidic and Elaidic | 0.56 ± 0.29 a | 0.45 ± 0.23 a | 0.49 ± 0.25 a | 0.08 ± 0.02 b | 0.15 ± 0.02 b |
C18:1 t11 | Vaccenic (VA) | 2.99 ± 4.19 a | 1.74 ± 0.98 a | 1.52 ± 1.26 a | ND | ND |
C18:2 c9t11 | Rumenic (RA) | 0.21 ± 0.43 a | 0.13 ± 0.11 b | 0.18 ± 0.29 a | ND | ND |
C16:1 t7 | Palmitelaidic | 0.10 ± 0.05 a | 0.10 ± 0.06 a | 0.09 ± 0.07 a | ND | ND |
SFAs | 46.50 b | 52.54 a | 52.71 a | 45.01 b | 44.06 b | |
MUFAs | 34.24 b | 33.27 b | 31.88 c | 38.03 a | 35.47 b | |
PUFAs; n6 | 9.10 c | 9.11 c | 9.30 c | 13.28 b | 17.11 a | |
PUFAs; n3 | 1.33 c | 1.43 c | 1.42 c | 2.56 a | 2.04 b | |
BCFAs | 0.23 a | 0.28 a | 0.25 a | 0.06 b | 0.01 c | |
TFAs | 3.86 a | 2.42 b | 2.28 b | 0.08 c | 0.15 c | |
PUFA n6:PUFA n3 | 6.84:1 | 6.37:1 | 6.55:1 | 5.19:1 | 8.39:1 | |
DHA:LA | 0.05:1 | 0.05:1 | 0.04:1 | 0.03:1 | 0.03:1 | |
DHA:AA | 0.72:1 | 0.79:1 | 0.70:1 | 0.81:1 | 0.92:1 | |
LA:ALA | 11.79:1 | 10.23:1 | 9.39:1 | 6.05:1 | 10.72:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkiewicz, A.; Pietrzak-Fiećko, R. Changes in the Fatty Acid Profile of Lactating Women Living in Poland—A Comparison with the Fatty Acid Profile of Selected Infant Formulas. Nutrients 2024, 16, 2411. https://doi.org/10.3390/nu16152411
Purkiewicz A, Pietrzak-Fiećko R. Changes in the Fatty Acid Profile of Lactating Women Living in Poland—A Comparison with the Fatty Acid Profile of Selected Infant Formulas. Nutrients. 2024; 16(15):2411. https://doi.org/10.3390/nu16152411
Chicago/Turabian StylePurkiewicz, Aleksandra, and Renata Pietrzak-Fiećko. 2024. "Changes in the Fatty Acid Profile of Lactating Women Living in Poland—A Comparison with the Fatty Acid Profile of Selected Infant Formulas" Nutrients 16, no. 15: 2411. https://doi.org/10.3390/nu16152411
APA StylePurkiewicz, A., & Pietrzak-Fiećko, R. (2024). Changes in the Fatty Acid Profile of Lactating Women Living in Poland—A Comparison with the Fatty Acid Profile of Selected Infant Formulas. Nutrients, 16(15), 2411. https://doi.org/10.3390/nu16152411