Alleviating Effect of Lipid Phytochemicals in Seed Oil (Brassica napus L.) on Oxidative Stress Injury Induced by H2O2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Cultures
2.3. Determination of Cell Viability by Cell Counting Kit-8 (CCK-8)
2.4. CAA in HepG2 Cells
2.5. Optimization of LP Combination by CCD-RSM (Response Surface Methodology)
2.6. Construction and Grouping of Oxidative Stress Model
2.7. Determination of Cell Apoptosis by Annexin-V/PI
2.8. Determination of ROS, MDA, PC, and 8-OHdG in HepG2 Cells
2.9. Determination of T-AOC, SOD, CAT, GPX, HO-1, and GSH in HepG2 Cells
2.10. Determination of QPCR in HepG2 Cells
2.11. Determination of Nrf2 and Keap1 Expression by Western Blotting Analysis
2.12. Statistical Analysis
3. Results
3.1. Effects of LP, Tea Polyphenols, and Magnolol on the Cell Activity of HepG2 Cells
3.2. CAA Standard Curve
3.3. Optimization of LP Concentrations by Central Composite Design (CCD)
3.3.1. CCD Analysis and Model Fitting
3.3.2. Response Surface (RSM) Analysis
3.3.3. Optimization and Validation of the Regression Model
3.4. Effect of LP, Tea Polyphenols, and Magnolol on HepG2 Cell Apoptosis
3.5. Effect of LP, Tea Polyphenols and Magnolol on H2O2-Induced Oxidative Stress Damage in HepG2 Cells
3.6. Evaluation of LP, Tea Polyphenols, and Magnolol on Oxidative Stress in HepG2 Cells
3.7. LP, Tea Polyphenols, and Magnolol Modulate Relative Gene Expression Levels in HepG2 Cells
3.8. LP, Tea Polyphenols, and Magnolol Activate Nrf2/Keap1 Pathway and Upregulate the Expression of Nrf2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
α-T | α-Tocopherol |
β-S | β-Sitosterol |
CA | Canolol |
SA | Sinapic acid |
LP | Lipid phytochemicals |
CCD | Central composite design |
CAA | Cellular antioxidant activity |
QE | Quercetin |
ROS | Reactive oxygen species |
MDA | Malonaldehyde |
PC | Protein carbonyl |
8-OHdG | 8-hydroxydeoxyguanosine |
SOD | Superoxide dismutase |
CAT | Catalase |
GPX | Glutathione peroxidase |
HO-1 | Heme oxygenase-1 |
T-AOC | Total antioxidant capacity |
GSH | Glutathione |
Nrf2 | Nuclear factor- erythroid 2 related factor 2 |
Keap1 | Kelch-like ECH-associated protein 1 |
ARE | Antioxidant-response element |
References
- Guo, X.; Zhang, T.; Shi, L.; Gong, M.; Jin, J.; Zhang, Y.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct. 2018, 9, 6048–6062. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Chen, X.; Tang, Y.; Wu, J.M.; Qin, D.L.; Yu, L.; Yu, C.-L.; Zhou, X.-G.; Wu, A.G. The therapeutic potential of plant polysaccharides in metabolic diseases. Pharmaceuticals 2022, 15, 1329. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ma, J.; Li, Y.; Han, Q.; Yin, Z.; Zhou, M.; Luo, M.; Chen, J.; Xia, S. Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Front. Nutr. 2022, 9, 1024722. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Cheng, Y.; Wang, D.; Xu, T.; Su, L.; Zhang, X.; Dong, H. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, M.A.; Becana, M. Molecular responses of legumes to abiotic stress: Post-translational modifications of proteins and redox signaling. J. Exp. Bot. 2021, 72, 5876–5892. [Google Scholar] [CrossRef]
- Bartolomei, M.; Bollati, C.; Bellumori, M.; Cecchi, L.; Cruz-Chamorro, I.; Santos-Sánchez, G.; Ranaldi, G.; Ferruzza, S.; Sambuy, Y.; Arnoldi, A. Extra virgin olive oil phenolic extract on human hepatic HepG2 and intestinal caco-2 cells: Assessment of the antioxidant activity and intestinal trans-epithelial transport. Antioxidants 2021, 10, 118. [Google Scholar] [CrossRef]
- Bao, M.H.; Zhang, Y.W.; Zhou, H.H. Paeonol suppresses oxidized low-density lipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-κB pathway. J. Ethnopharmacol. 2013, 146, 543–551. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Peng, S.; Ou, Y.; He, B.; Li, Y.; Lin, Q. Effects of Artemisia argyi Powder on Egg Quality, Antioxidant Capacity, and Intestinal Development of Roman Laying Hens. Front. Physiol. 2022, 13, 902568. [Google Scholar] [CrossRef]
- Guo, F.; Tsao, R.; Li, C.; Wang, X.; Zhang, H.; Jiang, L.; Sun, Y.; Xiong, H. Green pea (Pisum sativum L.) hull polyphenol extracts ameliorate dss-induced colitis through keap1/nrf2 pathway and gut microbiota modulation. Foods 2021, 10, 2765. [Google Scholar] [CrossRef]
- Wu, R.R.; Li, X.; Cao, Y.H.; Peng, X.; Liu, G.F.; Liu, Z.K.; Yang, Z.; Liu, Z.-Y.; Wu, Y. China Medicinal Plants of the Ampelopsis grossedentata—A Review of Their Botanical Characteristics, Use, Phytochemistry, Active Pharmacological Components, and Toxicology. Molecules 2023, 28, 7145. [Google Scholar] [CrossRef]
- Kubo, H.; Asai, K.; Kojima, K.; Sugitani, A.; Kyomoto, Y.; Okamoto, A.; Yamada, K.; Ijiri, N.; Watanabe, T.; Hirata, K.; et al. Astaxanthin suppresses cigarette smoke-induced emphysema through Nrf2 activation in mice. Mar. Drugs 2019, 17, 673. [Google Scholar] [CrossRef]
- Teasdale, S.B.; Marshall, S.; Abbott, K.; Cassettari, T.; Duve, E.; Fayet-Moore, F. How should we judge edible oils and fats? An umbrella review of the health effects of nutrient and bioactive components found in edible oils and fats. Crit. Rev. Food Sci. 2022, 62, 5167–5182. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food. Res. Int. 2021, 143, 110312. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Tao, Y.; Huang, Y.; Zogona, D.; Wu, T.; Liu, R.; Pan, S.; Xu, X. Aged Pericarpium Citri Reticulatae “Chachi” attenuates oxidative damage induced by tert-Butyl Hydroperoxide (t-BHP) in HepG2 cells. Foods 2022, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, X.; Huang, Q. Protective effects of Cordyceps sinensis exopolysaccharide-selenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. Int. J. Biol. Macromol. 2022, 213, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Abdo, A.A.A.; Hou, Y.; Hassan, F.A.; Al-Sheraji, S.H.; Aleryani, H.; Alanazi, A.; Sang, Y. Antioxidant potential and protective effect of modified sea cucumber peptides against H2O2-induced oxidative damage in vitro HepG2 cells and in vivo zebrafish model. Int. J. Biol. Macromol. 2024, 266, 131090. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Xiang, X.; Huang, F.; Zheng, M.; Cong, R.; Han, L.; Zhang, Z. Dietary polyphenol canolol from rapeseed oil attenuates oxidative stress-induced cell damage through the modulation of the p38 signaling pathway. RSC. Adv. 2018, 8, 24338–24345. [Google Scholar] [CrossRef]
- Xu, Y.J.; Jiang, F.; Song, J.; Yang, X.; Shu, N.; Yuan, L.; Tan, C.P.; Liu, Y. Understanding of the role of pretreatment methods on rapeseed oil from the perspective of phenolic compounds. J. Agr. Food Chem. 2020, 68, 8847–8854. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Chang, M.; Tang, L.; Lu, M.; Liu, R.; Jin, Q.; Wang, X. Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem. 2021, 343, 128431. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, M.; Liu, H.; Deng, Z.; Qin, X.; Nie, J.; Qiao, Z.; Zhu, H.; Zhong, S. Structural features and in vitro antitumor activity of a water-extracted polysaccharide from Ganoderma applanatum. New J. Chem. 2023, 47, 13205–13217. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Kang, X.; He, X.; Dong, M.; Zhang, Q.; Liu, R.H. Cellular antioxidant activity of common fruits. J. Agr. Food Chem. 2008, 56, 8418–8426. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, X.; Liu, H.; Zhong, D.; Yin, K.; Li, Y.; Zhu, L.; Xu, C.; Li, M.; Wang, C. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis. Diabet. Med. 2023, 40, e15031. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, D.; Liu, H.; Cao, B.B.; Jiang, F.; Chen, D.N.; Li, J.D. RNF216 regulates the migration of immortalized GnRH neurons by suppressing Beclin1-mediated autophagy. Front. Endocrinol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, L.; Yang, Y.; Cai, C.; Wang, X.; Deng, L.; He, B.; Zhou, W.; Cui, Y. DL-3-n-butylphthalide (NBP) alleviates poststroke cognitive impairment (PSCI) by suppressing neuroinflammation and oxidative stress. Front. Pharmacol. 2023, 13, 987293. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Bal, M.; Behera, S.K.; Sen, T.K.; Meikap, B.C. Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM). Water 2019, 11, 325. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Srirangarajalu, N.; Santhanakumar, M.; Adalarasan, R. Investigation in µ-WEDM of Inconel 625 superalloy using RSM-CCD technique. Mater. Manuf. Process. 2023, 38, 449–460. [Google Scholar] [CrossRef]
- Dan, S.; Kalantari, M.; Kamyabi, A.; Soltani, M. Synthesis of chitosan-g-itaconic acid hydrogel as an antibacterial drug carrier: Optimization through RSM-CCD. Polym. Bull. 2021, 79, 1–24. [Google Scholar] [CrossRef]
- Pilaquinga, F.; Morey, J.; Fernandez, L.; Espinoza-Montero, P.; Moncada-Basualto, M.; Pozo-Martinez, J.; Olea-Azar, C.; Bosch, R.; Meneses, L.; Debut, A.; et al. Determination of antioxidant activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), electrochemical and microbiological analyses of silver nanoparticles using the aqueous leaf extract of Solanum mammosum L. Int. J. Nanomed. 2021; 16, 5879–5894. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, G.; Zhang, S.; Wang, H.; Ke, L.; Zhou, J.; Rao, P.; Wang, Q.; Li, J. Influences of calcium and magnesium ions on cellular antioxidant activity (CAA) determination. Food Chem. 2020, 320, 126625. [Google Scholar] [CrossRef]
- Liu, R.; Lu, M.; Zhang, T.; Zhang, Z.; Jin, Q.; Chang, M.; Wang, X. Evaluation of the antioxidant properties of micronutrients in different vegetable oils. Eur. J. Lipid Sci. Tech. 2020, 122, 1900079. [Google Scholar] [CrossRef]
- Wakamatsu, D.; Morimura, S.; Sawa, T.; Kida, K.; Nakai, C.; Maeda, H. Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci. Biotech. Biochem. 2005, 69, 1568–1574. [Google Scholar] [CrossRef]
- Mikołajczak, N.; Tańska, M.; Ogrodowska, D.; Czaplicki, S. Efficacy of canolol and guaiacol in the protection of cold-pressed oils being a dietary source linoleic acid against oxidative deterioration. Food Chem. 2022, 393, 133390. [Google Scholar] [CrossRef] [PubMed]
- Remigante, A.; Spinelli, S.; Straface, E.; Gambardella, L.; Caruso, D.; Falliti, G.; Dossena, S.; Marino, A.; Morabito, R. Antioxidant activity of quercetin in a H2O2-induced oxidative stress model in red blood cells: Functional role of band 3 protein. Int. J. Mol. Sci. 2022, 23, 10991. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X.; Du, M.; Li, F.; Xiao, M.; Zhang, W. Synergistic Antioxidant Effects of Araloside A and L-Ascorbic Acid on H2O2-Induced HEK293 Cells: Regulation of Cellular Antioxidant Status. Oxid. Med. Cell. Longev. 2021, 2021, 9996040. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Wu, Z.; Zhang, P.; Zhang, X. Tea polyphenols: A natural antioxidant regulates gut flora to protect the intestinal mucosa and prevent chronic diseases. Antioxidants 2022, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, Y.; Peng, S.; Liu, C.; Lv, T.; Liao, L.; Li, Y.; Wang, Y.; Fan, Z.; Wu, W.; et al. Magnolol additive improves growth performance of Linwu ducklings by modulating antioxidative status. PLoS ONE 2021, 16, e0259896. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, J.; Li, G.; Wu, J.; Wu, X.; Wang, G.; Gu, G.; Ren, H.; Hong, Z.; Li, J. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Naguib, S.; Backstrom, J.R.; Gil, M.; Calkins, D.J.; Rex, T.S. Retinal oxidative stress activates the NRF2/ARE pathway: An early endogenous protective response to ocular hypertension. Redox Biol. 2021, 42, 101883. [Google Scholar] [CrossRef]
- Pratelli, G.; Carlisi, D.; D’Anneo, A.; Maggio, A.; Emanuele, S.; Palumbo Piccionello, A.; Giuliano, M.; De Blasio, A.; Calvaruso, G.; Lauricella, M. Bio-Waste Products of Mangifera indica L. Reduce Adipogenesis and Exert Antioxidant Effects on 3T3-L1 Cells. Antioxidants 2022, 11, 363. [Google Scholar] [CrossRef]
- Du, H.; Huang, Y.; Qu, M.; Li, Y.; Hu, X.; Yang, W.; Li, H.; He, W.; Ding, J.; Liu, C.; et al. A maize ZmAT6 gene confers aluminum tolerance via reactive oxygen species scavenging. Front. Plant Sci. 2020, 11, 1016. [Google Scholar] [CrossRef]
- Mal’tseva, V.N.; Gudkov, S.V.; Turovsky, E.A. Modulation of the Functional State of Mouse Neutrophils by Selenium Nanoparticles In Vivo. Int. J. Mol. Sci. 2022, 23, 13651. [Google Scholar] [CrossRef]
- Chen, F.; He, J.; Wang, X.; Lv, T.; Liu, C.; Liao, L.; Li, Z.; Zhou, J.; He, B.; Qiu, H.; et al. Effect of Dietary Ramie Powder at Various Levels on the Growth Performance, Meat Quality, Serum Biochemical Indices and Antioxidative Capacity of Yanling White Geese. Animals 2022, 12, 2045. [Google Scholar] [CrossRef] [PubMed]
- Hercog, K.; Štern, A.; Maisanaba, S.; Filipič, M.; Žegura, B. Plastics in Cyanobacterial Blooms-Genotoxic Effects of Binary Mixtures of Cylindrospermopsin and Bisphenols in HepG2 Cells. Toxins 2020, 12, 219. [Google Scholar] [CrossRef]
- Han, L.; Xia, X.; Xiang, X.; Huang, F.; Zhang, Z. Protective effects of canolol against hydrogen peroxide-induced oxidative stress in AGS cells. RSC Adv. 2017, 7, 42826–42832. [Google Scholar] [CrossRef]
- Yammine, A.; Zarrouk, A.; Nury, T.; Vejux, A.; Latruffe, N.; Vervandier-Fasseur, D.; Samadi, M.; Mackrill, J.J.; Greige-Gerges, H.; Auezova, L.; et al. Prevention by dietary polyphenols (resveratrol, quercetin, apigenin) against 7-ketocholesterol-induced oxiapoptophagy in neuronal N2a cells: Potential interest for the treatment of neurodegenerative and age-related diseases. Cells 2020, 9, 2346. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Li, J.; Qu, H.; Zhao, Y.; Wen, C.; Zhou, Y. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers. Poult. Sci. 2020, 99, 1400–1408. [Google Scholar] [CrossRef]
- Alaofi, A.L. Sinapic acid ameliorates the progression of streptozotocin (STZ)-induced diabetic nephropathy in rats via NRF2/HO-1 mediated pathways. Front. Pharmacol. 2020, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Qiu, Z.; Wang, Y.; Guo, C.; Cai, X.; Zhang, Y.; Liu, L.; Xue, H.; Tang, J. Tea polyphenols alleviate hydrogen peroxide-induced oxidative stress damage through the Mst/Nrf2 axis and the Keap1/Nrf2/HO-1 pathway in murine RAW264. 7 cells. Exp. Ther. Med. 2021, 22, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wu, D.; Li, S.; Wang, C.; Han, Z.; Wang, J.; Wang, K.; Yang, Z.; Wei, Z. Magnolol prevents acute alcoholic liver damage by activating PI3K/Nrf2/PPARγ and inhibiting NLRP3 signaling pathway. Front. Pharmacol. 2019, 10, 1459. [Google Scholar] [CrossRef] [PubMed]
Factor | Unit | Coded Factor | Range | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |||
α-T | μM | A | 10 | 20 | 30 | 40 | 50 |
β- S | μM | B | 20 | 40 | 60 | 80 | 100 |
SA | μM | C | 5 | 35 | 65 | 95 | 125 |
CA | μM | D | 5 | 35 | 65 | 95 | 125 |
Group | Drug | H2O2 (200 μM) |
---|---|---|
H2O2 + G | α-T (10 μM) + β-S (20 μM) + SA (125 μM) + CA (125 μM) | + + |
H2O2 + T | tea polyphenols (7.11 μM) | + + |
H2O2 + M | magnolol (7.51 μM) | + + |
Control | — | — |
H2O2 | — | + + |
Gene | Forward Primer | Reverse Primer |
---|---|---|
β-Actin | 5′-CAAAGTCTTCCGTGTCCGGG-3′ | 5′-TCCCTTCCCCTTCCCTGATT-3′ |
GPX1 | 5′-CAACTTCAGCGCTCTTCGAG-3′ | 5′-GCGGTGGCATTGTAAGTTGG-3′ |
GPX4 | 5′-CTTTGCCGCCTACTGAAGCC-3′ | 5′-CCGAACTGGTTACACGGGAA-3′ |
HO-1 | 5′-AGGGAATTCTCTTGGCTGGC-3′ | 5′-GCTGCCACATTAGGGTGTCT-3′ |
CAT | 5′-AGTGATCGGGGGATTCCAGA-3′ | 5′-GAGGGGTACTTTCCTGTGGC-3′ |
Keap1 | 5′-ACGCGCAGCGATGGAG-3′ | 5′-CCAGGGTGTAGCTGAAGGTG-3′ |
MnSOD | 5′-ATACGCCCCTCTCCTACACA-3′ | 5′-CGCGGACCATCATAGGTGAG-3′ |
SOD1 | 5′-GGCTCACACCTCACGTTACA-3′ | 5′-TGCCATTGAGATTGCCCGAT-3′ |
Nrf2 | 5′-CTTCTAGTTCGGACGCGGTG-3′ | 5′-TCAAATCCATGTCCTGTCCCT-3′ |
Group | Point Type | A | B | C | D | CAA (μmol QE/100 g) | Group | Point Type | A | B | C | D | CAA (μmol QE/100 g) | Group | Point Type | A | B | C | D | CAA (μmol QE/100 g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Factorial | −1 | −1 | −1 | −1 | 2.025 | 12 | Factorial | 1 | 1 | −1 | 1 | 3.733 | 23 | Axial | 0 | 0 | 0 | −2 | 2.161 |
2 | Factorial | 1 | −1 | −1 | −1 | 4.135 | 13 | Factorial | −1 | −1 | 1 | 1 | 6.500 | 24 | Axial | 0 | 0 | 0 | 2 | 4.543 |
3 | Factorial | −1 | 1 | −1 | −1 | 3.567 | 14 | Factorial | 1 | −1 | 1 | 1 | 6.322 | 25 | Central | 0 | 0 | 0 | 0 | 4.244 |
4 | Factorial | 1 | 1 | −1 | −1 | 5.274 | 15 | Factorial | −1 | 1 | 1 | 1 | 4.622 | 26 | Central | 0 | 0 | 0 | 0 | 4.135 |
5 | Factorial | −1 | −1 | 1 | −1 | 3.131 | 16 | Factorial | 1 | 1 | 1 | 1 | 2.988 | 27 | Central | 0 | 0 | 0 | 0 | 3.990 |
6 | Factorial | 1 | −1 | 1 | −1 | 3.024 | 17 | Axial | −2 | 0 | 0 | 0 | 3.788 | 28 | Central | 0 | 0 | 0 | 0 | 4.646 |
7 | Factorial | −1 | 1 | 1 | −1 | 2.970 | 18 | Axial | 2 | 0 | 0 | 0 | 4.791 | 29 | Central | 0 | 0 | 0 | 0 | 4.471 |
8 | Factorial | 1 | 1 | 1 | −1 | 2.948 | 19 | Axial | 0 | −2 | 0 | 0 | 4.624 | 30 | Central | 0 | 0 | 0 | 0 | 4.700 |
9 | Factorial | −1 | −1 | −1 | 1 | 4.786 | 20 | Axial | 0 | 2 | 0 | 0 | 3.671 | 31 | Central | 0 | 0 | 0 | 0 | 4.471 |
10 | Factorial | 1 | −1 | −1 | 1 | 4.988 | 21 | Axial | 0 | 0 | −2 | 0 | 4.045 | |||||||
11 | Factorial | −1 | 1 | −1 | 1 | 3.860 | 22 | Axial | 0 | 0 | 2 | 0 | 4.187 |
Source | Sequential Model Sum of Squares | ANOVA Analysis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | DF | Mean Square | F Value | p-Value Prob > F | Outcome | Source | Sum of Squares | DF | Mean Square | F Value | p-Value Prob > F | ||
Mean vs. Total | 523.32 | 1 | 523.32 | Model | 29.12 | 14 | 2.08 | 27.8 | <0.0001 | significant | |||
Linear vs. Mean | 12.61 | 4 | 3.15 | 4.63 | 0.0059 | A | 0.65 | 1 | 0.65 | 8.72 | 0.0094 | ||
2FI vs. Linear | 14.75 | 6 | 2.46 | 16.64 | <0.0001 | B | 1.96 | 1 | 1.96 | 26.17 | 0.0001 | ||
Quadratic vs. 2FI | 1.76 | 4 | 0.44 | 5.87 | 0.0042 | Suggested | C | 7.39 × 10−3 | 1 | 7.39 × 10−3 | 0.099 | 0.7574 | |
Cubic vs. Quadratic | 0.57 | 8 | 0.072 | 0.92 | 0.543 | Aliased | D | 10 | 1 | 10 | 133.61 | <0.0001 | |
Residual | 0.62 | 8 | 0.078 | AB | 0.28 | 1 | 0.28 | 3.69 | 0.0726 | ||||
Total | 553.63 | 31 | 17.86 | AC | 2.13 | 1 | 2.13 | 28.42 | <0.0001 | ||||
AD | 1.84 | 1 | 1.84 | 24.59 | 0.0001 | ||||||||
Source | Lack of Fit Tests | BC | 2.21 | 1 | 2.21 | 29.57 | <0.0001 | ||||||
Linear | 17.27 | 20 | 0.86 | 12.16 | 0.0026 | BD | 6.05 | 1 | 6.05 | 80.84 | <0.0001 | ||
2FI | 2.53 | 14 | 0.18 | 2.54 | 0.1289 | CD | 2.24 | 1 | 2.24 | 30 | <0.0001 | ||
Quadratic | 0.77 | 10 | 0.077 | 1.08 | 0.4819 | Suggested | A^2 | 3.15 × 10−3 | 1 | 3.15 × 10−3 | 0.042 | 0.8399 | |
Cubic | 0.2 | 2 | 0.098 | 1.38 | 0.3219 | Aliased | B^2 | 0.061 | 1 | 0.061 | 0.81 | 0.3818 | |
Pure Error | 0.43 | 6 | 0.071 | C^2 | 0.083 | 1 | 0.083 | 1.11 | 0.3078 | ||||
D^2 | 1.71 | 1 | 1.71 | 22.92 | 0.0002 | ||||||||
Model Summary Statistics | Residual | 1.2 | 16 | 0.075 | |||||||||
Source | Std. Dev. | R2 | Adjusted R2 | Predicted R2 | PRESS | Outcome | |||||||
Linear | 0.83 | 0.4161 | 0.3263 | 0.1056 | 27.12 | Mean | 4.11 | ||||||
2FI | 0.38 | 0.9025 | 0.8538 | 0.7743 | 6.84 | C.V.% | 6.66 | ||||||
Quadratic | 0.27 | 0.9605 | 0.926 | 0.8344 | 5.02 | Suggested | Adeq Precision | 5.02 | |||||
Cubic | 0.28 | 0.9795 | 0.923 | 0.0512 | 28.76 | Aliased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Liao, L.; Deng, H.; Liu, X.; Lin, Q.; Wu, W. Alleviating Effect of Lipid Phytochemicals in Seed Oil (Brassica napus L.) on Oxidative Stress Injury Induced by H2O2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway. Nutrients 2024, 16, 2820. https://doi.org/10.3390/nu16172820
Peng S, Liao L, Deng H, Liu X, Lin Q, Wu W. Alleviating Effect of Lipid Phytochemicals in Seed Oil (Brassica napus L.) on Oxidative Stress Injury Induced by H2O2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway. Nutrients. 2024; 16(17):2820. https://doi.org/10.3390/nu16172820
Chicago/Turabian StylePeng, Simin, Luyan Liao, Huiqing Deng, Xudong Liu, Qian Lin, and Weiguo Wu. 2024. "Alleviating Effect of Lipid Phytochemicals in Seed Oil (Brassica napus L.) on Oxidative Stress Injury Induced by H2O2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway" Nutrients 16, no. 17: 2820. https://doi.org/10.3390/nu16172820
APA StylePeng, S., Liao, L., Deng, H., Liu, X., Lin, Q., & Wu, W. (2024). Alleviating Effect of Lipid Phytochemicals in Seed Oil (Brassica napus L.) on Oxidative Stress Injury Induced by H2O2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway. Nutrients, 16(17), 2820. https://doi.org/10.3390/nu16172820