Low-Mineral Water Diminishes the Bone Benefits of Boron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Reagents
2.2. Serological Testing and Serum Mineral Content Analysis
2.3. Bone Microstructure and Mineral Content Analysis
2.4. Bone Biomechanical Analysis
2.5. Statistical Analysis
3. Results
3.1. Bodyweight, Diet, and Water Consumption
3.2. Comparison of Calcium Regulatory Hormones and Bone Modeling Markers after Drinking Two Types of Water Combined with Boron
3.3. Comparison of Bone Microstructures and Biomechanical Properties after Drinking Two Types of Water Combined with Boron
3.4. Comparison of Mineral Metabolism after Drinking Two Types of Water Combined with Boron
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Wei, Y.; Li, R.; Wang, X.; Wang, C.; Ren, N.; Ho, S.H. Sustainable Seawater Desalination and Energy Management: Mechanisms, Strategies, and the Way Forward. Research 2023, 6, 0290. [Google Scholar] [CrossRef]
- Department of Marine Strategic Planning and Economy, Ministry of Natural Resources of the People’s Republic of China. China Seawater Utilization Report 2022. Natl. Land Resour. Inf. 2023, 19, 42–53. [Google Scholar] [CrossRef]
- Liu, J. Thoughts and suggestions on promoting the utilization of desalinated seawater as domestic water in China. Water Resour. Dev. Res. 2021, 21, 54–58. [Google Scholar] [CrossRef]
- Shomar, B.; Hawari, J. Desalinated drinking water in the GCC countries—The need to address consumer perceptions. Environ. Res. 2017, 158, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.; Darroudi, F.; Shomar, B. Health effects of desalinated water: Role of electrolyte disturbance in cancer development. Env. Res. 2016, 150, 191–204. [Google Scholar] [CrossRef]
- Shlezinger, M.; Amitai, Y.; Akriv, A.; Gabay, H.; Shechter, M.; Leventer-Roberts, M. Association between exposure to desalinated sea water and ischemic heart disease, diabetes mellitus and colorectal cancer; A population-based study in Israel. Environ. Res. 2018, 166, 620–627. [Google Scholar] [CrossRef]
- Zhang, Y.; Fei, J.; Yuan, D. Prevalence of Chronic Diseases in Islanders Drinking Desalinated Seawater. J. Environ. Occup. Med. 2015, 32, 655–658. [Google Scholar] [CrossRef]
- Ni, H.; Jiang, Z.; Fei, J.; Guo, C. Detection of treated water by reverse osmosis method for seawater desalination in Shengsi island from 2007 to 2008. Chin. J. Health Lab. Technol. 2010, 20, 162–164. [Google Scholar]
- Zhang, Y.; Wang, H.; Yu, X.; Gong, Z. Surveillance Data Analysis of Multi-Sources of Water and Drinking Water. J. Environ. Occup. Med. 2012, 29, 681–683. [Google Scholar]
- U.S. Environmental Protection Agency. 2018 Edition of the Drinking Water Standards and Health Advisories Tables: EPA 822-S-12–001; U.S. Environmental Protection Agency: Washington, DC, USA, 2018. [Google Scholar]
- Biaek, M.; Czauderna, M.; Krajewska, K.A.; Przybylski, W. Selected physiological effects of boron compounds for animals and humans. A review. J. Anim. Feed Sci. 2019, 28, 307–320. [Google Scholar] [CrossRef]
- Li, G.; Cheng, T.; Yu, X. The Impact of Trace Elements on Osteoarthritis. Front. Med. 2021, 8, 771297. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Cheng, S.; Wang, W.; Lin, Z.; Chen, Q.; Zhang, W.; Kou, D.; Shen, Y.; Cheng, X.; Rompis, F.A.; et al. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol. Trace Elem. Res. 2011, 144, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Hakki, S.S.; Bozkurt, B.S.; Hakki, E.E. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J. Trace Elem. Med. Biol. 2010, 24, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Hakki, S.S.; Bozkurt, S.B.; Hakki, E.E.; Nielsen, F.H. Boron as Boric Acid Induces mRNA Expression of the Differentiation Factor Tuftelin in Pre-Osteoblastic MC3T3-E1 Cells. Biol. Trace Elem. Res. 2021, 199, 1534–1543. [Google Scholar] [CrossRef]
- Naghii, M.R.; Torkaman, G.; Mofid, M. Effects of boron and calcium supplementation on mechanical properties of bone in rats. BioFactors 2006, 28, 195–201. [Google Scholar] [CrossRef]
- Sharma, A.; Mani, V.; Pal, R.P.; Sarkar, S.; Datt, C. Boron supplementation in peripartum Murrah buffaloes: The effect on calcium homeostasis, bone metabolism, endocrine and antioxidant status. J. Trace Elem. Med. Biol. 2020, 62, 126623. [Google Scholar] [CrossRef]
- Capati, M.L.; Nakazono, A.; Igawa, K.; Ookubo, K.; Yamamoto, Y.; Yanagiguchi, K.; Kubo, S.; Yamada, S.; Hayashi, Y. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux. Biol. Trace Elem. Res. 2016, 174, 300–308. [Google Scholar] [CrossRef]
- Movahedi Najafabadi, B.A.; Abnosi, M.H. Boron Induces Early Matrix Mineralization via Calcium Deposition and Elevation of Alkaline Phosphatase Activity in Differentiated Rat Bone Marrow Mesenchymal Stem Cells. Cell J. 2016, 18, 62–73. [Google Scholar] [CrossRef]
- Bozkurt, M.; Küçükyılmaz, K.; Catlı, A.U.; Cınar, M.; Cabuk, M.; Bintaş, E. Effects of boron supplementation to diets deficient in calcium and phosphorus on performance with some serum, bone and fecal characteristics of broiler chickens. Asian-Australas. J. Anim. Sci. 2012, 25, 248–255. [Google Scholar] [CrossRef]
- Singh, A.K.; Kewalramani, N.; Mani, V.; Sharma, A.; Kumari, P.; Pal, R.P. Effects of boric acid supplementation on bone health in crossbred calves under tropical condition. J. Trace Elem. Med. Biol. 2021, 63, 126647. [Google Scholar] [CrossRef]
- Boyacioglu, O.; Orenay-Boyacioglu, S.; Yildirim, H.; Korkmaz, M. Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J. Trace Elem. Med. Biol. 2018, 48, 52–56. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Hunt, C.D.; Mullen, L.M.; Hunt, J.R. Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J. 1987, 1, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.D.; Herbel, J.L.; Nielsen, F.H. Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: Boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am. J. Clin. Nutr. 1997, 65, 803–813. [Google Scholar] [CrossRef]
- Beattie, J.H.; Peace, H.S. The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. Br. J. Nutr. 1993, 69, 871–884. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Swelum, A.A.; Perillo, A.; Losacco, C. The vital roles of boron in animal health and production: A comprehensive review. J. Trace Elem. Med. Biol. 2018, 50, 296–304. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nutrients in Drinking Water; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Huang, Y.; Wang, J.; Tan, Y.; Wang, L.; Lin, H.; Lan, L.; Xiong, Y.; Huang, W.; Shu, W. Low-mineral direct drinking water in school may retard height growth and increase dental caries in schoolchildren in China. Environ. Int. 2018, 115, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, X.; Tan, Y.; Wang, L.; Wang, J.; Lan, L.; Qiu, Z.; Luo, J.; Zeng, H.; Shu, W. Consumption of Very Low Mineral Water Is Associated with Lower Bone Mineral Content in Children. J. Nutr. 2019, 149, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xu, A.; Qiu, Z.; Wang, L.; Wang, J.; Luo, J.; Zeng, H.; Jin, H.; Wang, Y.; Xue, J.; et al. Drinking Natural Mineral Water Maintains Bone Health in Young Rats with Metabolic Acidosis. Front. Nutr. 2022, 9, 813202. [Google Scholar] [CrossRef]
- Chen, Q.; Shu, W.; Zeng, H.; Luo, J.; Fu, W. Long-term drinking purified water may aggravate the inhibition of NMDA expression and spatial learning ability induced by lead on rat. Chin. J. Prev. Med. 2008, 42, 431–436. [Google Scholar] [CrossRef]
- Chen, Q.; Shu, W.; Zeng, H.; Luo, J. Effects of Long-term Consumption of Purified Water on Lead Accumulation in Organs of Rats. J. Environ. Health 2008, 25, 377–380. [Google Scholar] [CrossRef]
- Cheng, J.; Peng, K.; Jin, E.; Zhang, Y.; Liu, Y.; Zhang, N.; Song, H.; Liu, H.; Tang, Z. Effect of additional boron on tibias of African ostrich chicks. Biol. Trace Elem. Res. 2011, 144, 538–549. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, R.; Zhang, S.; Peng, P.; Chen, Z.; Guo, Z. Changes in the relative biochemical index of human under hyperthermia and high humidity environment. Chin. J. Clin. Rehabil. 2004, 8, 6718–6719. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, Q.; Zhang, L.; Qiu, Z.; Liu, L.; Chen, J.; Zeng, H.; Huang, Y.; Tan, Y.; Yang, L.; et al. The consumption of low-mineral bottled water increases the risk of cardiovascular disease: An experimental study of rabbits and young men. Int. J. Cardiol. 2013, 168, 4454–4456. [Google Scholar] [CrossRef] [PubMed]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef] [PubMed]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef]
- Hibler, E.A.; Zhu, X.; Shrubsole, M.J.; Hou, L.; Dai, Q. Physical activity, dietary calcium to magnesium intake and mortality in the National Health and Examination Survey 1999–2006 cohort. Int. J. Cancer 2020, 146, 2979–2986. [Google Scholar] [CrossRef]
- Brown, J.P.; Don-Wauchope, A.; Douville, P.; Albert, C.; Vasikaran, S.D. Current use of bone turnover markers in the management of osteoporosis. Clin. Biochem. 2022, 109–110, 1–10. [Google Scholar] [CrossRef]
- Shu, W. Pay attention to the human health risk of drinking low mineral water. Zhonghua Yu Fang Yi Xue Za Zhi 2015, 49, 853–855. [Google Scholar]
- Hakki, S.S.; Dundar, N.; Kayis, S.A.; Hakki, E.E.; Hamurcu, M.; Kerimoglu, U.; Baspinar, N.; Basoglu, A.; Nielsen, F.H. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J. Trace Elem. Med. Biol. 2013, 27, 148–153. [Google Scholar] [CrossRef]
- Hakki, S.S.; Götz, W.; Dundar, N.; Kayis, S.A.; Malkoc, S.; Hamurcu, M.; Basoglu, A.; Nielsen, F.H. Borate and boric acid supplementation of drinking water alters teeth and bone mineral density and composition differently in rabbits fed a high protein and energy diet. J. Trace Elem. Med. Biol. 2021, 67, 126799. [Google Scholar] [CrossRef]
- Gorustovich, A.A.; Nielsen, F.H. Effects of Nutritional Deficiency of Boron on the Bones of the Appendicular Skeleton of Mice. Biol. Trace Elem. Res. 2019, 188, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H.; Stoecker, B.J. Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. J. Trace Elem. Med. Biol. 2009, 23, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Jugdaohsingh, R.; Pedro, L.D.; Watson, A.; Powell, J.J. Silicon and boron differ in their localization and loading in bone. Bone Rep. 2015, 1, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020, 62, 126577. [Google Scholar] [CrossRef]
- He, L.Y.; Zhang, X.M.; Liu, B.; Tian, Y.; Ma, W.H. Effect of magnesium ion on human osteoblast activity. Braz. J. Med. Biol. Res. 2016, 49, e5257. [Google Scholar] [CrossRef]
- Córdova-Chávez, R.I.; Carrasco-Ruiz, M.F.; Rodríguez-Vera, D.; Pérez-Capistran, T.; Tamay-Cach, F.; Scorei, I.R.; Abad-García, A.; Soriano-Ursúa, M.A. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol. Trace Elem. Res. 2023, 201, 2222–2239. [Google Scholar] [CrossRef]
- Ismail, H.T.H. Toxic effects of excess exposure to boric acid on serum biochemical aspect, hematology and histological alterations and ameliorative potential role of melatonin in rats. Saudi J. Biol. Sci. 2022, 29, 103425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Hao, Y.; Tan, Y.; Dai, Q.; Chen, W.; Cui, K.; Luo, J.; Zeng, H.; Shu, W.; Huang, Y. Low-Mineral Water Diminishes the Bone Benefits of Boron. Nutrients 2024, 16, 2881. https://doi.org/10.3390/nu16172881
Huang T, Hao Y, Tan Y, Dai Q, Chen W, Cui K, Luo J, Zeng H, Shu W, Huang Y. Low-Mineral Water Diminishes the Bone Benefits of Boron. Nutrients. 2024; 16(17):2881. https://doi.org/10.3390/nu16172881
Chicago/Turabian StyleHuang, Ting, Yuhui Hao, Yao Tan, Qijie Dai, Weiyan Chen, Ke Cui, Jiaohua Luo, Hui Zeng, Weiqun Shu, and Yujing Huang. 2024. "Low-Mineral Water Diminishes the Bone Benefits of Boron" Nutrients 16, no. 17: 2881. https://doi.org/10.3390/nu16172881
APA StyleHuang, T., Hao, Y., Tan, Y., Dai, Q., Chen, W., Cui, K., Luo, J., Zeng, H., Shu, W., & Huang, Y. (2024). Low-Mineral Water Diminishes the Bone Benefits of Boron. Nutrients, 16(17), 2881. https://doi.org/10.3390/nu16172881