The Effects of Prenatal Iron Supplementation on Offspring Neurodevelopment in Upper Middle- or High-Income Countries: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Eligiblity Criteria and Study Selection
2.3. Data Extraction and Quality Appraisal
2.4. Data Synthesis
3. Results
3.1. Search Results and Trial Characteristics
3.2. Study Characteristics
3.3. Risk of Bias
3.4. Effect of Prenatal Iron Supplementation on Primary Outcome: Age-Standardized Cognitive Score or Intelligence Quotient
3.5. Effect of Prenatal Iron Supplementation on Secondary Outcomes
3.5.1. Language: Prevention of IDA
3.5.2. Language: Treatment of ID
3.5.3. Motor Development: Prevention of IDA
3.5.4. Motor Development: Treatment of ID
3.5.5. Child Emotional and Behavioral Functioning: Prevention of IDA
3.5.6. Child Emotional and Behavioral Functioning: Treatment of ID
3.5.7. Other Cognitive Outcomes: Prevention of IDA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Saloojee, H.; Pettifor, J.M. Iron deficiency and impaired child development. BMJ 2001, 323, 1377. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of population-representative data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron status in pregnant women and women of reproductive age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655S–1662S. [Google Scholar] [CrossRef]
- Frayne, J.; Pinchon, D. Anaemia in pregnancy. Aust. J. Gen. Pract. 2019, 48, 125–129. [Google Scholar] [CrossRef]
- National Institutes of Health. Iron: Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/#en64 (accessed on 30 October 2023).
- Pavord, S.; Myers, B.; Robinson, S.; Allard, S.; Strong, J.; Oppenheimer, C.; British Committee for Standards in Haematology. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2012, 156, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Pena-Rosas, J.P.; De-Regil, L.M.; Garcia-Casal, M.N.; Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015, 2015, CD004736. [Google Scholar] [CrossRef] [PubMed]
- Qassim, A.; Grivell, R.M.; Henry, A.; Kidson-Gerber, G.; Shand, A.; Grzeskowiak, L.E. Intravenous or oral iron for treating iron deficiency anaemia during pregnancy: Systematic review and meta-analysis. Med. J. Aust. 2019, 211, 367–373. [Google Scholar] [CrossRef]
- Health New Zealand. Te Whatu Ora. In Iron in Pregnancy and Post-Partum; Health New Zealand: Auckland, New Zealand, 2022. [Google Scholar]
- The World Health Organization. Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition; The World Health Organization: Geneva, Switzerland, 2013.
- Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; Naska, A.; Neuhauser-Berthold, M. Scientific opinion on dietary reference values for iron. EFSA J. 2015, 13, 1–115. [Google Scholar]
- Commissioned by Elevit Executed by Researchify. The Pregnancy Nutrition Survey by Elevit: Survey of 1000+ Australians Aged 18–54. Available online: https://www.bayer.com.au/en/modern-diets-may-be-leaving-aussie-women-nutritionally-under-prepared-for-pregnancy (accessed on 31 October 2023).
- Malinowski, A.K.; Murji, A. Iron deficiency and iron deficiency anemia in pregnancy. CMAJ 2021, 193, E1137–E1138. [Google Scholar] [CrossRef]
- National Blood Authority. Patient Blood Management Guideline: Module 5—Obstetrics and Maternity; National Health and Medical Research Council: Canberra, Australia, 2015.
- Pavord, S.; Daru, J.; Prasannan, N.; Robinson, S.; Stanworth, S.; Girling, J.; Committee, B.S.H. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2020, 188, 819–830. [Google Scholar] [CrossRef]
- Siu, A.L. Screening for Iron Deficiency Anemia and Iron Supplementation in Pregnant Women to Improve Maternal Health and Birth Outcomes: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2015, 163, 529–536. [Google Scholar] [CrossRef]
- Geng, F.; Mai, X.; Zhan, J.; Xu, L.; Zhao, Z.; Georgieff, M.; Shao, J.; Lozoff, B. Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age. J. Pediatr. 2015, 167, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.K.; Murray, D.M.; Hourihane, J.O.B.; Kenny, L.C.; Irvine, A.D.; Kiely, M.E. Behavioral consequences at 5 y of neonatal iron deficiency in a low-risk maternal–infant cohort. Am. J. Clin. Nutr. 2021, 113, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Goldenberg, R.L.; Hou, J.; Johnston, K.E.; Cliver, S.P.; Ramey, S.L.; Nelson, K.G. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002, 140, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Sammallahti, S.; Tiemeier, H.; Reiss, I.K.M.; Muckenthaler, M.U.; El Marroun, H.; Vermeulen, M. Maternal early-pregnancy ferritin and offspring neurodevelopment: A prospective cohort study from gestation to school age. Paediatr. Perinat. Epidemiol. 2022, 36, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, C.; Polson, R.; van Woerden, H.C.; Wilson, P. The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring: A systematic review and meta-analysis. BMC Pediatr. 2018, 18, 150. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H.; Ruszczynski, M.; Chmielewska, A. Effects of iron supplementation in nonanemic pregnant women, infants, and young children on the mental performance and psychomotor development of children: A systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2010, 91, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef] [PubMed]
- PROSPERO. International Prospective Registry of Systematic Reviews. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 25 July 2024).
- The World Bank. World Bank Country and Lending Groups: Country Classification. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 25 July 2024).
- Covidence Systematic Review Software; Veritas Health Innovation: Melbourne, Australia, 2023.
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J. Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (updated February 2022); Cochrane: London, UK, 2022. [Google Scholar]
- Schünemann, H.J.B.J.; Guyatt, G.; Oxman, A. Handbook for Grading the Quality of Evidence and the Strength of Recommendations Using the GRADE Approach, Updated October 2013; The GRADE Working Group, 2013.
- The Cochrane Collaboration. Review Manager (RevMan) [Computer Program]; Version 5.4; Cochrane: London, UK, 2020. [Google Scholar]
- Froessler, B.; Schubert, K.O.; Palm, P.; Church, R.; Aboustate, N.; Kelly, T.L.; Dekker, G.A.; Hodyl, N.A. Testing equivalence of two doses of intravenous iron to treat iron deficiency in pregnancy: A randomised controlled trial. BJOG Int. J. Obstet. Gynaecol. 2023, 130, 15–23. [Google Scholar] [CrossRef]
- Parsons, A.G.; Zhou, S.J.; Spurrier, N.J.; Makrides, M. Effect of iron supplementation during pregnancy on the behaviour of children at early school age: Long-term follow-up of a randomised controlled trial. Br. J. Nutr. 2008, 99, 1133–1139. [Google Scholar] [CrossRef]
- Zhou, S.J.; Gibson, R.A.; Crowther, C.A.; Baghurst, P.; Makrides, M. Effect of iron supplementation during pregnancy on the intelligence quotient and behavior of children at 4 y of age: Long-term follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2006, 83, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Vazquez, L.; Hernandez-Martinez, C.; Voltas, N.; Canals, J.; Coronel, P.; Gimeno, M.; Arija, V. Adapting prenatal iron supplementation to maternal needs results in optimal child neurodevelopment: A follow-up of the ECLIPSES Study. BMC Pregnancy Childbirth 2022, 22, 710. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Vazquez, L.; Voltas, N.; Hernandez-Martinez, C.; Canals, J.; Coronel, P.; Gimeno, M.; Basora, J.; Arija, V. Importance of Maternal Iron Status on the Improvement of Cognitive Function in Children After Prenatal Iron Supplementation. Am. J. Prev. Med. 2023, 65, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Oaks, B.M. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am. J. Clin. Nutr. 2017, 106, 1694S–1702S. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.; Sejer, E.P.F.; Holm, C.; Schroll, J.B. Iron supplements in pregnant women with normal iron status: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2023, 102, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Milman, N. Iron in Pregnancy—How Do We Secure an Appropriate Iron Status in the Mother and Child? Ann. Nutr. Metab. 2011, 59, 50–54. [Google Scholar] [CrossRef]
- Shand, A.W.; Nassar, N. Rapid increase in intravenous iron therapy for women of reproductive age in Australia. Med. J. Aust. 2021, 214, 285–285.e1. [Google Scholar] [CrossRef]
Citation | Population Enrolled, Location | Sample Size Enrolled | Intervention Arms (Type, Dose, Frequency) | Duration of Intervention | Outcome, Instrument Used, Age Assessed | Children Assessed | |
---|---|---|---|---|---|---|---|
Prevention of IDA | |||||||
AMBIT RCT | Zhou 2006 [32] | Non anaemic (Hb > 110 g/L) pregnant women with unknown iron status at 20 wks gestation, Australia | n = 216 intervention, n = 214 placebo | Intervention: 20 mg oral iron, once daily Control: Placebo, once daily | 20 wks gestation until delivery | 4 years: IQ, behavior using SBIS and SDQ 6–8 years: behavior using SDQ and STS for children | 4 years [32] Intervention: IQ (n = 153), behavior (n = 151) Control: IQ (n = 149), behavior (n = 149) 6–8 years [31] Intervention: parent-rated SDQ (n = 132), teacher-rated SDQ (n = 112), parent-rated STS (n = 132) Control: parent-rated SDQ (n = 132), teacher-rated SDQ (n = 113), parent-rated STS (n = 132) |
Parsons 2008 [31] | |||||||
ECLIPSES RCT | Iglesias-Vazquez 2022 [33] | Non anaemic (Hb > 110 g/L) pregnant women with unknown iron status, ≤12 wks gestation, Spain | Stratum 1 (Hb 110–130 g/L): n = 268 intervention, n = 261 control | Stratum 1 Intervention: 80 mg oral iron, daily Control: 40 mg oral iron, daily | 12 wks gestation until delivery | 40 days: cognitive, motor, and language development using Bayley-III 4 years: IQ using WPPSI-IV and NEPSY-II | 40 days [33] Intervention: Stratum 1 (n = 161), Stratum 2 (n = 93) Control: Stratum 1 (n = 167) Stratum 2 (n = 82) |
Iglesias-Vazquez 2023 [34] | Stratum 2 (Hb > 130 g/L): n = 132 intervention, n = 130 control | Stratum 2 Intervention: 40 mg oral iron, daily Control: 20 mg oral iron, daily | 4 years [34] Intervention: Stratum 1 (n = 92), Stratum 2 (n = 55) Control: Stratum 1 (n = 90) Stratum 2 (n = 51) | ||||
Treatment of ID | |||||||
IV Iron RCT | Froessler 2023 [30] | ID (SF < 15 µg/mL or SF < 50 µg/mL and TSAT < 20% with elevated CRP) pregnant women in the second or third trimester, Australia | n = 139 intervention, n = 165 control | Intervention: 1000 mg IV FCM, single dose Control: 500 mg IV FCM, single dose | Once | 12 months: communication, gross motor, fine motor, problem solving, personal–social development using ASQ | 12 months [30] Intervention: ASQ (n = 53) Control: ASQ (n = 75–77) |
Author, Year | Selection Bias (Random Sequence Generation) | Selection Bias (Allocation Concealment) | Performance Bias (Blinding of Participants and Personnel) | Detection Bias (Blinding of Outcome Assessment) | Attrition Bias (Incomplete Outcome Data) | Reporting Bias (Selective Outcome Reporting) | Other Bias | |
---|---|---|---|---|---|---|---|---|
Prevention of IDA | ||||||||
AMBIT RCT | Zhou 2006 [32] | Low risk | Low risk | Low risk | Low risk | High risk | Unclear risk | Low risk |
Parsons 2008 [31] | High risk | High risk | ||||||
ECLIPSES RCT | Iglesias-Vazquez 2022 [33] | Low risk | Low risk | Low risk | Low risk | High risk | Low risk | High risk a |
Iglesias-Vazquez 2023 [34] | Unclear risk | High risk b | ||||||
Treatment of ID | ||||||||
IV Iron RCT | Froessler 2022 [30] | Low risk | Low risk | Low risk | Low risk | High risk | High risk | Low risk |
Primary Outcome | Number of Participants (RCTs) | MD (95% CI) | Quality of Evidence (GRADE) |
---|---|---|---|
Oral iron for prevention of IDA | |||
Global cognition infants at 40 days (Bayley-III) | |||
Baseline Hb 110–130 g/L | |||
80 mg versus 40 mg oral iron | 328 (1 RCT) [33] | −0.98 (−2.87, 0.91) | ⨁◯◯◯ a,b Very Low |
Baseline Hb > 130 g/L | |||
40 mg versus 20 mg oral iron | 175 (1 RCT) [33] | 2.00 (−0.69, 4.69) | ⨁◯◯◯ a,b Very Low |
Intelligence quotient 4 years (SBIS or WPPSI-IV) | |||
Baseline Hb 110–130 g/L | |||
80 mg versus 40 mg oral iron | 182 (1 RCT) [34] | 0.57 (−3.00, 4.14) | ⨁◯◯◯ a,c Very low |
Baseline Hb > 130 g/L | |||
40 mg versus 20 mg oral iron | 106 (1 RCT) [34] | 0.77 (−3.30, 4.84) | ⨁◯◯◯ a,c Very low |
Baseline Hb > 110 g/L | |||
20 mg oral iron versus placebo | 302 (1 RCT) [32] | 0.00 (−2.48, 2.48) | ⨁◯◯◯ a,d Very Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumin, N.A.; Shepherd, E.; Liu, K.; Makrides, M.; Gould, J.F.; Green, T.J.; Grzeskowiak, L.E. The Effects of Prenatal Iron Supplementation on Offspring Neurodevelopment in Upper Middle- or High-Income Countries: A Systematic Review. Nutrients 2024, 16, 2499. https://doi.org/10.3390/nu16152499
Moumin NA, Shepherd E, Liu K, Makrides M, Gould JF, Green TJ, Grzeskowiak LE. The Effects of Prenatal Iron Supplementation on Offspring Neurodevelopment in Upper Middle- or High-Income Countries: A Systematic Review. Nutrients. 2024; 16(15):2499. https://doi.org/10.3390/nu16152499
Chicago/Turabian StyleMoumin, Najma A., Emily Shepherd, Kai Liu, Maria Makrides, Jacqueline F. Gould, Tim J. Green, and Luke E. Grzeskowiak. 2024. "The Effects of Prenatal Iron Supplementation on Offspring Neurodevelopment in Upper Middle- or High-Income Countries: A Systematic Review" Nutrients 16, no. 15: 2499. https://doi.org/10.3390/nu16152499
APA StyleMoumin, N. A., Shepherd, E., Liu, K., Makrides, M., Gould, J. F., Green, T. J., & Grzeskowiak, L. E. (2024). The Effects of Prenatal Iron Supplementation on Offspring Neurodevelopment in Upper Middle- or High-Income Countries: A Systematic Review. Nutrients, 16(15), 2499. https://doi.org/10.3390/nu16152499