Evaluating the Effect of Lacticaseibacillus paracasei Strain Shirota on the Physical Consistency of Stool in Healthy Participants with Hard or Lumpy Stools: A Double-Blind, Randomized, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Inclusion/Exclusion Criteria
- Informed consent obtained before engaging in any study-related activities.
- Healthy female or male aged 18–65 years (inclusive).
- Produced hard stool (BSFS 1 and 2 stools), with a frequency of 50% or more during the 2-week screening period.
- Did not take probiotics 2 weeks before the start of the screening period; if participants had used probiotics, a wash out period of 2 weeks was provided.
- Willing and able to collect every stool at home for 3 consecutive days, repeated three times during both the baseline and intervention period, store the samples in appropriate conditions, and return them within the specified timeframe.
- Willing and able to maintain a diary throughout the screening, baseline, and treatment period to collect information about the form of stools (based on the BSFS chart) and bowel habit.
- Committed not to change their current drinking, eating, smoking, and exercising habits during the course of the study.
- Proficient in understanding the Dutch or English language (reading, writing, and speaking).
- A language barrier, mental or legal incapacity, unwillingness, or inability to understand or participate in the study.
- Vegetarian or vegan.
- Currently being treated, or treated within 1 month before screening, for constipation by a doctor.
- A history of gastrointestinal surgery, except appendectomy.
- A history of chronic/severe gastrointestinal disorders.
- Females of child-bearing potential who are pregnant, breast-feeding, intend to become pregnant, or were not using adequate contraceptive methods (e.g., oral contraceptive, condom, intrauterine device, abstinence, etc.).
- The inability to refrain from or the anticipation of antibiotic and/or laxative use.
- A history of drug and/or alcohol abuse.
- Milk allergies.
- Lactose intolerance.
- The presence of clinically significant disease which, in the investigators’ opinion, could compromise the safety of study participants or the study results.
- The use of prohibited concomitant medications (i.e., antibiotics, laxatives, herbal supplements or over-the-counter medications for diet attempts, anti-diarrhea medications, and anti-obesity medications).
- The use of disallowed concomitant products (i.e., prebiotic and probiotics products) within 2 weeks before the screening period, depending on whether a wash out period for probiotics was needed.
- Cancer (past or present, except basal cell skin cancer or squamous cell skin cancer) which, in the investigators’ opinion, could interfere with the results of the study.
- Previous participation in this study, with participation defined as screened; re-screening was not allowed.
- Participation in another interventional clinical study or receipt of any investigational product within 1 month before the screening period.
2.3. Test Beverages
2.4. Sample Size
2.5. Randomization
2.6. Ethics Statement
2.7. Stool Specimens
2.8. Measurement of Stool Consistency
2.9. Determination of Stool Water Content
2.10. BSFS Classification
2.11. Statistical Analyses
3. Results
3.1. Study Design and Descriptive Characteristics
3.2. Stool Consistency Measured Using TAXT Instrument
3.3. Stool Water Content
3.4. BSFS Scores Evaluated by Participants and Experts
3.5. Subgroup Analysis Targeting the Participants Who Actually Produced Hard Stools at Baseline
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Rao, S. Constipation: Pathophysiology and Current Therapeutic Approaches. In Gastrointestinal Pharmacology; Greenwood-Van Meerveld, B., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 59–74. [Google Scholar]
- Sandler, R.S.; Jordan, M.C.; Shelton, B.J. Demographic and dietary determinants of constipation in the US population. Am. J. Public Health 1990, 80, 185–189. [Google Scholar] [CrossRef]
- Müller-Lissner, S.A.; Kaatz, V.; Brandt, W.; Keller, J.; Layer, P. The perceived effect of various foods and beverages on stool consistency. Eur. J. Gastroenterol. Hepatol. 2005, 17, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Markland, A.D.; Palsson, O.; Goode, P.S.; Burgio, K.L.; Busby-Whitehead, J.; Whitehead, W.E. Association of low dietary intake of fiber and liquids with constipation: Evidence from the National Health and Nutrition Examination Survey. Am. J. Gastroenterol. 2013, 108, 796–803. [Google Scholar] [CrossRef]
- Yang, X.J.; Zhang, M.; Zhu, H.M.; Tang, Z.; Zhao, D.D.; Li, B.Y.; Gabriel, A. Epidemiological study: Correlation between diet habits and constipation among elderly in Beijing region. World J. Gastroenterol. 2016, 22, 8806–8811. [Google Scholar] [CrossRef] [PubMed]
- Nakaji, S.; Tokunaga, S.; Sakamoto, J.; Todate, M.; Shimoyama, T.; Umeda, T.; Sugawara, K. Relationship between lifestyle factors and defecation in a Japanese population. Eur. J. Nutr. 2002, 41, 244–248. [Google Scholar] [CrossRef]
- De Schryver, A.M.; Keulemans, Y.C.; Peters, H.P.; Akkermans, L.M.; Smout, A.J.; De Vries, W.R.; Van Berge-Henegouwen, G.P. Effects of regular physical activity on defecation pattern in middle-aged patients complaining of chronic constipation. Scand. J. Gastroenterol. 2005, 40, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.B. Associations between physical activity and constipation in adult Americans: Results from the National Health and Nutrition Examination Survey. Neurogastroenterol. Motil. 2020, 32, e13789. [Google Scholar] [CrossRef]
- Kang, S.H.; Choi, S.W.; Lee, S.J.; Chung, W.S.; Lee, H.R.; Chung, K.Y.; Lee, E.S.; Moon, H.S.; Kim, S.H.; Sung, J.K.; et al. The effects of lifestyle modification on symptoms and quality of life in patients with irritable bowel syndrome: A prospective observational study. Gut Liver 2011, 5, 472–477. [Google Scholar] [CrossRef]
- Lemay, D.G.; Baldiviez, L.M.; Chin, E.L.; Spearman, S.S.; Cervantes, E.; Woodhouse, L.R.; Keim, N.L.; Stephensen, C.B.; Laugero, K.D. Technician-Scored Stool Consistency Spans the Full Range of the Bristol Scale in a Healthy US Population and Differs by Diet and Chronic Stress Load. J. Nutr. 2021, 151, 1443–1452. [Google Scholar] [CrossRef]
- Honkura, K.; Tomata, Y.; Sugiyama, K.; Kaiho, Y.; Watanabe, T.; Zhang, S.; Sugawara, Y.; Tsuji, I. Defecation frequency and cardiovascular disease mortality in Japan: The Ohsaki cohort study. Atherosclerosis 2016, 246, 251–256. [Google Scholar] [CrossRef]
- Sundbøll, J.; Szépligeti, S.K.; Adelborg, K.; Szentkúti, P.; Gregersen, H.; Sørensen, H.T. Constipation and risk of cardiovascular diseases: A Danish population-based matched cohort study. BMJ Open 2020, 10, e037080. [Google Scholar] [CrossRef] [PubMed]
- Judkins, C.P.; Wang, Y.; Jelinic, M.; Bobik, A.; Vinh, A.; Sobey, C.G.; Drummond, G.R. Association of constipation with increased risk of hypertension and cardiovascular events in elderly Australian patients. Sci. Rep. 2023, 13, 10943. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, H.; Huang, F.; Li, X.-Y.; Zhen, Y.-H.; Zhang, B.-F.; Li, H.-Y. Causal association between constipation and risk of colorectal cancer: A bidirectional two-sample Mendelian randomization study. Front. Oncol. 2023, 13, 1282066. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, L.J.; Virjee, J.; Heaton, K.W. Detection of pseudodiarrhoea by simple clinical assessment of intestinal transit rate. BMJ 1990, 300, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Akiyama, T.; Tsujibe, S.; Oki, K.; Gawad, A.; Fujimoto, J. Direct measurement of stool consistency by texture analyzer and calculation of reference value in Belgian general population. Sci. Rep. 2021, 11, 2400. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
- Saldana-Morales, F.B.; Kim, D.V.; Tsai, M.T.; Diehl, G.E. Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes 2021, 13, 1916376. [Google Scholar] [CrossRef] [PubMed]
- Reid, G. The Importance of Guidelines in the Development and Application of Probiotics. Curr. Pharm. Des. 2005, 11, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Cha, J.M.; Oh, J.K.; Tan, P.L.; Kim, S.H.; Kwak, M.S.; Jeon, J.W.; Shin, H.P. Probiotics Ameliorate Stool Consistency in Patients with Chronic Constipation: A Randomized, Double-Blind, Placebo-Controlled Study. Dig. Dis. Sci. 2018, 63, 2754–2764. [Google Scholar] [CrossRef]
- Martoni, C.J.; Evans, M.; Chow, C.T.; Chan, L.S.; Leyer, G. Impact of a probiotic product on bowel habits and microbial profile in participants with functional constipation: A randomized controlled trial. J. Dig. Dis. 2019, 20, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Koebnick, C.; Wagner, I.; Leitzmann, P.; Stern, U.; Zunft, H.J. Probiotic beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in patients with chronic constipation. Can. J. Gastroenterol. 2003, 17, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Takada, T.; Shimizu, K.; Kado, Y.; Kawakami, K.; Makino, I.; Yamaoka, Y.; Hirano, K.; Nishimura, A.; Kajimoto, O.; et al. The Effects of a Probiotic Milk Product Containing Lactobacillus casei Strain Shirota on the Defecation Frequency and the Intestinal Microflora of Sub-optimal Health State Volunteers: A Randomized Placebo-controlled Cross-over Study. Biosci. Microflora 2006, 25, 39–48. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takada, T.; Shimizu, K.; Moriyama, K.; Kawakami, K.; Hirano, K.; Kajimoto, O.; Nomoto, K. Effects of a probiotic fermented milk beverage containing Lactobacillus casei strain Shirota on defecation frequency, intestinal microbiota, and the intestinal environment of healthy individuals with soft stools. J. Biosci. Bioeng. 2010, 110, 547–552. [Google Scholar] [CrossRef]
- Mazlyn, M.M.; Nagarajah, L.H.; Fatimah, A.; Norimah, A.K.; Goh, K.L. Effects of a probiotic fermented milk on functional constipation: A randomized, double-blind, placebo-controlled study. J. Gastroenterol. Hepatol. 2013, 28, 1141–1147. [Google Scholar] [CrossRef]
- Krammer, H.J.; von Seggern, H.; Schaumburg, J.; Neumer, F. Effect of Lactobacillus casei Shirota on colonic transit time in patients with chronic constipation. Coloproctology 2011, 33, 109–113. [Google Scholar] [CrossRef]
- Sakai, T.; Makino, H.; Ishikawa, E.; Oishi, K.; Kushiro, A. Fermented milk containing Lactobacillus casei strain Shirota reduces incidence of hard or lumpy stools in healthy population. Int. J. Food Sci. Nutr. 2011, 62, 423–430. [Google Scholar] [CrossRef]
- Chen, S.; Ou, Y.; Zhao, L.; Li, Y.; Qiao, Z.; Hao, Y.; Ren, F. Differential Effects of Lactobacillus casei Strain Shirota on Patients with Constipation Regarding Stool Consistency in China. J. Neurogastroenterol. Motil. 2019, 25, 148–158. [Google Scholar] [CrossRef]
- Lu, C.L.; Chang, F.Y.; Chen, C.Y.; Luo, J.C.; Lee, S.D. Significance of Rome II-defined functional constipation in Taiwan and comparison with constipation-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2006, 24, 429–438. [Google Scholar] [CrossRef]
- Papatheodoridis, G.V.; Vlachogiannakos, J.; Karaitianos, I.; Karamanolis, D.G. A Greek survey of community prevalence and characteristics of constipation. Eur. J. Gastroenterol. Hepatol. 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Sorouri, M.; Pourhoseingholi, M.A.; Vahedi, M.; Safaee, A.; Moghimi-Dehkordi, B.; Pourhoseingholi, A.; Habibi, M.; Zali, M.R. Functional bowel disorders in Iranian population using Rome III criteria. Saudi J. Gastroenterol. 2010, 16, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Verkuijl, S.J.; Meinds, R.J.; Trzpis, M.; Broens, P.M.A. The influence of demographic characteristics on constipation symptoms: A detailed overview. BMC Gastroenterol. 2020, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [CrossRef]
- Whitehead, W.E.; Borrud, L.; Goode, P.S.; Meikle, S.; Mueller, E.R.; Tuteja, A.; Weidner, A.; Weinstein, M.; Ye, W.; Pelvic Floor Disorders Network. Fecal incontinence in US adults: Epidemiology and risk factors. Gastroenterology 2009, 137, 512–517.e2. [Google Scholar] [CrossRef] [PubMed]
- Chumpitazi, B.P.; Self, M.M.; Czyzewski, D.I.; Cejka, S.; Swank, P.R.; Shulman, R.J. Bristol Stool Form Scale reliability and agreement decreases when determining Rome III stool form designations. Neurogastroenterol. Motil. 2016, 28, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Blake, M.R.; Raker, J.M.; Whelan, K. Validity and reliability of the Bristol Stool Form Scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2016, 44, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Aichbichler, B.W.; Wenzl, H.H.; Santa Ana, C.A.; Porter, J.L.; Schiller, L.R.; Fordtran, J.S. A comparison of stool characteristics from normal and constipated people. Dig. Dis. Sci. 1998, 43, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Exton-Smith, A.N.; Bendall, M.J.; Kent, F. A new technique for measuring the consistency of faeces: A report on its application to the assessment of Senokotot therapy in the elderly. Age Ageing 1975, 4, 58–62. [Google Scholar] [CrossRef]
- Davies, G.J.; Crowder, M.; Reid, B.; Dickerson, J.W. Bowel function measurements of individuals with different eating patterns. Gut 1986, 27, 164–169. [Google Scholar] [CrossRef]
- Nakaji, S.; Fukuda, S.; Iwane, S.; Murakami, H.; Tamura, K.; Munakata, A.; Sugawara, K. New method for the determination of fecal consistency and its optimal value in the general population. J. Gastroenterol. Hepatol. 2002, 17, 1278–1282. [Google Scholar] [CrossRef]
- Danjo, K.; Sakamoto, J.; Iwane, S.; Tamura, K.; Nakaji, S.; Fukuda, S.; Murakami, H.; Shimoyama, T.; Takahashi, I.; Umeda, T. Effects of cellulose supplementation on fecal consistency and fecal weight. Dig. Dis. Sci. 2008, 53, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Seppanen, S.; Niittynen, L.; Poussa, T.; Korpela, R. Removing lactose from milk does not delay bowel function or harden stool consistency in lactose-tolerant women. Eur. J. Clin. Nutr. 2008, 62, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Eherer, A.J.; Santa Ana, C.A.; Porter, J.; Fordtran, J.S. Effect of psyllium, calcium polycarbophil, and wheat bran on secretory diarrhea induced by phenolphthalein. Gastroenterology 1993, 104, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, H.H.; Fine, K.D.; Schiller, L.R.; Fordtran, J.S. Determinants of decreased fecal consistency in patients with diarrhea. Gastroenterology 1995, 108, 1729–1738. [Google Scholar] [CrossRef]
- Ohno, H.; Murakami, H.; Tanisawa, K.; Konishi, K.; Miyachi, M. Validity of an observational assessment tool for multifaceted evaluation of faecal condition. Sci. Rep. 2019, 9, 3760. [Google Scholar] [CrossRef]
Statistic | Placebo (N = 32) | LcS (N = 32) | p-Value | ||
---|---|---|---|---|---|
Age (years) | Mean ± SD | 47.3 ± 13.7 | 45.7 ± 13.2 | 0.65 | |
Median [lower/upper quartile] | 50.5 [38.3, 59.0] | 49.5 [36.8, 57.3] | |||
Min, Max | 18, 65 | 22, 62 | |||
BMI (kg/m2) | Mean ± SD | 24.6 ± 3.70 | 24.9 ± 3.95 | 0.79 | |
Median [lower/upper quartile] | 24.2 [22.2, 26.2] | 24.2 [22.5, 27.0] | |||
Min, Max | 19.1, 33.3 | 19.6, 38.9 | |||
Sex | Female | n (%) | 28 (87.5) | 29 (90.6) | 0.69 |
Male | n (%) | 4 (12.5) | 3 (9.4) | ||
Site | Antwerpen | n (%) | 17 (53.1) | 19 (59.4) | 0.61 |
Mechelen | n (%) | 15 (46.9) | 13 (40.6) |
Variables | Unaggregated TAXT Data (a Priori) | Median Aggregated TAXT Data (Post Hoc) | ||||
---|---|---|---|---|---|---|
Estimates | CI | p | Estimates | CI | p | |
(Intercept) | 2.51 | 0.78–4.24 | 0.005 | 2.44 | 0.74–4.15 | 0.006 |
Treatment group [LcS] | −0.33 | −0.71–0.06 | 0.097 | −0.39 | −0.79–0.00 | 0.052 |
Baseline TAXT value | 0.61 | 0.41–0.80 | <0.001 | 0.60 | 0.41–0.80 | <0.001 |
Period [8 weeks] | −0.07 | −0.23–0.09 | 0.394 | −0.07 | −0.25–0.10 | 0.410 |
Site [Mechelen] | −0.25 | −0.65–0.15 | 0.212 | −0.21 | −0.61–0.20 | 0.310 |
BMI | −0.02 | −0.07–0.03 | 0.390 | −0.02 | −0.07–0.03 | 0.502 |
Age | 0 | −0.01–0.02 | 0.767 | 0 | −0.01–0.02 | 0.816 |
Sex [Male] | −0.06 | −0.68–0.56 | 0.840 | 0 | −0.64–0.65 | 0.992 |
Random Effects | ||||||
SD (within participant) | 0.74 | 0.49 | ||||
SD (between participants) | 0.66 | 0.68 | ||||
Number of participants | 64 | 64 | ||||
Observations | 330 | 126 |
Variables | Stool Water Content | Ratio (Normal Stool/Abnormal Stool) | ||||
---|---|---|---|---|---|---|
Estimates | CI | p | Odds Ratios | CI | p | |
(Intercept) | 33.7 | 18.2–49.1 | <0.001 | 0.20 | 0.02–2.10 | 0.180 |
Treatment group [LcS] | 1.71 | −0.35–3.77 | 0.101 | 1.62 | 0.93–2.84 | 0.091 |
Baseline data | 0.51 | 0.32–0.70 | <0.001 | 41.2 | 15.42–110.0 | <0.001 |
Period [8 weeks] | −0.17 | −1.30–0.96 | 0.765 | 1.13 | 1.09–1.18 | <0.001 |
Site [Mechelen] | 0.12 | −2.01–2.26 | 0.909 | 1.09 | 0.60–1.97 | 0.783 |
BMI | 0.03 | −0.24–0.30 | 0.809 | 1.03 | 0.95–1.11 | 0.496 |
Age | −0.04 | −0.12–0.04 | 0.303 | 0.97 | 0.95–0.99 | 0.015 |
Sex [Male] | −0.04 | −3.42–3.34 | 0.981 | 0.82 | 0.32–2.07 | 0.673 |
Random Effects | ||||||
SD (within participant) | 3.16 | 1.81 | ||||
SD (between participants) | 3.35 | 1.05 | ||||
Number of participants | 64 | 64 | ||||
Observations | 126 | 2763 |
Variables | Median Aggregated TAXT Data | Stool Water Content | Ratio (Normal Stool/Abnormal Stool) | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimates | CI | p | Estimates | CI | p | Odds Ratios | CI | p | |
(Intercept) | 2.25 | −0.94–5.43 | 0.159 | 62.1 | 29.4–94.9 | 0.001 | 0.42 | 0.02–9.13 | 0.583 |
Treatment group [LcS] | −0.74 | −1.31–−0.16 | 0.014 | 4.83 | 1.86–7.81 | 0.003 | 1.65 | 0.75–3.63 | 0.213 |
Baseline data | 0.55 | −0.12–1.21 | 0.102 | 0.13 | −0.33–0.58 | 0.569 | 89.0 | 21.24–373.0 | <0.001 |
Period [8 weeks] | −0.16 | −0.40–0.08 | 0.189 | −0.28 | −2.03–1.47 | 0.744 | 1.18 | 1.11–1.26 | <0.001 |
Site [Mechelen] | −0.12 | −0.62–0.39 | 0.639 | −1.51 | −4.37–1.35 | 0.287 | 1.13 | 0.51–2.51 | 0.764 |
BMI | −0.03 | −0.10–0.04 | 0.418 | 0.02 | −0.38–0.41 | 0.927 | 0.98 | 0.88–1.10 | 0.774 |
Age | 0.02 | 0.00–0.04 | 0.032 | −0.12 | −0.24–−0.01 | 0.029 | 0.96 | 0.93–0.99 | 0.020 |
Sex [Male] | −0.42 | −1.18–0.34 | 0.268 | 1.50 | −2.92–5.92 | 0.490 | 1.40 | 0.41–4.81 | 0.589 |
Random Effects | |||||||||
SD (within participant) | 0.46 | 4.24 | 1.81 | ||||||
SD (between participants) | 0.55 | 2.58 | 0.96 | ||||||
Number of participants | 32 | 32 | 32 | ||||||
Observations | 63 | 63 | 1347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsujibe, S.; Gawad, A.; Shigehisa, A.; Matsuda, K.; Fujimoto, J.; Takahashi, T. Evaluating the Effect of Lacticaseibacillus paracasei Strain Shirota on the Physical Consistency of Stool in Healthy Participants with Hard or Lumpy Stools: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2024, 16, 2469. https://doi.org/10.3390/nu16152469
Tsujibe S, Gawad A, Shigehisa A, Matsuda K, Fujimoto J, Takahashi T. Evaluating the Effect of Lacticaseibacillus paracasei Strain Shirota on the Physical Consistency of Stool in Healthy Participants with Hard or Lumpy Stools: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients. 2024; 16(15):2469. https://doi.org/10.3390/nu16152469
Chicago/Turabian StyleTsujibe, Satoshi, Agata Gawad, Akira Shigehisa, Kazunori Matsuda, Junji Fujimoto, and Takuya Takahashi. 2024. "Evaluating the Effect of Lacticaseibacillus paracasei Strain Shirota on the Physical Consistency of Stool in Healthy Participants with Hard or Lumpy Stools: A Double-Blind, Randomized, Placebo-Controlled Study" Nutrients 16, no. 15: 2469. https://doi.org/10.3390/nu16152469
APA StyleTsujibe, S., Gawad, A., Shigehisa, A., Matsuda, K., Fujimoto, J., & Takahashi, T. (2024). Evaluating the Effect of Lacticaseibacillus paracasei Strain Shirota on the Physical Consistency of Stool in Healthy Participants with Hard or Lumpy Stools: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients, 16(15), 2469. https://doi.org/10.3390/nu16152469