Salt Reduction and Iodine Fortification Policies Are Compatible: Perspectives for Public Health Advocacy
Abstract
:1. Introduction
2. Salt Reduction
- Food product reformulation to contain less salt and target setting for the amount of salt in foods and meals;
- The establishment of a supportive environment for the provision of low-sodium options in public institutions, e.g., hospitals, schools, workplaces, and nursing homes;
- Behavioural change communication and mass media campaigns;
- Implementation of front-of-pack labelling.
2.1. Food Product Reformulation to Contain Less Salt
2.2. Establishment of a Supportive Environment
2.3. Behavioural Change Communication
2.4. Implementation of Front-of-Pack Labelling
3. Iodine Fortification
3.1. Dietary Sources of Iodine
3.2. Salt as a Fortification Vehicle
3.3. Universal Salt Iodisation
4. Salt Reduction and Iodine Fortification as a Common Public Health Agenda
- They are highly cost-effective interventions to improve health;
- They have similar surveillance modalities;
- They require complex negotiations with the food industries;
- They depend on strong political support for optimum policy implementation;
- They rely on the improved knowledge, attitudes, and behaviours of health care professionals;
- They rely on increased public knowledge, education, attitudes and behaviours;
- They rely on engagement of the salt manufacturing sector;
- They are affected by a lack of food industry action;
- They require a stable non-commercial funding source to be sustained.
4.1. Salt Reduction and Iodine Fortification Polices Are Highly Cost-Effective
4.2. Salt Reduction and Iodine Fortification Polices Have Similar Surveillance Modalities
Example of Coordinated Monitoring: South Africa
4.3. Salt Reduction and Iodine Fortification Polices Require Complex Negotiations with The Food Industries
4.4. Salt Reduction and Iodine Fortification Polices Depend on Strong Political Support for Optimum Policy Implementation
4.5. Salt Reduction and Iodine Fortification Polices Rely on Improved Knowledge, Attitudes, and Behaviours of Health Care Professionals
4.6. Salt Reduction and Iodine Fortification Polices Rely on Increased Public Knowledge, Education, Attitudes, and Behaviours
4.7. Salt Reduction and Iodine Fortification Polices Rely on Engagement of the Salt Manufacturing Sector
4.8. Salt Reduction and Iodine Fortification Polices Are Affected by a Lack of Food Industry Action
4.9. Salt Reduction and Iodine Fortification Polices Require a Stable Non-Commercial Funding Source to Be Sustained
5. What Is Needed to Implement A Coordinated Salt Reduction–Iodine Fortification Policy?
5.1. Promoting Strong Political Commitment
5.2. Strong Programme Leadership and Governance and Effective Policy Development
5.3. Effective Partnerships with Stakeholders
5.4. Effective Communication and Advocacy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 25 April 2021).
- World Health Organization. Global Action Plan for the Prevention and Control of Non-Communicable Diseases 2013–2020. 2013. Available online: https://iris.who.int/handle/10665/94384 (accessed on 25 April 2021).
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Biryukov, S.; Brauer, M.; Cercy, K.; Charlson, F.J.; Cohen, A.J.; Dandona, L.; Estep, K.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, E.B.; Heincelman, M.; Bishu, K.G.; Schumann, S.O.; Schreiner, A.; Axon, R.N.; Mauldin, P.D.; Moran, W.P. Trends in healthcare expenditures among US adults with hypertension: National estimates, 2003–2014. J. Am. Heart Assoc. 2018, 7, e008731. [Google Scholar] [CrossRef] [PubMed]
- Wierzejska, E.; Giernaś, B.; Lipiak, A.; Karasiewicz, M.; Cofta, M.; Staszewski, R. A global perspective on the costs of hypertension: A systematic review. Arch. Med. Sci. 2020, 16, 1078–1091. [Google Scholar] [CrossRef] [PubMed]
- Schutte, A.E.; Srinivasapura Venkateshmurthy, N.; Mohan, S.; Prabhakaran, D. Hypertension in Low- And Middle-Income Countries. Circ. Res. 2021, 128, 808–826. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Sodium Intake for Adults and Children. World Health Organization. 2012. Available online: https://iris.who.int/handle/10665/77985 (accessed on 25 April 2021).
- World Health Organization. WHO Global Report on Sodium Intake Reduction; World Health Organization. License: CC BY-NC-SA 3.0 IGO. 2023. Available online: https://iris.who.int/handle/10665/366393 (accessed on 25 April 2021).
- World Health Organization. Tackling NCDs: “Best Buys” and Other Recommended Interventions for the Prevention and Control of Noncommunicable Diseases, 2nd ed. World Health Organization. License: CC BY-NC-SA 3.0 IGO. 2017. Available online: https://iris.who.int/handle/10665/376624 (accessed on 25 April 2021).
- Van Raaij, J.; Hendriksen, M.; Verhagen, H. Potential for improvement of population diet through reformulation of commonly eaten foods. Public Health Nutr. 2009, 12, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Schorling, E.; Niebuhr, D.; Kroke, A. Cost-effectiveness of salt reduction to prevent hypertension and CVD: A systematic review. Public Health Nutr. 2017, 20, 1993–2003. [Google Scholar] [CrossRef] [PubMed]
- Briggs, A.D.M.; Wolstenholme, J.; Scarborough, P. Estimating the cost-effectiveness of salt reformulation and increasing access to leisure centres in England, with PRIMEtime CE model validation using the AdViSHE tool. BMC Health Serv. Res. 2019, 19, 1–14. [Google Scholar] [CrossRef]
- Collins, M.; Mason, H.; O’Flaherty, M.; Guzman-Castillo, M.; Critchley, J.; Capewell, S. An economic evaluation of salt reduction policies to reduce coronary heart disease in England: A policy modeling study. Value Health J. Int. Soc. Pharmacoecon. Outcomes Res. 2014, 17, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.O.S.; Allen, K.; Guzman-Castillo, M.; Bandosz, P.; Moreira, P.; McGill, R.; Anwar, E.; Lloyd-Williams, F.; Bromley, H.; Diggle, P.J.; et al. The health equity and effectiveness of policy options to reduce dietary salt intake in England: Policy forecast. PLoS ONE 2015, 10, e0134064. [Google Scholar] [CrossRef]
- Ni Mhurchu, C.; Capelin, C.; Dunford, E.K.; Webster, J.L.; Neal, B.C.; Jebb, S.A. Sodium content of processed foods in the United Kingdom: Analysis of 44,000 foods purchased by 21,000 households. Am. J. Clin. Nutr. 2011, 93, 594–600. [Google Scholar] [CrossRef]
- Anderson, C.A.M.; Appel, L.J.; Okuda, N.; Brown, I.J.; Chan, Q.; Zhao, L.; Ueshima, H.; Kesteloot, H.; Miura, K.; Curb, J.D.; et al. Dietary Sources of Sodium in China, Japan, the United Kingdom, and the United States, Women and Men Aged 40 to 59 Years: The INTERMAP Study. J. Am. Diet. Assoc. 2010, 110, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Menyanu, E.; Russell, J.; Charlton, K. Dietary Sources of Salt in Low- and Middle-Income Countries: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2019, 16, 2082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Webster, J.; Fu, L.Y.; Wang, H.L.; Wu, X.M.; Wang, W.L.; Shi, J.P. Intake of low sodium salt substitute for 3 years attenuates the increase in blood pressure in a rural population of North China—A randomized controlled trial. Int. J. Cardiol. 2016, 215, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Hoek, A.C.; Deltetto, I.; Peacock, A.; Ha, D.T.P.; Sieburg, M.; Hoang, D.; Trieu, K.; Cobb, L.K.; Jan, S.; et al. The cost-effectiveness of government actions to reduce sodium intake through salt substitutes in Vietnam. Arch. Public Health 2021, 79, 32. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Potassium Intake for Adults and Children. 2012. Available online: https://iris.who.int/handle/10665/77986 (accessed on 30 April 2021).
- van Buren, L.; Dötsch-Klerk, M.; Seewi, G.; Newson, R.S. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique. Nutrients 2016, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Abreu, S. Sodium and potassium intake and Cardiovascular Disease in Older People: A Systematic Review. Nutrients 2020, 12, 3447. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Hu, Y.-W.; Yue, C.-S.J.; Wen, Y.-W.; Yeh, W.-T.; Hsu, L.-S.; Tsai, S.-Y.; Pan, W.-H. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am. J. Clin. Nutr. 2006, 83, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration Department of Health and Nutrition Services. Code of Federal Regulations Title 21—Food and Drugs Chapter I, Subchapter B, Part 184, Subpart B—Listing of Specific Substances Affirmed as GRAS. Sec. 184.1622 Potassium Chloride. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1622&SearchTerm=potassiumchloride (accessed on 30 April 2021).
- Greer, R.C.; Marklund, M.; Anderson, C.A.M.; Cobb, L.K.; Dalcin, A.T.; Henry, M.; Appel, L.J. Potassium-Enriched Salt Substitutes as a Means to Lower Blood Pressure: Benefits and Risks. Hypertension 2020, 75, 266–274. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Regional Office for Europe Accelerating Salt Reduction in Europe: A Country Support Package to Reduce Population Salt Intake in the WHO European Region. World Health Organization. Regional Office for Europe. 2020. Available online: https://iris.who.int/handle/10665/340028 (accessed on 30 April 2021).
- Arcand, J.; Steckham, K.; Tzianetas, R.; L’Abbe, M.R.; Newton, G.E. Evaluation of Sodium Levels in Hospital Patient Menus. Arch. Intern. Med. 2012, 172, 1261–1262. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Mugavero, K.L.; Gunn, J.P.; Dunet, D.O.; Bowman, B.A. Sodium reduction: An important public health strategy for heart health. J. Public Health Manag. Pract. 2014, 20, S1–S5. [Google Scholar] [CrossRef]
- National Network of Public Health Institutes. Partnering with Food Service to Reduce Sodium: A Toolkit for Public Health Practitioners. National Network of Public Health Institutes & Health Resources in Action. 2017. Available online: https://nnphi.org/wp-content/uploads/2017/01/SRCP_Toolkit_122616_FINAL.pdf (accessed on 30 April 2021).
- Webb, M.; Fahimi, S.; Singh, G.M.; Khatibzadeh, S.; Micha, R.; Powles, J.; Mozaffarian, D. Cost effectiveness of a government supported policy strategy to decrease sodium intake: Global analysis across 183 nations. BMJ 2017, 356, i6699. [Google Scholar] [CrossRef] [PubMed]
- UK Department of Health. Single System for Nutrition Labelling Announced. Available online: https://www.gov.uk/government/news/single-system-for-nutrition-labelling-announced (accessed on 30 April 2021).
- Colruyt Group What Is the Nutri-Score? Available online: https://nutriscore.colruytgroup.com/colruytgroup/en/about-nutri-score/ (accessed on 30 April 2021).
- Ide, N.; Ajenikoko, A.; Steele, L.; Cohn, J.; Curtis, C.J.; Frieden, T.R.; Cobb, L.K. Priority Actions to Advance Population Sodium Reduction. Nutrients 2020, 12, 2543. [Google Scholar] [CrossRef] [PubMed]
- Demekas, S.; Rigutto-Farebrother, J. Perspectives on ultra-processed foods as vehicles for food fortification. Trends Food Sci. Technol. 2024, 148, 104505. [Google Scholar] [CrossRef]
- Matos, R.A.; Adams, M.; Sabaté, J. Review: The Consumption of Ultra-Processed Foods and Non-communicable Diseases in Latin America. Front. Nutr. 2021, 8, 622714. [Google Scholar] [CrossRef]
- Taillie, L.S.; Bercholz, M.; Popkin, B.; Reyes, M.; Colchero, M.A.; Corvalán, C. Changes in food purchases after the Chilean policies on food labelling, marketing, and sales in schools: A before and after study. Lancet Planet. Health 2021, 5, e526–e533. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Van Der Reijden, O.L.; Galetti, V.; Herter-Aeberli, I.; Zimmermann, M.B.; Zeder, C.; Krzystek, A.; Haldimann, M.; Barmaz, A.; Kreuzer, M.; Berard, J.; et al. Effects of feed iodine concentrations and milk processing on iodine concentrations of cows’ milk and dairy products, and potential impact on iodine intake in Swiss adults. Br. J. Nutr. 2019, 122, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.; Wechsler, D.; Schlegel, P.; Haldimann, M. Iodine in Swiss milk depending on production (conventional versus organic) and on processing (raw versus UHT) and the contribution of milk to the human iodine supply. J. Trace Elem. Med. Biol. 2018, 46, 138–143. [Google Scholar] [CrossRef] [PubMed]
- van der Reijden, O.L.; Galetti, V.; Hulmann, M.; Krzystek, A.; Haldimann, M.; Schlegel, P.; Manzocchi, E.; Berard, J.; Kreuzer, M.; Zimmermann, M.B.; et al. The main determinants of iodine in cows’ milk in Switzerland are farm type, season and teat dipping. Br. J. Nutr. 2018, 119, 559–569. [Google Scholar] [CrossRef]
- Bath, S.C.; Hill, S.; Infante, H.G.; Elghul, S.; Nezianya, C.J.; Rayman, M.P. Iodine concentration of milk-alternative drinks available in the UK in comparison with cows’ milk. Br. J. Nutr. 2017, 118, 525–532. [Google Scholar] [CrossRef]
- Menzel, J.; Abraham, K.; Stangl, G.I.; Ueland, P.M.; Obeid, R.; Schulze, M.B.; Herter-Aeberli, I.; Schwerdtle, T.; Weikert, C. Vegan Diet and Bone Health-Results from the Cross-Sectional RBVD Study. Nutrients 2021, 13, 685. [Google Scholar] [CrossRef]
- Farebrother, J.; Zimmermann, M.B.; Andersson, M. Excess iodine intake: Sources, assessment, and effects on thyroid function. Ann. N. Y. Acad. Sci. 2019, 1446, 44–65. [Google Scholar] [CrossRef]
- Mannar, V. Iodization Cost (via GiveWell.org). Available online: https://www.givewell.org/international/technical/programs/salt-iodization#footnote154_1aoy6n4 (accessed on 28 March 2021).
- World Health Organization. Salt Reduction and Iodine Fortification Strategies in Public Health: Report of a Joint Technical Meeting Convened by the World Health Organization and the George Institute for Global Health in Collaboration with the International Council for the Control of Iodine Deficiency Disorders Global Network, Sydney, Australia, March 2013. World Health Organization. 2014. Available online: https://iris.who.int/handle/10665/101509 (accessed on 30 April 2021).
- Shields, A.; Ansari, M.A. Review of Experience of the Production of Salt Fortified with Iron and Iodine. J. Nutr. 2021, 151, 29S–37S. [Google Scholar] [CrossRef]
- Chan, K.; Gallant, J.; Leemaqz, S.; Baldwin, D.A.; Borath, M.; Kroeun, H.; Measelle, J.R.; Ngik, R.; Prak, S.; Wieringa, F.T.; et al. Assessment of salt intake to consider salt as a fortification vehicle for thiamine in Cambodia. Ann. N. Y. Acad. Sci. 2021, 1498, 1–11. [Google Scholar] [CrossRef]
- Whitfield, K.C.; Bourassa, M.W.; Adamolekun, B.; Bergeron, G.; Bettendorff, L.; Brown, K.H.; Cox, L.; Fattal-Valevski, A.; Fischer, P.R.; Frank, E.L.; et al. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 2018, 1430, 3–43. [Google Scholar] [CrossRef]
- Vinodkumar, M.; Rajagopalan, S. Multiple micronutrient fortification of salt. Eur. J. Clin. Nutr. 2009, 63, 437–445. [Google Scholar] [CrossRef]
- Freeman, A.R.; Lammie, P.J.; Houston, R.; LaPointe, M.D.; Streit, T.G.; Jooste, P.L.; Brissau, J.M.; Lafontant, J.G.; Addiss, D.G. A community-based trial for the control of lymphatic filariasis and iodine deficiency using salt fortified with diethylcarbamazine and iodine. Am. J. Trop. Med. Hyg. 2001, 65, 865–871. [Google Scholar] [CrossRef]
- Lammie, P.; Milner, T.; Houston, R. Unfulfilled potential: Using diethylcarbamazine-fortified salt to eliminate lymphatic filariasis. Bull. World Health Organ. 2007, 85, 545–549. [Google Scholar] [CrossRef]
- Sharma, S.; Smith, M.E.; Reimer, J.; O’Brien, D.B.; Brissau, J.M.; Donahue, M.C.; Carter, C.E.; Michael, E. Economic performance and cost-effectiveness of using a DEC-salt social enterprise for eliminating the major neglected tropical disease, lymphatic filariasis. PLoS Negl. Trop. Dis. 2019, 13, e0007094. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders. World Health Organization. 2014. Available online: https://iris.who.int/handle/10665/136908 (accessed on 30 April 2021).
- Dold, S.; Zimmermann, M.B.; Jukic, T.; Kusic, Z.; Jia, Q.; Sang, Z.; Quirino, A.; San Luis, T.O.L.; Fingerhut, R.; Kupka, R.; et al. Universal salt iodization provides sufficient dietary iodine to achieve adequate iodine nutrition during the first 1000 days: A cross-sectional multicenter study. J. Nutr. 2018, 148, 587–598. [Google Scholar] [CrossRef]
- Gorstein, J.L.; Bagriansky, J.; Pearce, E.N.; Kupka, R.; Zimmermann, M.B. Estimating the Health and Economic Benefits of Universal Salt Iodization Programs to Correct Iodine Deficiency Disorders. Thyroid 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Resolution WHA66.10. Endorsement of the Global Monitoring Framework and set of Voluntary Global Targets for the Prevention and Control of NCDs. In Proceedings of the World Health Assembly, Geneva, Switzerland, 20–28 May 2013. [Google Scholar]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global iodine status in 2011 and trends over the past decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef]
- UNICEF Iodine. UNICEF Data. Available online: https://data.unicef.org/topic/nutrition/iodine/ (accessed on 29 March 2021).
- World Health Organization. Nutrition Unit. Recommended Iodine Levels in Salt and Guidelines for Monitoring Their Adequacy and Effectiveness. World Health Organization. 1996. Available online: https://iris.who.int/handle/10665/63322 (accessed on 30 April 2021).
- WHO; UNICEF; ICCIDD. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed. World Health Organization. 2007. Available online: https://iris.who.int/handle/10665/43781 (accessed on 30 April 2021).
- Santos, J.A.R.; Christoforou, A.; Trieu, K.; McKenzie, B.L.; Downs, S.; Billot, L.; Webster, J.; Li, M. Iodine fortification of foods and condiments, other than salt, for preventing iodine deficiency disorders. Cochrane Database Syst. Rev. 2019, 2019, CD010734. [Google Scholar] [CrossRef]
- Abizari, A.-R.; Dold, S.; Kupka, R.; Zimmermann, M.B. More than two-thirds of dietary iodine in children in northern Ghana is obtained from bouillon cubes containing iodized salt. Public Health Nutr. 2017, 20, 1107–1113. [Google Scholar] [CrossRef]
- Phillips, D.I.; Osmond, C. Iodine supplementation with oral or intramuscular iodized oil. A two-year follow-up of a comparative trial. Int. J. Epidemiol. 1989, 18, 907–910. [Google Scholar] [CrossRef]
- World Health Organization. The SHAKE Technical Package for Salt Reduction. World Health Organization. 2016. Available online: https://iris.who.int/handle/10665/250135 (accessed on 30 April 2021).
- World Health Organization. Strategies to Monitor and Evaluate Population Sodium Consumption and Sources of Sodium in the Diet: Report of a Joint Technical Meeting Convened by WHO and the Government of Canada. World Health Organization. 2011. Available online: https://iris.who.int/handle/10665/44614 (accessed on 30 April 2021).
- Jooste, P.; Zimmermann, M. Progress towards eliminating iodine deficiency in South Africa. S. Afr. J. Clin. Nutr. 2008, 21, 8–14. [Google Scholar] [CrossRef]
- Charlton, K.; Ware, L.J.; Baumgartner, J.; Cockeran, M.; Schutte, A.E.; Naidoo, N.; Kowal, P. How will South Africa’s mandatory salt reduction policy affect its salt iodisation programme? A cross-sectional analysis from the WHO-SAGE Wave 2 Salt and Tobacco study. BMJ Open 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Menyanu, E.; Corso, B.; Minicuci, N.; Rocco, I.; Zandberg, L.; Baumgartner, J.; Russell, J.; Naidoo, N.; Biritwum, R.; Schutte, A.E.; et al. Salt-reduction strategies may compromise salt iodization programs: Learnings from South Africa and Ghana. Nutrition 2021, 84, 111065. [Google Scholar] [CrossRef]
- Osei, J.; Andersson, M.; van der Reijden, O.; Dold, S.; Smuts, C.M.; Baumgartner, J. Breast-Milk Iodine Concentrations, Iodine Status, and Thyroid Function of Breastfed Infants Aged 2–4 Months and Their Mothers Residing in a South African Township. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 381–391. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Aeberli, I.; Andersson, M.; Assey, V.; Yorg, J.A.J.J.; Jooste, P.; Jukić, T.; Kartono, D.; Kusić, Z.; Pretell, E.; et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100–299 μg/L: A UNICEF/ICCIDD study group report. J. Clin. Endocrinol. Metab. 2013, 98, 1271–1280. [Google Scholar] [CrossRef]
- Bülow Pedersen, I.; Laurberg, P.; Knudsen, N.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Pedersen, I.B.; Laurberg, P.; Knudsen, N.; et al. Increase in incidence of hyperthyroidism predominantly occurs in young people after iodine fortification of salt in Denmark. J. Clin. Endocrinol. Metab. 2006, 91, 3830–3834. [Google Scholar] [CrossRef]
- Laurberg, P.; Cerqueira, C.; Ovesen, L.; Rasmussen, L.B.; Perrild, H.; Andersen, S.; Pedersen, I.B.; Carlé, A. Iodine intake as a determinant of thyroid disorders in populations. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 13–27. [Google Scholar] [CrossRef]
- Burgi, H.; Kohler, M.; Morselli, B.; Kohler, M.; Morselli, B. Thyrotoxicosis Incidence in Switzerland and Benefit of Improved Iodine Supply. Lancet 1998, 352, 1034. [Google Scholar] [CrossRef]
- Kloss, L.; Meyer, J.D.; Graeve, L.; Vetter, W. Sodium intake and its reduction by food reformulation in the European Union—A review. NFS J. 2015, 1, 9–19. [Google Scholar] [CrossRef]
- Mason, H.; Shoaibi, A.; Ghandour, R.; O’Flaherty, M.; Capewell, S.; Khatib, R.; Jabr, S.; Unal, B.; Sözmen, K.; Arfa, C.; et al. A cost effectiveness analysis of salt reduction policies to reduce coronary heart disease in four Eastern Mediterranean countries. PLoS ONE 2014, 9, e84445. [Google Scholar] [CrossRef]
- Hyseni, L.; Elliot-Green, A.; Lloyd-Williams, F.; Kypridemos, C.; O’Flaherty, M.; McGill, R.; Orton, L.; Bromley, H.; Cappuccio, F.; Capewell, S. Systematic review of dietary salt reduction policies: Evidence for an effectiveness hierarchy? PLoS ONE 2017, 12, e0177535. [Google Scholar] [CrossRef]
- Spohrer, R.; Larson, M.; Maurin, C.; Laillou, A.; Capanzana, M.; Garrett, G.S. The growing importance of staple foods and condiments used as ingredients in the food industry and implications for large-scale food fortification programs in Southeast Asia. Food Nutr. Bull. 2013, 34, 50–61. [Google Scholar] [CrossRef]
- Codling, K.; Rudert, C.; Bégin, F.; Peña-Rosas, J.P. The legislative framework for salt iodization in Asia and the Pacific and its impact on programme implementation. Public Health Nutr. 2017, 20, 3008–3018. [Google Scholar] [CrossRef]
- Vandevijvere, S. Sodium reduction and the correction of iodine intake in Belgium: Policy options. Arch. Public Health 2012, 70, 1. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Sodium Benchmarks for Different Food Categories. World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. 2021. Available online: https://iris.who.int/handle/10665/341081 (accessed on 30 April 2021).
- Fox, A.M.; Balarajan, Y.; Cheng, C.; Reich, M.R. Measuring political commitment and opportunities to advance food and nutrition security: Piloting a rapid assessment tool. Health Policy Plan. 2015, 30, 566–578. [Google Scholar] [CrossRef]
- Baker, P.; Hawkes, C.; Wingrove, K.; Demaio, A.R.; Parkhurst, J.; Thow, A.M.; Walls, H. What drives political commitment for nutrition? A review and framework synthesis to inform the United Nations Decade of Action on Nutrition. BMJ Glob. Health 2018, 3, e000485. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, B.; Trieu, K.; Grimes, C.A.; Reimers, J.; Webster, J. Understanding barriers and enablers to state action on salt: Analysis of stakeholder perceptions of the vichealth salt reduction partnership. Nutrients 2019, 11, 184. [Google Scholar] [CrossRef]
- Mytton, O.; Gray, A.; Rayner, M.; Rutter, H. Could targeted food taxes improve health? J. Epidemiol. Community Health 2007, 61, 689–694. [Google Scholar] [CrossRef]
- Cobiac, L.J.; Tam, K.; Veerman, L.; Blakely, T. Taxes and Subsidies for Improving Diet and Population Health in Australia: A Cost-Effectiveness Modelling Study. PLoS Med. 2017, 14, e1002232. [Google Scholar] [CrossRef]
- Ni Mhurchu, C.; Eyles, H.; Genc, M.; Scarborough, P.; Rayner, M.; Mizdrak, A.; Nnoaham, K.; Blakely, T. Effects of Health-Related Food Taxes and Subsidies on Mortality from Diet-Related Disease in New Zealand: An Econometric-Epidemiologic Modelling Study. PLoS ONE 2015, 10, e0128477. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.; Santos, J.A.; Tan, M.; Campbell, N.R.C.; Ni Mhurchu, C.; Cobb, L.; Jacobson, M.F.; He, F.J.; Trieu, K.; Osornprasop, S.; et al. Effectiveness and Feasibility of Taxing Salt and Foods High in Sodium: A Systematic Review of the Evidence. Adv. Nutr. 2020, 11, 1616–1630. [Google Scholar] [CrossRef] [PubMed]
- Bhana, N.; Utter, J.; Eyles, H. Knowledge, Attitudes and Behaviours Related to Dietary Salt Intake in High-Income Countries: A Systematic Review. Curr. Nutr. Rep. 2018, 7, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, D.; Nowson, C.; Margerison, C.; Bolam, B.; Grimes, C. Comparison of salt-related knowledge, attitudes and behaviours between parents and caregivers of children under 18 years of age and other adults who do not care for children under 18 years of age in Victoria, Australia. BMJ Nutr. Prev. Health 2019, 2, 51 LP–62. [Google Scholar] [CrossRef]
- Patel, D.; Cogswell, M.E.; John, K.; Creel, S.; Ayala, C. Knowledge, attitudes, and behaviors related to sodium intake and reduction among adult consumers in the United States. Am. J. Health Promot. 2017, 31, 9–18. [Google Scholar] [CrossRef]
- Fang, J.; Cogswell, M.E.; Keenan, N.L.; Merritt, R.K. Primary health care providers’ attitudes and counseling behaviors related to dietary sodium reduction. Arch. Intern. Med. 2012, 172, 76–78. [Google Scholar] [CrossRef]
- Jackson, S.L.; Coleman King, S.M.; Park, S.; Fang, J.; Odom, E.C.; Cogswell, M.E. Health Professional Advice and Adult Action to Reduce Sodium Intake. Am. J. Prev. Med. 2016, 50, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Bouga, M.; Lean, M.E.J.; Combet, E. Iodine and pregnancy-a qualitative study focusing on dietary guidance and information. Nutrients 2018, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Kut, A.; Kalli, H.; Anil, C.; Mousa, U.; Gursoy, A. Knowledge, attitudes and behaviors of physicians towards thyroid disorders and iodine requirements in pregnancy. J. Endocrinol. Investig. 2015, 38, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Guess, K.; Malek, L.; Anderson, A.; Makrides, M.; Zhou, S.J. Knowledge and practices regarding iodine supplementation: A national survey of healthcare providers. Women Birth 2017, 30, e56–e60. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Pearce, E.N.; Braverman, L.E. Iodine Supplementation in Women During Preconception, Pregnancy, and Lactation: Current Clinical Practice by U.S. Obstetricians and Midwives. Thyroid 2017, 27, 434–439. [Google Scholar] [CrossRef]
- Lucas, C.J.; Charlton, K.E.; Brown, L.; Brock, E.; Cummins, L. Antenatal shared care: Are pregnant women being adequately informed about iodine and nutritional supplementation? Aust. N. Z. J. Obstet. Gynaecol. 2014, 54, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.; Lean, M.E.J.; Combet, E. Dietary iodine: Awareness, knowledge and current practice among midwives. Proc. Nutr. Soc. 2012, 71, 2021. [Google Scholar] [CrossRef]
- Geldsetzer, P.; Manne-Goehler, J.; Marcus, M.-E.; Ebert, C.; Zhumadilov, Z.; Wesseh, C.S.; Tsabedze, L.; Supiyev, A.; Sturua, L.; Bahendeka, S.K.; et al. The state of hypertension care in 44 low-income and middle-income countries: A cross-sectional study of nationally representative individual-level data from 1·1 million adults. Lancet 2019, 394, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Henjum, S.; Brantsæter, A.L.; Kurniasari, A.; Dahl, L.; Aadland, E.K.; Gjengedal, E.L.F.; Birkeland, S.; Aakre, I. Suboptimal Iodine Status and Low Iodine Knowledge in Young Norwegian Women. Nutrients 2018, 10, 941. [Google Scholar] [CrossRef]
- Wang, X.; Lou, X.; Mo, Z.; Xing, M.; Mao, G.; Zhu, W.; Wang, Y.; Chen, Y.; Wang, Z. Poor Iodine Knowledge, Coastal Region, and Non-Iodized Salt Consumption Linked to Low Urinary Iodine Excretion in Zhejiang Pregnant Women. Nutrients 2019, 11, 413. [Google Scholar] [CrossRef]
- Campbell, N.; Dary, O.; Cappuccio, F.P.; Neufeld, L.M.; Harding, K.B.; Zimmermanne, M.B. Collaboration to optimize dietary intakes of salt and iodine: A critical but overlooked public health issue. Bull. World Health Organ. 2012, 90, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. The effects of iodine deficiency in pregnancy and infancy. Paediatr. Perinat. Epidemiol. 2012, 26, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Esche, J.; Thamm, M.; Remer, T. Contribution of iodized salt to total iodine and total salt intake in Germany. Eur. J. Nutr. 2020, 59, 3163–3169. [Google Scholar] [CrossRef] [PubMed]
- Elias, E.; Tsegaye, W.; Stoecker, B.J.; Gebreegziabher, T. Excessive intake of iodine and low prevalence of goiter in school age children five years after implementation of national salt iodization in Shebedino woreda, southern Ethiopia. BMC Public Health 2021, 21, 165. [Google Scholar] [CrossRef] [PubMed]
- Akunyili, D.N. Achieving and Sustaining Universal Salt Iodization (USI): Doing It Well Through Regulation and Enforcement. Lessons Learned from USI in Nigeria. SCN News p.43. United Nations Syst. Standing Comm. Nutr. News 2007, 35, 43–47. [Google Scholar]
- Mozaffarian, D.; Angell, S.Y.; Lang, T.; Rivera, J.A. Role of government policy in nutrition-barriers to and opportunities for healthier eating. BMJ 2018, 361, k2426. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.A.; Reich, M.R. Political Analysis for Health Policy Implementation. Health Syst. Reform 2019, 5, 224–235. [Google Scholar] [CrossRef]
- Ali, S.H.; Luo, R.; Li, Y.; Liu, X.; Tang, C.; Zhang, P. Application of Mobile Health Technologies Aimed at Salt Reduction: Systematic Review. JMIR mHealth uHealth 2019, 7, e13250. [Google Scholar] [CrossRef]
Estimated Salt Consumption g/Day 1 | Average Amount of Iodine to Add, mg/kg Salt (RNI + Losses) 2 |
---|---|
3 | 65 |
4 | 49 |
5 | 39 |
6 | 33 |
7 | 28 |
8 | 24 |
9 | 22 |
10 | 20 |
11 | 18 |
12 | 16 |
13 | 15 |
14 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigutto-Farebrother, J.; Zimmermann, M.B. Salt Reduction and Iodine Fortification Policies Are Compatible: Perspectives for Public Health Advocacy. Nutrients 2024, 16, 2517. https://doi.org/10.3390/nu16152517
Rigutto-Farebrother J, Zimmermann MB. Salt Reduction and Iodine Fortification Policies Are Compatible: Perspectives for Public Health Advocacy. Nutrients. 2024; 16(15):2517. https://doi.org/10.3390/nu16152517
Chicago/Turabian StyleRigutto-Farebrother, Jessica, and Michael B. Zimmermann. 2024. "Salt Reduction and Iodine Fortification Policies Are Compatible: Perspectives for Public Health Advocacy" Nutrients 16, no. 15: 2517. https://doi.org/10.3390/nu16152517
APA StyleRigutto-Farebrother, J., & Zimmermann, M. B. (2024). Salt Reduction and Iodine Fortification Policies Are Compatible: Perspectives for Public Health Advocacy. Nutrients, 16(15), 2517. https://doi.org/10.3390/nu16152517