Non-Specific Elevated Serum Free Fatty Acids in Lung Cancer Patients: Nutritional or Pathological?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample and Data Collection
2.2.1. Serum Sample Collection
2.2.2. Serum Free Fatty Acid (FFA) Measurement
2.3. Clinical Examination and Data Collection
2.4. Questionnaire and Dietary Data Collection
2.5. Diagnostic Prediction Models Construction
2.6. Selection of Genes in Fatty Acid Metabolism Pathway
2.7. RNA-Sequencing of Lung Tumors and Adjacent Normal Tissues
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Serum Levels of Free Fatty Acids
3.3. Diagnostic Prediction Models
3.4. Dietary Fatty Acid Intake and Serum FFAs
3.5. Differential Gene Expression in Fatty Acid Metabolism Pathways
3.6. Correlations between FFAs and Blood Indicators
3.7. Interaction Effects between FFAs and Immune Factors in Lung Cancer
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA-Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Berg, C.D.; Schiller, J.H.; Boffetta, P.; Cai, J.; Connolly, C.; Kerpel-Fronius, A.; Kitts, A.B.; Lam, D.C.L.; Mohan, A.; Myers, R.; et al. Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee International Association for the Study of Lung Cancer (IASLC) Early Detection and. J. Thorac. Oncol. 2023, 18, 1277–1289. [Google Scholar] [CrossRef]
- Finley, L.W.S. What is cancer metabolism? Cell 2023, 186, 1670–1688. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Bian, Y.; Liang, J.; Yin, J.; Li, R.; Zhao, M.; Huang, Y.; Lu, T.; Zhan, C.; Fan, H.; et al. Pan-cancer characterization of metabolism-related biomarkers identifies potential therapeutic targets. J. Transl. Med. 2021, 19, 219. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet 2023, 401, 390–408. [Google Scholar] [CrossRef]
- Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P.; et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J. Thorac. Oncol. 2019, 14, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef]
- Yang, J.J.; Yu, D.; Takata, Y.; Smith-Warner, S.A.; Blot, W.; White, E.; Robien, K.; Park, Y.; Xiang, Y.B.; Sinha, R.; et al. Dietary Fat Intake and Lung Cancer Risk: A Pooled Analysis. J. Clin. Oncol. 2017, 35, 3055–3064. [Google Scholar] [CrossRef]
- Lin, X.; Lu, L.; Liu, L.; Wei, S.; He, Y.; Chang, J.; Lian, X. Blood lipids profile and lung cancer risk in a meta-analysis of prospective cohort studies. J. Clin. Lipidol. 2017, 11, 1073–1081. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhang, R.; Xia, Y.; Shao, Z.; Mei, Z. Effects of statin exposure and lung cancer survival: A meta-analysis of observational studies. Pharmacol. Res. 2019, 141, 357–365. [Google Scholar] [CrossRef]
- Ebbert, J.O.; Jensen, M.D. Fat depots, free fatty acids, and dyslipidemia. Nutrients 2013, 5, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, L.; Zhao, A.; Hu, X.; Qing, Y.; Jiang, J.; Yang, C.; Xu, T.; Wang, P.; Liu, J.; et al. Serum fatty acid patterns in patients with schizophrenia: A targeted metabonomics study. Transl. Psychiatry 2017, 7, e1176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, L.; He, J.; Lv, J.; Pan, R.; Lv, T. A high serum-free fatty acid level is associated with cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 705–710. [Google Scholar] [CrossRef]
- Sobczak, A.I.S.; Claudia, A.B.; Stewart, A.J. Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019, 11, 2022. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, J.S.; Kim, J.H.; Oh, K.; Koh, S.B.; Seo, W.K. High free fatty acid level is associated with recurrent stroke in cardioembolic stroke patients. Neurology 2014, 82, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.J.; Ding, S.C.; Ling, W.Y.; Wang, F.; Yang, X.P. Cerebrospinal Fluid Free Fatty Acid Levels Are Associated with Stroke Subtypes and Severity in Chinese Patients with Acute Ischemic Stroke. World Neurosurg. 2015, 84, 1299–1304. [Google Scholar] [CrossRef]
- Afshinnia, F.; Rajendiran, T.M.; He, C.; Byun, J.; Montemayor, D.; Darshi, M.; Tumova, J.; Kim, J.; Limonte, C.P.; Miller, R.G.; et al. Circulating Free Fatty Acid and Phospholipid Signature Predicts Early Rapid Kidney Function Decline in Patients With Type 1 Diabetes. Diabetes Care 2021, 44, 2098–2106. [Google Scholar] [CrossRef]
- Liu, J.; Mazzone, P.J.; Cata, J.P.; Kurz, A.; Bauer, M.; Mascha, E.J.; Sessler, D.I. Serum free fatty acid biomarkers of lung cancer. Chest 2014, 146, 670–679. [Google Scholar] [CrossRef]
- Mitchelson, K.A.J.; O’Connell, F.; O'Sullivan, J.; Roche, H.M.; Lonardo, A. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024, 14, 42. [Google Scholar] [CrossRef]
- Wang, L.Y.; He, L.H.; Xu, L.J.; Li, S.B. Short-chain fatty acids: Bridges between diet, gut microbiota, and health. J. Gastroen Hepatol. 2024. [Google Scholar] [CrossRef]
- Tosi, F.; Sartori, F.; Guarini, P.; Olivieri, O.; Martinelli, N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014, 824, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Gong, Y.; Huang, L.; Lv, R.; Gu, Y.; Ni, C.; Zhu, D.; Yang, M.; Rong, S.; Zhang, R.; et al. Validity of food and nutrient intakes assessed by a food frequency questionnaire among Chinese adults. Nutr. J. 2024, 23, 23. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yu, D.; Ju, L.; Guo, Q.; Fang, H.; Zhao, L. Analysis of the Correlation between Meal Frequency and Obesity among Chinese Adults Aged 18–59 Years in 2015. Nutrients 2022, 14, 696. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, P.; Wu, R.; Lu, K.; Zhou, H. Identifying the Best Marker Combination in CEA, CA125, CY211, NSE, and SCC for Lung Cancer Screening by Combining ROC Curve and Logistic Regression Analyses: Is It Feasible? Dis. Markers 2018, 2018, 2082840. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghi, O. Current evidence on dietary intakes of fatty acids and mortality. BMJ 2021, 375, n2379. [Google Scholar] [CrossRef]
- Rohrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 2016, 16, 732–749. [Google Scholar] [CrossRef]
- Broadfield, L.A.; Pane, A.A.; Talebi, A.; Swinnen, J.V.; Fendt, S.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev. Cell 2021, 56, 1363–1393. [Google Scholar] [CrossRef]
- Svensson, R.U.; Parker, S.J.; Eichner, L.J.; Kolar, M.J.; Wallace, M.; Brun, S.N.; Lombardo, P.S.; Van Nostrand, J.L.; Hutchins, A.; Vera, L.; et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 2016, 22, 1108–1119. [Google Scholar] [CrossRef]
- Zhao, W.; Prijic, S.; Urban, B.C.; Tisza, M.J.; Zuo, Y.; Li, L.; Tan, Z.; Chen, X.; Mani, S.A.; Chang, J.T. Candidate Antimetastasis Drugs Suppress the Metastatic Capacity of Breast Cancer Cells by Reducing Membrane Fluidity. Cancer Res. 2016, 76, 2037–2049. [Google Scholar] [CrossRef]
- Hyde, C.A.; Missailidis, S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int. Immunopharmacol. 2009, 9, 701–715. [Google Scholar] [CrossRef]
- Pinheiro, L.V.; Wellen, K.E. Fatty acids prime the lung as a site for tumour spread. Nature 2023, 615, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; DeBerardinis, R.J. Blocking fatty acid synthesis reduces lung tumor growth in mice. Nat. Med. 2016, 22, 1077–1078. [Google Scholar] [CrossRef]
- Wei, F.; Wang, D.; Wei, J.; Tang, N.; Tang, L.; Xiong, F.; Guo, C.; Zhou, M.; Li, X.; Li, G.; et al. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell Mol. Life Sci. 2021, 78, 173–193. [Google Scholar] [CrossRef]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Assmann, N.; O'Brien, K.L.; Donnelly, R.P.; Dyck, L.; Zaiatz-Bittencourt, V.; Loftus, R.M.; Heinrich, P.; Oefner, P.J.; Lynch, L.; Gardiner, C.M.; et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 2017, 18, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Herber, D.L.; Cao, W.; Nefedova, Y.; Novitskiy, S.V.; Nagaraj, S.; Tyurin, V.A.; Corzo, A.; Cho, H.I.; Celis, E.; Lennox, B.; et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 2010, 16, 880–886. [Google Scholar] [CrossRef]
- Liu, J.Q.; Zhou, H.Q.; Zhang, Y.X.; Huang, Y.; Fang, W.F.; Yang, Y.P.; Hong, S.D.; Chen, G.; Zhao, S.; Chen, X.; et al. Docosapentaenoic acid and lung cancer risk: A Mendelian randomization study. Cancer Med. 2019, 8, 1817–1825. [Google Scholar] [CrossRef]
- Haycock, P.C.; Borges, M.C.; Burrows, K.; Lemaitre, R.N.; Burgess, S.; Khankari, N.K.; Tsilidis, K.K.; Gaunt, T.R.; Hemani, G.; Zheng, J.; et al. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. eBiomedicine 2023, 91, 104510. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, S.N.; Luo, Z.K.; Liu, H.L.; Sun, J.W.; Jin, X.L. The association between circulating docosahexaenoic acid and lung cancer: A Mendelian randomization study. Clin. Nutr. 2022, 41, 2529–2536. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Simental-Mendía, L.E.; Pedone, C.; Ferretti, G.; Nachtigal, P.; Bo, S.; Derosa, G.; Maffioli, P.; Watts, G.F. Statin therapy and plasma free fatty acids: A systematic review and meta-analysis of controlled clinical trials. Br. J. Clin. Pharmacol. 2016, 81, 807–818. [Google Scholar] [CrossRef]
- Guan, X.; Du, Y.; Ma, R.; Teng, N.; Ou, S.; Zhao, H.; Li, X. Construction of the XGBoost model for early lung cancer prediction based on metabolic indices. BMC Med. Inform. Decis. Mak. 2023, 23, 107. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Ji, Z.; Wang, Y.; Yin, T.; Long, T.; Shen, Y.; Cheng, L. Serum untargeted metabolomics reveal metabolic alteration of non-small cell lung cancer and refine disease detection. Cancer Sci. 2023, 114, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Fei, F.; Wang, M.; Jiang, J.; Yang, G.; Yang, N.; Jin, D.; Xu, Z.; Cao, B.; Li, J. Integration of metabolomics and machine learning revealed tryptophan metabolites are sensitive biomarkers of pemetrexed efficacy in non-small cell lung cancer. Cancer Med. 2023, 12, 19245–19259. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, L.; Hu, X.; Chen, S.; Tao, Y.; Su, H.; Yang, J.; Xu, W.; Vedarethinam, V.; Wu, S.; et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 2020, 11, 3556. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Meng, W.Y.; Li, R.Z.; Wang, Y.W.; Qian, X.; Chan, C.; Yu, Z.F.; Fan, X.X.; Pan, H.D.; Xie, C.; et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl. Oncol. 2021, 14, 100907. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J.M. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
Participants | p-Value | |||
---|---|---|---|---|
Total (n = 860) | Healthy Controls (n = 430) | Lung Cancer Patients (n = 430) | ||
Gender, (%) | ||||
Male | 378 (44.0) | 189 (44.0) | 189 (44.0) | 1 |
Female | 482 (56.0) | 241 (56.0) | 241 (56.0) | |
Age (years) | 48.03 [37.00, 58.85] | 48.00 [37.00, 58.00] | 48.84 [36.90, 59.24] | 0.344 |
Body mass index (kg/m2) | 23.42 [21.12, 25.59] | 23.63 [21.22, 25.72] | 23.12 [21.05, 25.37] | 0.075 |
Smoking status, (%) | ||||
Smoker | 224 (26.0) | 101 (23.5) | 123 (28.6) | 0.017 |
Non-smoker | 622 (72.3) | 326 (75.8) | 296 (68.8) | |
Unknown | 14 (1.6) | 3 (0.7) | 11 (2.6) | |
Diabetes, (%) | 38 (4.4) | 16 (3.7) | 22 (5.1) | 0.512 |
Blood indicators | ||||
Total cholesterol (mmol/L) | 4.95 [4.30, 5.66] | 4.95 [4.28, 5.61] | 4.94 [4.32, 5.71] | 0.548 |
Triglycerides (mmol/L) | 1.15 [0.82, 1.76] | 1.10 [0.81, 1.70] | 1.17 [0.83, 1.85] | 0.238 |
LDL cholesterol (mmol/L) | 2.67 [2.18, 3.27] | 2.70 [2.20, 3.26] | 2.63 [2.16, 3.30] | 0.735 |
HDL cholesterol (mmol/L) | 1.34 [1.11, 1.58] | 1.31 [1.07, 1.57] | 1.35 [1.14, 1.59] | 0.088 |
Apolipoprotein A1 (g/L) | 1.39 [1.23, 1.56] | 1.39 [1.22, 1.56] | 1.38 [1.25, 1.56] | 0.944 |
Apolipoprotein B (g/L) | 0.90 [0.72, 1.08] | 0.90 [0.72, 1.05] | 0.90 [0.73, 1.11] | 0.264 |
C-reactive protein (mmol/L) | 1.10 [0.50, 2.20] | 0.80 [0.40, 1.50] | 1.55 [0.90, 3.20] | <0.001 |
Neutrophil counts (×109/L) | 3.58 [2.84, 4.50] | 3.24 [2.67, 3.88] | 4.03 [3.18, 5.59] | <0.001 |
Lymphocyte counts (×109/L) | 1.77 [1.44, 2.17] | 1.85 [1.55, 2.30] | 1.63 [1.32, 2.07] | <0.001 |
Histopathology | ||||
Histology, (%) | ||||
Adenocarcinoma | 406 (94.4) | |||
Other types | 21 (4.9) | |||
Unknown | 3 (0.7) | |||
Stage, (%) | ||||
In situ carcinoma | 65 (15.1) | |||
Early stage | 349 (81.2) | |||
Advanced stage | 16 (3.7) |
FFAs | FFA Concentrations (μmol/L) | Comparison between Groups | Multivariate Logistic Regression Model | |||
---|---|---|---|---|---|---|
Healthy Controls (n = 430) | Lung Cancer Patients (n = 430) | Fold Change | p-Value | OR (95% CI) | p-Value | |
C12:0 | 0.97 [0.34, 2.14] | 1.25 [0.57, 2.56] | 1.29 | 0.004 | 1.107 (1.038–1.187) | 0.003 |
C12:1 | 0.30 [0.06, 0.69] | 0.51 [0.11, 1.01] | 1.69 | <0.001 | 1.137 (0.995–1.368) | 0.128 |
C14:0 | 5.15 [3.29, 7.71] | 7.15 [4.38, 10.56] | 1.39 | <0.001 | 1.129 (1.091–1.170) | <0.001 |
C14:1 | 0.31 [0.07, 0.72] | 0.51 [0.18, 0.97] | 1.62 | <0.001 | 2.018 (1.567–2.640) | <0.001 |
C15:0 | 0.61 [0.32, 1.00] | 0.74 [0.37, 1.24] | 1.22 | 0.001 | 1.428 (1.168–1.764) | 0.001 |
C15:1 | Below detection limit | |||||
C16:1 | 16.41 [11.06, 25.22] | 24.90 [15.12, 39.56] | 1.52 | <0.001 | 1.048 (1.036–1.059) | <0.001 |
C17:0 | 1.19 [0.80, 1.64] | 1.58 [0.99, 2.32] | 1.33 | <0.001 | 1.648 (1.409–1.942) | <0.001 |
C17:1 | 1.07 [0.69, 1.55] | 1.47 [0.81, 2.22] | 1.37 | <0.001 | 1.742 (1.481–2.066) | <0.001 |
C18:1 | 184.52 [129.25, 262.41] | 254.32 [165.60, 367.92] | 1.38 | <0.001 | 1.005 (1.004–1.006) | <0.001 |
C18:1 T | Below detection limit | |||||
C18:2 | 170.02 [118.33, 239.16] | 247.83 [159.33, 367.25] | 1.46 | <0.001 | 1.005 (1.004–1.007) | <0.001 |
C18:2 T | Below detection limit | |||||
C18:3 α | 9.51 [6.99, 13.20] | 14.77 [9.35, 20.88] | 1.55 | <0.001 | 1.111 (1.086–1.137) | <0.001 |
C18:3 γ | 1.09 [0.77, 1.50] | 1.64 [1.02, 2.38] | 1.50 | <0.001 | 2.579 (2.108–3.194) | <0.001 |
C20:0 | Below detection limit | |||||
C20:1 | 1.83 [1.24, 2.57] | 2.82 [1.70, 4.46] | 1.54 | <0.001 | 1.516 (1.378–1.678) | <0.001 |
C20:2 | 1.85 [1.29, 2.50] | 2.65 [1.66, 3.63] | 1.43 | <0.001 | 1.794 (1.578–2.054) | <0.001 |
C20:3 | 1.21 [0.85, 1.59] | 1.79 [1.12, 2.35] | 1.48 | <0.001 | 2.615 (2.134–3.243) | <0.001 |
C20:4 | 5.54 [4.42, 7.33] | 6.33 [4.73, 8.62] | 1.14 | <0.001 | 1.138 (1.079–1.202) | <0.001 |
C20:5 | 0.43 [0.27, 0.65] | 0.54 [0.33, 0.80] | 1.25 | <0.001 | 2.142 (1.497–3.118) | <0.001 |
C22:0 | Below detection limit | |||||
C22:1 | 0.24 [0.15, 0.39] | 0.36 [0.18, 0.68] | 1.51 | <0.001 | 3.366 (2.291–5.194) | <0.001 |
C22:4 | 0.86 [0.60, 1.22] | 1.26 [0.79, 1.78] | 1.45 | <0.001 | 2.972 (2.323–3.855) | <0.001 |
C22:5 ω3 | 0.85 [0.59, 1.25] | 1.21 [0.76, 1.72] | 1.42 | <0.001 | 2.234 (1.787–2.825) | <0.001 |
C22:5 ω6 | 0.47 [0.33, 0.71] | 0.67 [0.43, 0.95] | 1.42 | <0.001 | 4.503 (2.995–6.918) | <0.001 |
C22:6 ω3 | 5.23 [3.95, 7.08] | 6.33 [4.38, 8.71] | 1.21 | <0.001 | 1.133 (1.084–1.187) | <0.001 |
SFAs | 6.17 [3.83, 9.93] | 8.65 [5.22, 13.09] | 1.40 | <0.001 | 1.079 (1.054–1.107) | <0.001 |
MUFAs | 203.78 [145.66, 293.28] | 288.23 [186.34, 406.18] | 1.41 | <0.001 | 1.005 (1.004–1.006) | <0.001 |
PUFAs | 198.35 [138.56, 274.79] | 283.38 [185.48, 413.06] | 1.43 | <0.001 | 1.005 (1.004–1.006) | <0.001 |
ω3 PUFAs | 16.49 [12.60, 22.44] | 23.88 [15.68, 31.79] | 1.45 | <0.001 | 1.072 (1.055–1.089) | <0.001 |
ω6 PUFAs | 176.02 [123.41, 245.75] | 253.39 [164.56, 374.26] | 1.44 | <0.001 | 1.005 (1.004–1.007) | <0.001 |
ω6/ω3 PUFAs | 10.40 [8.57, 12.52] | 11.05 [8.91, 13.70] | 1.06 | 0.022 | 1.013 (0.988–1.042) | 0.324 |
Total FFAs | 422.63 [294.03, 588.74] | 600.75 [385.44, 836.85] | 1.42 | <0.001 | 1.003 (1.002–1.003) | <0.001 |
Variables in Model | AUROC (95% CI) | p-Value | Accuracy | Precision | Recall | F1 Score | |
---|---|---|---|---|---|---|---|
Model 1 | Age, gender, BMI, and smoking status | 0.549 (0.479–0.620) | 0.009 | 0.535 | 0.470 | 0.554 | 0.509 |
Model 2 | Model 1 + 19 FFAs | 0.830 (0.780–0.880) | <0.001 | 0.764 | 0.712 | 0.803 | 0.755 |
Model 3 | Model 2 + CEA, CA125, CA199, and NSE | 0.836 (0.786–0.887) | <0.001 | 0.760 | 0.727 | 0.787 | 0.756 |
Reference model | Model 1 + CEA, CA125, CA199, and NSE | 0.646 (0.579–0.714) | Reference | 0.620 | 0.538 | 0.657 | 0.592 |
Variables | Coefficient | p-Value | OR (95% CI) | Value Assigned in Model |
---|---|---|---|---|
Constant | −0.578 | 0.532 | ||
Age | −0.002 | 0.808 | 0.998 (0.982–1.014) | |
Gender | 0.101 | 0.709 | 1.106 (0.652–1.888) | Male: 0; Female: 1 |
BMI | −0.058 | 0.069 | 0.944 (0.886–1.004) | |
Smoking status | 0.655 | 0.020 | 1.926 (1.111–3.368) | Smoker: 1; Non-smoker: 0 |
C12:0 | 0.084 | 0.096 | 1.088 (0.988–1.208) | |
C12:1 | −0.079 | 0.521 | 0.924 (0.654–1.078) | |
C14:1 | −0.383 | 0.314 | 0.682 (0.323–1.441) | |
C15:0 | −0.431 | 0.153 | 0.650 (0.351–1.148) | |
C16:1 | 0.066 | <0.001 | 1.068 (1.032–1.107) | |
C17:0 | 0.439 | 0.106 | 1.551 (0.925–2.700) | |
C17:1 | −1.471 | <0.001 | 0.230 (0.112–0.451) | |
C18:2 | 0.001 | 0.576 | 1.001 (0.999–1.003) | |
C18:3 α | −0.005 | 0.857 | 0.995 (0.944–1.053) | |
C18:3 γ | 0.610 | 0.015 | 1.840 (1.138–3.043) | |
C20:1 | 0.025 | 0.807 | 1.026 (0.838–1.263) | |
C20:2 | −0.038 | 0.855 | 0.962 (0.640–1.477) | |
C20:3 | 1.545 | <0.001 | 4.688 (2.168–10.565) | |
C20:4 | −0.190 | 0.001 | 0.827 (0.737–0.926) | |
C20:5 | 0.998 | 0.029 | 2.714 (1.128–6.807) | |
C22:1 | 0.666 | 0.006 | 1.947 (1.284–3.316) | |
C22:4 | 0.335 | 0.472 | 1.398 (0.561–3.511) | |
C22:5 ω3 | −1.582 | <0.001 | 0.206 (0.083–0.484) | |
C22:5 ω6 | 0.789 | 0.152 | 2.202 (0.765–6.596) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Wang, S.; Xu, X.; Sun, C.; Cai, F.; Guo, Q.; Wu, M.; Yang, M.; Wu, X. Non-Specific Elevated Serum Free Fatty Acids in Lung Cancer Patients: Nutritional or Pathological? Nutrients 2024, 16, 2884. https://doi.org/10.3390/nu16172884
Shao Y, Wang S, Xu X, Sun C, Cai F, Guo Q, Wu M, Yang M, Wu X. Non-Specific Elevated Serum Free Fatty Acids in Lung Cancer Patients: Nutritional or Pathological? Nutrients. 2024; 16(17):2884. https://doi.org/10.3390/nu16172884
Chicago/Turabian StyleShao, Yelin, Sicong Wang, Xiaohang Xu, Ce Sun, Fei Cai, Qian Guo, Ming Wu, Min Yang, and Xifeng Wu. 2024. "Non-Specific Elevated Serum Free Fatty Acids in Lung Cancer Patients: Nutritional or Pathological?" Nutrients 16, no. 17: 2884. https://doi.org/10.3390/nu16172884
APA StyleShao, Y., Wang, S., Xu, X., Sun, C., Cai, F., Guo, Q., Wu, M., Yang, M., & Wu, X. (2024). Non-Specific Elevated Serum Free Fatty Acids in Lung Cancer Patients: Nutritional or Pathological? Nutrients, 16(17), 2884. https://doi.org/10.3390/nu16172884