Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases
Abstract
:1. Introduction
2. Molecular Mechanisms Involving Biotin
2.1. Biotin in Metabolism
2.2. Biotin Transport
2.3. Biotin and Its Transporter in Cell Structure
2.4. Biotin and HCS in the Nucleus
3. The Roles of Biotin in the Immune System
4. Biotin in Disorders
4.1. Biotin-Dependent Disorders
4.2. Biotin in Diabetes
4.3. Biotin in Allergic Disorders
4.4. Biotin in Multiple Sclerosis
4.5. Biotin in Inflammatory Bowel Diseases
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Leon-Del-Rio, A.; Valadez-Graham, V.; Gravel, R.A. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization. Annu. Rev. Nutr. 2017, 37, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Aoki, Y.; Ishida, Y.; Chiba, Y.; Iwamatsu, A.; Kishino, T.; Niikawa, N.; Matsubara, Y.; Narisawa, K. Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat. Genet. 1994, 8, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Leon-Del-Rio, A.; Leclerc, D.; Akerman, B.; Wakamatsu, N.; Gravel, R.A. Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc. Natl. Acad. Sci. USA 1995, 92, 4626–4630. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, L.; Leon-Del-Rio, A.; Leclerc, D.; Campeau, E.; Sweetman, L.; Saudubray, J.M.; Herman, G.; Gibson, K.M.; Gravel, R.A. Clustering of mutations in the biotin-binding region of holocarboxylase synthetase in biotin-responsive multiple carboxylase deficiency. Hum. Mol. Genet. 1996, 5, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Craft, D.V.; Goss, N.H.; Chandramouli, N.; Wood, H.G. Purification of biotinidase from human plasma and its activity on biotinyl peptides. Biochemistry 1985, 24, 2471–2476. [Google Scholar] [CrossRef] [PubMed]
- Hymes, J.; Wolf, B. Biotinidase and its roles in biotin metabolism. Clin. Chim. Acta 1996, 255, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chapman-Smith, A.; Cronan, J.E., Jr. The enzymatic biotinylation of proteins: A post-translational modification of exceptional specificity. Trends Biochem. Sci. 1999, 24, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Wolf, B. Disorders of Biotin Metabolism in the Metabolic and Molecular Basis of Inherited Disease; McGraw-Hill Medical: New York, NY, USA, 2001; Volume 3, pp. 3935–3962. [Google Scholar]
- Leon-Del-Rio, A. Biotin in metabolism, gene expression, and human disease. J. Inherit. Metab. Dis. 2019, 42, 647–654. [Google Scholar] [CrossRef]
- Pacheco-Alvarez, D.; Solorzano-Vargas, R.S.; Gonzalez-Noriega, A.; Michalak, C.; Zempleni, J.; Leon-Del-Rio, A. Biotin availability regulates expression of the sodium-dependent multivitamin transporter and the rate of biotin uptake in HepG2 cells. Mol. Genet. Metab. 2005, 85, 301–307. [Google Scholar] [CrossRef]
- Pacheco-Alvarez, D.; Solorzano-Vargas, R.S.; Gravel, R.A.; Cervantes-Roldan, R.; Velazquez, A.; Leon-Del-Rio, A. Paradoxical regulation of biotin utilization in brain and liver and implications for inherited multiple carboxylase deficiency. J. Biol. Chem. 2004, 279, 52312–52318. [Google Scholar] [CrossRef]
- Solórzano-Vargas, R.S.; Pacheco-Alvarez, D.; León-Del-Río, A. Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc. Natl. Acad. Sci. USA 2002, 99, 5325–5330. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Dakshinamurti, K. Transcriptional regulation of the glucokinase gene by biotin in starved rats. J. Biol. Chem. 1991, 266, 10035–10038. [Google Scholar] [CrossRef]
- Dakshinamurti, K.; Cheah-Tan, C. Biotin-mediated synthesis of hepatic glucokinase in the rat. Arch. Biochem. Biophys. 1968, 127, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Dakshinamurti, K.; Litvak, S. Biotin and protein synthesis in rat liver. J. Biol. Chem. 1970, 245, 5600–5605. [Google Scholar] [CrossRef] [PubMed]
- Dakshinamurti, K.; Tarrago-Litvak, L.; Hong, H.C. Biotin and glucose metabolism. Can. J. Biochem. 1970, 48, 493–500. [Google Scholar] [CrossRef]
- Maeda, Y.; Kawata, S.; Inui, Y.; Fukuda, K.; Igura, T.; Matsuzawa, Y. Biotin deficiency decreases ornithine transcarbamylase activity and mRNA in rat liver. J. Nutr. 1996, 126, 61–66. [Google Scholar] [CrossRef]
- Lazo de la Vega-Monroy, M.L.; Larrieta, E.; German, M.S.; Baez-Saldana, A.; Fernandez-Mejia, C. Effects of biotin supplementation in the diet on insulin secretion, islet gene expression, glucose homeostasis and beta-cell proportion. J. Nutr. Biochem. 2013, 24, 169–177. [Google Scholar] [CrossRef]
- Esni, F.; Taljedal, I.B.; Perl, A.K.; Cremer, H.; Christofori, G.; Semb, H. Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J. Cell Biol. 1999, 144, 325–337. [Google Scholar] [CrossRef]
- Larrieta, E.; Velasco, F.; Vital, P.; Lopez-Aceves, T.; Lazo-de-la-Vega-Monroy, M.L.; Rojas, A.; Fernandez-Mejia, C. Pharmacological concentrations of biotin reduce serum triglycerides and the expression of lipogenic genes. Eur. J. Pharmacol. 2010, 644, 263–268. [Google Scholar] [CrossRef]
- Zhang, W.; Patil, S.; Chauhan, B.; Guo, S.; Powell, D.R.; Le, J.; Klotsas, A.; Matika, R.; Xiao, X.; Franks, R.; et al. FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 2006, 281, 10105–10117. [Google Scholar] [CrossRef]
- Sugita, Y.; Shirakawa, H.; Sugimoto, R.; Furukawa, Y.; Komai, M. Effect of biotin treatment on hepatic gene expression in streptozotocin-induced diabetic rats. Biosci. Biotechnol. Biochem. 2008, 72, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Bonni, A.; Zigmond, M.J.; Lin, M.Z.; Juo, P.; Hu, L.S.; Anderson, M.J.; Arden, K.C.; Blenis, J.; Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96, 857–868. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F. In type 1 diabetics, high-dose biotin may compensate for low hepatic insulin exposure, promoting a more normal expression of glycolytic and gluconeogenic enyzymes and thereby aiding glycemic control. Med. Hypotheses 2016, 95, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Mendez, E.; Hernandez-Vazquez, A.; Fernandez-Mejia, C. Effect of biotin supplementation on fatty acid metabolic pathways in 3T3-L1 adipocytes. Biofactors 2019, 45, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Vazquez, A.; Wolf, B.; Pindolia, K.; Ortega-Cuellar, D.; Hernandez-Gonzalez, R.; Heredia-Antunez, A.; Ibarra-Gonzalez, I.; Velazquez-Arellano, A. Biotinidase knockout mice show cellular energy deficit and altered carbon metabolism gene expression similar to that of nutritional biotin deprivation: Clues for the pathogenesis in the human inherited disorder. Mol. Genet. Metab. 2013, 110, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kuroishi, T.; Sugawara, S. Metabolomic Analysis of Liver from Dietary Biotin Deficient Mice. J. Nutr. Sci. Vitaminol. 2020, 66, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.D.; Wang, H.; Kekuda, R.; Fujita, T.; Fei, Y.J.; Devoe, L.D.; Leibach, F.H.; Ganapathy, V. Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J. Biol. Chem. 1998, 273, 7501–7506. [Google Scholar] [CrossRef]
- Chatterjee, N.S.; Kumar, C.K.; Ortiz, A.; Rubin, S.A.; Said, H.M. Molecular mechanism of the intestinal biotin transport process. Am. J. Physiol. 1999, 277, C605–C613. [Google Scholar] [CrossRef]
- Leon-Del-Rio, A.; Velazquez, A.; Vizcaino, G.; Robles-Diaz, G.; Gonzalez-Noriega, A. Association of pancreatic biotinidase activity and intestinal uptake of biotin and biocytin in hamster and rat. Ann. Nutr. Metab. 1990, 34, 266–272. [Google Scholar]
- Lo, W.; Kadlecek, T.; Packman, S. Biotin transport in the rat central nervous system. J. Nutr. Sci. Vitaminol. 1991, 37, 567–572. [Google Scholar] [CrossRef]
- Leon-Del-Rio, A.; Hol-Soto-Borja, D.; Velazquez, A. Studies on the mechanism of biotin uptake by brush-border membrane vesicles of hamster enterocytes. Arch. Med. Res. 1993, 24, 143–146. [Google Scholar] [PubMed]
- Baur, B.; Baumgartner, E.R. Biotin and biocytin uptake into cultured primary calf brain microvessel endothelial cells of the blood-brain barrier. Brain Res. 2000, 858, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Daberkow, R.L.; White, B.R.; Cederberg, R.A.; Griffin, J.B.; Zempleni, J. Monocarboxylate transporter 1 mediates biotin uptake in human peripheral blood mononuclear cells. J. Nutr. 2003, 133, 2703–2706. [Google Scholar] [CrossRef] [PubMed]
- Sone, H.; Ito, M.; Sugiyama, K.; Ohneda, M.; Maebashi, M.; Furukawa, Y. Biotin enhances glucose-stimulated insulin secretion in the isolated perfused pancreas of the rat. J. Nutr. Biochem. 1999, 10, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Riveron-Negrete, L.; Sicilia-Argumedo, G.; Alvarez-Delgado, C.; Coballase-Urrutia, E.; Alcantar-Fernandez, J.; Fernandez-Mejia, C. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers. BioMed Res. Int. 2016, 2016, 7276463. [Google Scholar] [CrossRef] [PubMed]
- Aldahmash, B.A.; El-Nagar, D.M.; Ibrahim, K.E. Attenuation of hepatotoxicity and oxidative stress in diabetes STZ-induced type 1 by biotin in Swiss albino mice. Saudi J. Biol. Sci. 2016, 23, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Benavides, T.; Velez-delValle, C.; Marsch-Moreno, M.; Castro-Munozledo, F.; Kuri-Harcuch, W. Lipogenic Enzymes Complexes and Cytoplasmic Lipid Droplet Formation During Adipogenesis. J. Cell. Biochem. 2016, 117, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Berghaus, C.; Groh, A.C.; Breljak, D.; Ciarimboli, G.; Sabolic, I.; Pavenstadt, H.; Weide, T. Impact of Pals1 on Expression and Localization of Transporters Belonging to the Solute Carrier Family. Front. Mol. Biosci. 2022, 9, 792829. [Google Scholar] [CrossRef]
- Nabokina, S.M.; Subramanian, V.S.; Said, H.M. Association of PDZ-containing protein PDZD11 with the human sodium-dependent multivitamin transporter. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G561–G567. [Google Scholar] [CrossRef]
- Shah, J.; Guerrera, D.; Vasileva, E.; Sluysmans, S.; Bertels, E.; Citi, S. PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling. Int. J. Biochem. Cell Biol. 2016, 75, 112–116. [Google Scholar] [CrossRef]
- Reyes-Carmona, S.; Valadez-Graham, V.; Aguilar-Fuentes, J.; Zurita, M.; Leon-Del-Rio, A. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Mol. Genet. Metab. 2011, 103, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hassan, Y.I.; Moriyama, H.; Zempleni, J. Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events. J. Nutr. Biochem. 2013, 24, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Gonzalez, I.; Cervantes-Roldan, R.; Gonzalez-Noriega, A.; Michalak, C.; Reyes-Carmona, S.; Barrios-Garcia, T.; Meneses-Morales, I.; Leon-Del-Rio, A. Holocarboxylase synthetase acts as a biotin-independent transcriptional repressor interacting with HDAC1, HDAC2 and HDAC7. Mol. Genet. Metab. 2014, 111, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zempleni, J. Holocarboxylase synthetase interacts physically with nuclear receptor co-repressor, histone deacetylase 1 and a novel splicing variant of histone deacetylase 1 to repress repeats. Biochem. J. 2014, 461, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Grinchuk, O.V.; Kannan, S.; Ang, M.J.Y.; Li, Z.; Tay, E.X.Y.; Lok, K.Z.; Lee, B.W.L.; Chuah, Y.H.; Chia, K.; et al. A chemical biology approach reveals a dependency of glioblastoma on biotin distribution. Sci. Adv. 2021, 7, eabf6033. [Google Scholar] [CrossRef]
- Xue, J.; Zhou, J.; Zempleni, J. Holocarboxylase synthetase catalyzes biotinylation of heat shock protein 72, thereby inducing RANTES expression in HEK-293 cells. Am. J. Physiol. Cell Physiol. 2013, 305, C1240–C1245. [Google Scholar] [CrossRef] [PubMed]
- Baez-Saldana, A.; Diaz, G.; Espinoza, B.; Ortega, E. Biotin deficiency induces changes in subpopulations of spleen lymphocytes in mice. Am. J. Clin. Nutr. 1998, 67, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Baez-Saldana, A.; Ortega, E. Biotin deficiency blocks thymocyte maturation, accelerates thymus involution, and decreases nose-rump length in mice. J. Nutr. 2004, 134, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.J.; Wara, D.W.; Packman, S.; Ammann, A.J.; Yoshino, M.; Sweetman, L.; Nyhan, W. Multiple biotin-dependent carboxylase deficiencies associated with defects in T-cell and B-cell immunity. Lancet 1979, 2, 115–118. [Google Scholar] [CrossRef]
- Pindolia, K.; Jordan, M.; Guo, C.; Matthews, N.; Mock, D.M.; Strovel, E.; Blitzer, M.; Wolf, B. Development and characterization of a mouse with profound biotinidase deficiency: A biotin-responsive neurocutaneous disorder. Mol. Genet. Metab. 2011, 102, 161–169. [Google Scholar] [CrossRef]
- Pindolia, K.; Li, H.; Cardwell, C.; Wolf, B. Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency. Mol. Genet. Metab. 2014, 112, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kuroishi, T.; Kinbara, M.; Sato, N.; Tanaka, Y.; Nagai, Y.; Iwakura, Y.; Endo, Y.; Sugawara, S. Biotin status affects nickel allergy via regulation of interleukin-1beta production in mice. J. Nutr. 2009, 139, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Kuroishi, T.; Endo, Y.; Muramoto, K.; Sugawara, S. Biotin deficiency up-regulates TNF-alpha production in murine macrophages. J. Leukoc. Biol. 2008, 83, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Elahi, A.; Sabui, S.; Narasappa, N.N.; Agrawal, S.; Lambrecht, N.W.; Agrawal, A.; Said, H.M. Biotin deficiency induces Th1- and Th17-mediated proinflammatory responses in human CD4+ T lymphocytes via activation of the mTOR signaling pathway. J. Immunol. 2018, 200, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, S.; Eudy, J.D.; Zempleni, J. Biotin supplementation increases expression of genes encoding interferon-gamma, interleukin-1beta, and 3-methylcrotonyl-CoA carboxylase, and decreases expression of the gene encoding interleukin-4 in human peripheral blood mononuclear cells. J. Nutr. 2003, 133, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Kuroishi, T. Regulation of immunological and inflammatory functions by biotin. Can. J. Physiol. Pharmacol. 2015, 93, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.B.; Rodriguez-Melendez, R.; Zempleni, J. The nuclear abundance of transcription factors Sp1 and Sp3 depends on biotin in Jurkat cells. J. Nutr. 2003, 133, 3409–3415. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Melendez, R.; Camporeale, G.; Griffin, J.B.; Zempleni, J. Interleukin-2 receptor-gamma -dependent endocytosis depends on biotin in Jurkat cells. Am. J. Physiol. Cell Physiol. 2003, 284, C415–C421. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.B.; Rodriguez-Melendez, R.; Dode, L.; Wuytack, F.; Zempleni, J. Biotin supplementation decreases the expression of the SERCA3 gene (ATP2A3) in Jurkat cells, thus, triggering unfolded protein response. J. Nutr. Biochem. 2006, 17, 272–281. [Google Scholar] [CrossRef]
- Launay, S.; Bobe, R.; Lacabaratz-Porret, C.; Bredoux, R.; Kovacs, T.; Enouf, J.; Papp, B. Modulation of endoplasmic reticulum calcium pump expression during T lymphocyte activation. J. Biol. Chem. 1997, 272, 10746–10750. [Google Scholar] [CrossRef]
- Rodriguez-Melendez, R.; Schwab, L.D.; Zempleni, J. Jurkat cells respond to biotin deficiency with increased nuclear translocation of NF-kappaB, mediating cell survival. Int. J. Vitam. Nutr. Res. 2004, 74, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Mock, D.M. Skin manifestations of biotin deficiency. Semin. Dermatol. 1991, 10, 296–302. [Google Scholar] [PubMed]
- Baumgartner, E.R.; Suormala, T. Multiple carboxylase deficiency: Inherited and acquired disorders of biotin metabolism. Int. J. Vitam. Nutr. Res. 1997, 67, 377–384. [Google Scholar] [PubMed]
- Kimura, M.; Fukui, T.; Tagami, Y.; Fujiwaki, T.; Yokoyama, M.; Ishioka, C.; Kumasaka, K.; Terada, N.; Yamaguchi, S. Normalization of low biotinidase activity in a child with biotin deficiency after biotin supplementation. J. Inherit. Metab. Dis. 2003, 26, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Yang, X.; Aoki, Y.; Kure, S.; Matsubara, Y. Mutations in the holocarboxylase synthetase gene HLCS. Hum. Mutat. 2005, 26, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.J.; Stanley, C.; Shaia, W.T.; Sismanis, A.; Spencer, R.F.; Wolf, B. Localization of biotinidase in the brain: Implications for its role in hearing loss in biotinidase deficiency. Hear. Res. 2002, 173, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Perez-Monjaras, A.; Cervantes-Roldan, R.; Meneses-Morales, I.; Gravel, R.A.; Reyes-Carmona, S.; Solorzano-Vargas, S.; Gonzalez-Noriega, A.; Leon-Del-Rio, A. Impaired biotinidase activity disrupts holocarboxylase synthetase expression in late onset multiple carboxylase deficiency. J. Biol. Chem. 2008, 283, 34150–34158. [Google Scholar] [CrossRef]
- Hauth, I.; Waterham, H.R.; Wanders, R.J.A.; van der Crabben, S.N.; van Karnebeek, C.D.M. A mild case of sodium-dependent multivitamin transporter (SMVT) deficiency illustrating the importance of treatment response in variant classification. Cold Spring Harb. Mol. Case Stud. 2022, 8, a006185. [Google Scholar] [CrossRef] [PubMed]
- Tabarki, B.; Al-Hashem, A.; Alfadhel, M. Biotin-Thiamine-Responsive Basal Ganglia Disease. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallce, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Vlasova, T.I.; Stratton, S.L.; Wells, A.M.; Mock, N.I.; Mock, D.M. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J. Nutr. 2005, 135, 42–47. [Google Scholar] [CrossRef]
- Romero-Navarro, G.; Cabrera-Valladares, G.; German, M.S.; Matschinsky, F.M.; Velazquez, A.; Wang, J.; Fernandez-Mejia, C. Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology 1999, 140, 4595–4600. [Google Scholar] [CrossRef]
- Reddi, A.; DeAngelis, B.; Frank, O.; Lasker, N.; Baker, H. Biotin supplementation improves glucose and insulin tolerances in genetically diabetic KK mice. Life Sci. 1988, 42, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Larrieta, E.; Vega-Monroy, M.L.; Vital, P.; Aguilera, A.; German, M.S.; Hafidi, M.E.; Fernandez-Mejia, C. Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J. Nutr. Biochem. 2012, 23, 392–399. [Google Scholar] [CrossRef]
- Coggeshall, J.C.; Heggers, J.P.; Robson, M.C.; Baker, H. Biotin Status and Plasma Glucose in Diabeticsa. Ann. N. Y. Acad. Sci. 1985, 447, 389–392. [Google Scholar] [CrossRef]
- Maebashi, M.; Makino, Y.; Furukawa, Y.; Ohinata, K.; Kimura, S.; Sato, T. Therapeutic Evaluation of the Effect of Biotin on Hyperglycemia in Patients with Non-Insulin-Dependent Diabetes-Mellitus. J. Clin. Biochem. Nutr. 1993, 14, 211–218. [Google Scholar] [CrossRef]
- Revilla-Monsalve, C.; Zendejas-Ruiz, I.; Islas-Andrade, S.; Baez-Saldana, A.; Palomino-Garibay, M.A.; Hernandez-Quiroz, P.M.; Fernandez-Mejia, C. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed. Pharmacother. 2006, 60, 182–185. [Google Scholar] [CrossRef]
- Albarracin, C.A.; Fuqua, B.C.; Evans, J.L.; Goldfine, I.D. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2008, 24, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Baez-Saldana, A.; Zendejas-Ruiz, I.; Revilla-Monsalve, C.; Islas-Andrade, S.; Cardenas, A.; Rojas-Ochoa, A.; Vilches, A.; Fernandez-Mejia, C. Effects of biotin on pyruvate carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am. J. Clin. Nutr. 2004, 79, 238–243. [Google Scholar] [CrossRef]
- Descombes, E.; Hanck, A.B.; Fellay, G. Water soluble vitamins in chronic hemodialysis patients and need for supplementation. Kidney Int. 1993, 43, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Ando, I.; Yagi, S.; Nishizawa, M.; Oguma, S.; Satoh, K.; Sato, H.; Imai, Y. Plasma Levels of Biotin Metabolites Are Elevated in Hemodialysis Patients with Cramps. Tohoku J. Exp. Med. 2016, 239, 263–267. [Google Scholar] [CrossRef]
- Makino, Y.; Osada, K.; Sone, H.; Sugiyama, K.; Komai, M.; Ito, M.; Tsunoda, K.; Furukawa, Y. Percutaneous absorption of biotin in healthy subjects and in atopic dermatitis patients. J. Nutr. Sci. Vitaminol. 1999, 45, 347–352. [Google Scholar] [CrossRef]
- Huang, K.P.; Mullangi, S.; Guo, Y.; Qureshi, A.A. Autoimmune, atopic, and mental health comorbid conditions associated with alopecia areata in the United States. JAMA Dermatol. 2013, 149, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Skupsky, J.; Sabui, S.; Hwang, M.; Nakasaki, M.; Cahalan, M.D.; Said, H.M. Biotin Supplementation Ameliorates Murine Colitis by Preventing NF-kappaB Activation. Cell. Mol. Gastroenterol. Hepatol. 2020, 9, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Sakurai-Yageta, M.; Mashimo, Y.; Kuroishi, T.; Ishihara, R.; Shimojo, N.; Kohno, Y.; Okamoto, Y.; Hata, A.; Suzuki, Y. Association between Serum Biotin Levels and Cedar Pollinosis in Japanese Schoolchildren. J. Nutr. Sci. Vitaminol. 2021, 67, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Zephir, H. Progress in understanding the pathophysiology of multiple sclerosis. Rev. Neurol. 2018, 174, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Sedel, F.; Bernard, D.; Mock, D.M.; Tourbah, A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 2016, 110, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.L.; Lin, Y.H.; Xu, Y.K.T.; Fernandes, M.G.F.; Rao, V.T.S.; Kennedy, T.E.; Antel, J. Effects of Biotin on survival, ensheathment, and ATP production by oligodendrocyte lineage cells in vitro. PLoS ONE 2020, 15, e0233859. [Google Scholar] [CrossRef] [PubMed]
- Fourcade, S.; Goicoechea, L.; Parameswaran, J.; Schluter, A.; Launay, N.; Ruiz, M.; Seyer, A.; Colsch, B.; Calingasan, N.Y.; Ferrer, I.; et al. High-dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy. Brain Pathol. 2020, 30, 945–963. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Cutter, G.; Wolinsky, J.S.; Freedman, M.S.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Arnold, D.; Kuhle, J.; Block, V.; et al. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2020, 19, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Creange, A.; Hutin, E.; Sedel, F.; Le Vigouroux, L.; Lefaucheur, J.P. High-dose pharmaceutical-grade biotin in patients with demyelinating neuropathies: A phase 2b open label, uncontrolled, pilot study. BMC Neurol. 2023, 23, 389. [Google Scholar] [CrossRef]
- Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef]
- Urabe, K. Decreased plasma biotin levels in patients with Crohn’s disease. Nihon Shokakibyo Gakkai Zasshi 1986, 83, 697. [Google Scholar] [PubMed]
- Okabe, N.; Urabe, K.; Fujita, K.; Yamamoto, T.; Yao, T.; Doi, S. Biotin effects in Crohn’s disease. Dig. Dis. Sci. 1988, 33, 1495–1496. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, A.; Lambrecht, N.; Subramanya, S.B.; Kapadia, R.; Said, H.M. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G64–G71. [Google Scholar] [CrossRef] [PubMed]
- Sabui, S.; Bohl, J.A.; Kapadia, R.; Cogburn, K.; Ghosal, A.; Lambrecht, N.W.; Said, H.M. Role of the sodium-dependent multivitamin transporter (SMVT) in the maintenance of intestinal mucosal integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G561–G570. [Google Scholar] [CrossRef] [PubMed]
- Sabui, S.; Skupsky, J.; Kapadia, R.; Cogburn, K.; Lambrecht, N.W.; Agrawal, A.; Said, H.M. Tamoxifen-induced, intestinal-specific deletion of Slc5a6 in adult mice leads to spontaneous inflammation: Involvement of NF-kappaB, NLRP3, and gut microbiota. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G518–G530. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Mikami, Y.; Miyamoto, K.; Kamada, N.; Sato, T.; Mizuno, S.; Naganuma, M.; Teratani, T.; Aoki, R.; Fukuda, S.; et al. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. Cell Rep. 2017, 20, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Jacobs, J.P.; Hwang, M.; Sabui, S.; Liang, F.; Said, H.M.; Skupsky, J. Biotin Deficiency Induces Intestinal Dysbiosis Associated with an Inflammatory Bowel Disease-like Phenotype. Nutrients 2023, 15, 264. [Google Scholar] [CrossRef]
- Watanabe-Kamiyama, M.; Kamiyama, S.; Horiuchi, K.; Ohinata, K.; Shirakawa, H.; Furukawa, Y.; Komai, M. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br. J. Nutr. 2008, 99, 756–763. [Google Scholar] [CrossRef]
- Subramanian, V.S.; Marchant, J.S.; Boulware, M.J.; Ma, T.Y.; Said, H.M. Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cells. Am. J. Physiol. Cell Physiol. 2009, 296, C663–C671. [Google Scholar] [CrossRef]
- Said, H.M. Movement of biotin across the rat intestinal basolateral membrane. Studies with membrane vesicles. Biochem. J. 1991, 279 Pt 3, 671–674. [Google Scholar] [CrossRef]
- Ghosh, S.; Adhikary, A.; Chakraborty, S.; Nandi, P.; Mohanty, S.; Chakraborty, S.; Bhattacharjee, P.; Mukherjee, S.; Putatunda, S.; Chakraborty, S.; et al. Nifetepimine, a dihydropyrimidone, ensures CD4+ T cell survival in a tumor microenvironment by maneuvering sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA). J. Biol. Chem. 2012, 287, 32881–32896. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.C.; Schulte-Mecklenbeck, A.; Steinberg, O.V.; Wirth, T.; Lauks, S.; Bittner, S.; Schindler, P.; Baranzini, S.E.; Groppa, S.; Bellmann-Strobl, J.; et al. Multiple sclerosis endophenotypes identified by high-dimensional blood signatures are associated with distinct disease trajectories. Sci. Transl. Med. 2024, 16, eade8560. [Google Scholar] [CrossRef] [PubMed]
- Berod, L.; Friedrich, C.; Nandan, A.; Freitag, J.; Hagemann, S.; Harmrolfs, K.; Sandouk, A.; Hesse, C.; Castro, C.N.; Bahre, H.; et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 2014, 20, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Orhan, C.; Karatoprak, S.; Tuzcu, M.; Deeh, P.B.D.; Ozercan, I.H.; Sahin, N.; Bozoglan, M.Y.; Sylla, S.; Ojalvo, S.P.; et al. Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats. Nutrients 2022, 14, 1280. [Google Scholar] [CrossRef] [PubMed]
- Mock, D.M. Biotin: From Nutrition to Therapeutics. J. Nutr. 2017, 147, 1487–1492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurai-Yageta, M.; Suzuki, Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients 2024, 16, 2444. https://doi.org/10.3390/nu16152444
Sakurai-Yageta M, Suzuki Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients. 2024; 16(15):2444. https://doi.org/10.3390/nu16152444
Chicago/Turabian StyleSakurai-Yageta, Mika, and Yoichi Suzuki. 2024. "Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases" Nutrients 16, no. 15: 2444. https://doi.org/10.3390/nu16152444
APA StyleSakurai-Yageta, M., & Suzuki, Y. (2024). Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients, 16(15), 2444. https://doi.org/10.3390/nu16152444