Longitudinal Dietary Intake Data in Patients with Phenylketonuria from Europe: The Impact of Age and Phenylketonuria Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participating Centres
2.2. Patient Selection
2.3. Study Design and Data Collection
2.4. Statistical Analysis
2.5. Ethical Aspects
3. Results
3.1. Treatment Centres’ Characteristics
3.2. Subjects Characteristics
3.3. Overall Data on Metabolic Control and Prescribed Dietary Protein/Phe Intakes Per Centre
3.3.1. Phenylalanine and Natural Protein Intakes Per Centre
3.3.2. Protein Equivalent Intake from Protein Substitutes Per Centre
3.3.3. Total Protein Intakes Per Centre
3.4. Dietary Prescribed Protein/Phenylalanine Intakes by Gender and Age
3.4.1. Phenylalanine and Natural Protein Intakes by Gender and Age Group
3.4.2. Protein Equivalent Intake from Protein Substitutes by Gender and Age Group
3.4.3. Total Protein Intakes by Gender and Age Group
3.5. Dietary Prescribed Protein/Phenylalanine Intakes by PKU Severity
3.5.1. Phenylalanine and Natural Protein Intakes by PKU Severity
3.5.2. Protein Equivalent Intake from Protein Substitutes by PKU Severity
3.5.3. Total Protein Intakes by PKU Severity
3.6. Dietary Prescribed Phenylalanine/Natural Protein Intakes Comparing Patients on Sapropterin vs. Diet-Only Treatment
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blau, N. Genetics of Phenylketonuria: Then and Now. Hum. Mutat. 2016, 37, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet. J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- Blau, N.; Hennermann, J.B.; Langenbeck, U.; Lichter-Konecki, U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol. Genet. Metab. 2011, 104, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, N.A.; AlJahdali, I.A.; Abumansour, I.S.; Elhawary, E.N.; Gaboon, N.; Dandini, M.; Madkhali, A.; Alosaimi, W.; Alzahrani, A.; Aljohani, F.; et al. Genetic etiology and clinical challenges of phenylketonuria. Hum. Genom. 2022, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, S.; Underhaug, J.; Perez, B.; Marsden, B.D.; Yue, W.W.; Martinez, A.; Blau, N. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Eur. J. Hum. Genet. 2015, 23, 302–309. [Google Scholar] [CrossRef]
- Rondanelli, M.; Porta, F.; Gasparri, C.; Barrile, G.C.; Cavioni, A.; Mansueto, F.; Mazzola, G.; Patelli, Z.; Peroni, G.; Pirola, M.; et al. A food pyramid for adult patients with phenylketonuria and a systematic review on the current evidences regarding the optimal dietary treatment of adult patients with PKU. Clin. Nutr. 2023, 42, 732–763. [Google Scholar] [CrossRef]
- Vockley, J.; Andersson, H.C.; Antshel, K.M.; Braverman, N.E.; Burton, B.K.; Frazier, D.M.; Mitchell, J.; Smith, W.E.; Thompson, B.H.; Berry, S.A. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet. Med. 2014, 16, 188–200. [Google Scholar] [CrossRef]
- Regier, D.S.; Greene, C.L. Phenylalanine Hydroxylase Deficiency. In GeneReview®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2000; updated on 5 January 2017. [Google Scholar]
- Thomas, L.; Olson, A.; Romani, C. The impact of metabolic control on cognition, neurophysiology, and well-being in PKU: A systematic review and meta-analysis of the within-participant literature. Mol. Genet. Metab. 2023, 138, 106969. [Google Scholar] [CrossRef]
- Church, D.D.; Hirsch, K.R.; Park, S.; Kim, I.Y.; Gwin, J.A.; Pasiakos, S.M.; Wolfe, R.R.; Ferrando, A.A. Essential Amino Acids and Protein Synthesis: Insights into Maximizing the Muscle and Whole-Body Response to Feeding. Nutrients 2020, 12, 3717. [Google Scholar] [CrossRef]
- Creppy, E.E.; Röschenthaler, R.; Dirheimer, G. Inhibition of protein synthesis in mice by ochratoxin A and its prevention by phenylalanine. Food Chem. Toxicol. 1984, 22, 883–886. [Google Scholar] [CrossRef]
- Evans, M.; Truby, H.; Boneh, A. The relationship between dietary intake, growth and body composition in Phenylketonuria. Mol. Genet. Metab. 2017, 122, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Ilgaz, F.; Evans, S.; van Dam, E.; Rocha, J.C.; Karabulut, E.; Hickson, M.; Daly, A.; MacDonald, A. Phenylalanine Tolerance over Time in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3506. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H.J.; Koerner, C.B.; Johnson, M.R.; Bergner, A.; Hamosh, A. Introduction of sapropterin dihydrochloride as standard of care in patients with phenylketonuria. Mol. Genet. Metab. 2010, 100, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Almeida, M.F.; MacDonald, A.; Ramos, P.C.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; Jackson, R.; et al. Over Restriction of Dietary Protein Allowance: The Importance of Ongoing Reassessment of Natural Protein Tolerance in Phenylketonuria. Nutrients 2019, 11, 995. [Google Scholar] [CrossRef] [PubMed]
- Firman, S.; Witard, O.C.; O’Keeffe, M.; Ramachandran, R. Dietary protein and protein substitute requirements in adults with phenylketonuria: A review of the clinical guidelines. Clin. Nutr. 2021, 40, 702–709. [Google Scholar] [CrossRef]
- Blau, N. Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1207–1218. [Google Scholar] [CrossRef]
- Hegge, K.A.; Horning, K.K.; Peitz, G.J.; Hegge, K. Sapropterin: A new therapeutic agent for phenylketonuria. Ann. Pharmacother. 2009, 43, 1466–1473. [Google Scholar] [CrossRef]
- Hole, M.; Jorge-Finnigan, A.; Underhaug, J.; Teigen, K.; Martinez, A. Pharmacological Chaperones that Protect Tetrahydrobiopterin Dependent Aromatic Amino Acid Hydroxylases through Different Mechanisms. Curr. Drug Targets 2016, 17, 1515–1526. [Google Scholar] [CrossRef]
- Underhaug, J.; Aubi, O.; Martinez, A. Phenylalanine hydroxylase misfolding and pharmacological chaperones. Curr. Top. Med. Chem. 2012, 12, 2534–2545. [Google Scholar] [CrossRef]
- Burton, B.K.; Grange, D.K.; Milanowski, A.; Vockley, G.; Feillet, F.; Crombez, E.A.; Abadie, V.; Harding, C.O.; Cederbaum, S.; Dobbelaere, D.; et al. The response of patients with phenylketonuria and elevated serum phenylalanine to treatment with oral sapropterin dihydrochloride (6R-tetrahydrobiopterin): A phase II, multicentre, open-label, screening study. J. Inherit. Metab. Dis. 2007, 30, 700–707. [Google Scholar] [CrossRef]
- Hennermann, J.B.; Roloff, S.; Gebauer, C.; Vetter, B.; von Arnim-Baas, A.; Mönch, E. Long-term treatment with tetrahydrobiopterin in phenylketonuria: Treatment strategies and prediction of long-term responders. Mol. Genet. Metab. 2012, 107, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Utz, J.R.; Lorentz, C.P.; Markowitz, D.; Rudser, K.D.; Diethelm-Okita, B.; Erickson, D.; Whitley, C.B. START, a double blind, placebo-controlled pharmacogenetic test of responsiveness to sapropterin dihydrochloride in phenylketonuria patients. Mol. Genet. Metab. 2012, 105, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Ilgaz, F.; Marsaux, C.; Pinto, A.; Singh, R.; Rohde, C.; Karabulut, E.; Gökmen-Özel, H.; Kuhn, M.; MacDonald, A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 1040. [Google Scholar] [CrossRef]
- Mahan, K.C.; Gandhi, M.A.; Anand, S. Pegvaliase: A novel treatment option for adults with phenylketonuria. Curr. Med. Res. Opin. 2019, 35, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.O.; Longo, N.; Northrup, H.; Sacharow, S.; Singh, R.; Thomas, J.A.; Vockley, J.; Zori, R.T.; Bulloch Whitehall, K.; Lilienstein, J.; et al. Pegvaliase for the treatment of phenylketonuria: Final results of a long-term phase 3 clinical trial program. Mol. Genet. Metab. Rep. 2024, 39, 101084. [Google Scholar] [CrossRef]
- Markham, A. Pegvaliase: First Global Approval. BioDrugs 2018, 32, 391–395. [Google Scholar] [CrossRef]
- Hausmann, O.; Daha, M.; Longo, N.; Knol, E.; Müller, I.; Northrup, H.; Brockow, K. Pegvaliase: Immunological profile and recommendations for the clinical management of hypersensitivity reactions in patients with phenylketonuria treated with this enzyme substitution therapy. Mol. Genet. Metab. 2019, 128, 84–91. [Google Scholar] [CrossRef]
- Krämer, J.; Baerwald, C.; Heimbold, C.; Kamrath, C.; Parhofer, K.G.; Reichert, A.; Rutsch, F.; Stolz, S.; Weinhold, N.; Muntau, A.C. Two years of pegvaliase in Germany: Experiences and best practice recommendations. Mol. Genet. Metab. 2023, 139, 107564. [Google Scholar] [CrossRef]
- Scala, I.; Brodosi, L.; Gueraldi, D.; Manti, F.; Rovelli, V.; Zuvadelli, J.; Agnelli, G.; Cazzorla, C.; Nardecchia, F.; Giammanco, A.; et al. Pegvaliase therapy for phenylketonuria: Real-world case series and clinical insights. Mol. Genet. Metab. 2024, 142, 108151. [Google Scholar] [CrossRef]
- Ney, D.M.; Blank, R.D.; Hansen, K.E. Advances in the nutritional and pharmacological management of phenylketonuria. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 61–68. [Google Scholar] [CrossRef]
- Rohde, C.; Mütze, U.; Schulz, S.; Thiele, A.G.; Ceglarek, U.; Thiery, J.; Mueller, A.S.; Kiess, W.; Beblo, S. Unrestricted fruits and vegetables in the PKU diet: A 1-year follow-up. Eur. J. Clin. Nutr. 2014, 68, 401–403. [Google Scholar] [CrossRef]
- Rohde, C.; Mütze, U.; Weigel, J.F.; Ceglarek, U.; Thiery, J.; Kiess, W.; Beblo, S. Unrestricted consumption of fruits and vegetables in phenylketonuria: No major impact on metabolic control. Eur. J. Clin. Nutr. 2012, 66, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Jacobs, P.; Fingerhut, R.; Torresani, T.; Thöny, B.; Blau, N.; Baumgartner, M.R.; Rohrbach, M. Positive effect of a simplified diet on blood phenylalanine control in different phenylketonuria variants, characterized by newborn BH4 loading test and PAH analysis. Mol. Genet. Metab. 2012, 106, 264–268. [Google Scholar] [CrossRef]
- Pinto, A.; Ahring, K.; Almeida, M.F.; Ashmore, C.; Bélanger-Quintana, A.; Burlina, A.; Coşkun, T.; Daly, A.; van Dam, E.; Dursun, A.; et al. Blood Phenylalanine Levels in Patients with Phenylketonuria from Europe between 2012 and 2018: Is It a Changing Landscape? Nutrients 2024, 16, 2064. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Daly, A.; Rocha, J.C.; Ashmore, C.; Evans, S.; Ilgaz, F.; Hickson, M.; MacDonald, A. Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes. Nutrients 2023, 15, 4903. [Google Scholar] [CrossRef]
- Bernstein, L.; Burns, C.; Sailer-Hammons, M.; Kurtz, A.; Rohr, F. Multiclinic Observations on the Simplified Diet in PKU. J. Nutr. Metab. 2017, 2017, 4083293. [Google Scholar] [CrossRef] [PubMed]
- Van Spronsen, F.J.; van Rijn, M.; Dorgelo, B.; Hoeksma, M.; Bosch, A.M.; Mulder, M.F.; de Klerk, J.B.; de Koning, T.; Rubio-Gozalbo, M.E.; de Vries, M.; et al. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J. Inherit. Metab. Dis. 2009, 32, 27–31. [Google Scholar] [CrossRef]
- Gomes, M.; Almeida, M.F.; Barbosa, C.S.; Gama, M.I.; Peres, M.; Pinto, É.; MacDonald, A.; Rocha, J.C. Total Protein Intake in Patients with PKU: Adequacy Evaluation According to the European PKU Guidelines from 2017. Nutrients 2023, 15, 4883. [Google Scholar] [CrossRef]
- Viau, K.; Martell, L.; Wessel, A.; Rohr, F.; Hollander, S.; Putman, M.S.; Sacharow, S. Nutritional status of adults with phenylketonuria on pegvaliase: A 15-month prospective study. Mol. Genet. Metab. Rep. 2023, 37, 101015. [Google Scholar] [CrossRef]
- MacLeod, E.L.; Gleason, S.T.; van Calcar, S.C.; Ney, D.M. Reassessment of phenylalanine tolerance in adults with phenylketonuria is needed as body mass changes. Mol. Genet. Metab. 2009, 98, 331–337. [Google Scholar] [CrossRef]
- Van Rijn, M.; Hoeksma, M.; Sauer, P.J.; Modderman, P.; Reijngoud, D.J.; van Spronsen, F.J. Adult patients with well-controlled phenylketonuria tolerate incidental additional intake of phenylalanine. Ann. Nutr. Metab. 2011, 58, 94–100. [Google Scholar] [CrossRef]
- MacDonald, A.; Rylance, G.; Davies, P.; Asplin, D.; Hall, S.K.; Booth, I.W. Free use of fruits and vegetables in phenylketonuria. J. Inherit. Metab. Dis. 2003, 26, 327–338. [Google Scholar] [CrossRef]
- Protein and Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2007; pp. 1–265.
- Aguiar, A.; Ahring, K.; Almeida, M.F.; Assoun, M.; Belanger Quintana, A.; Bigot, S.; Bihet, G.; Blom Malmberg, K.; Burlina, A.; Bushueva, T.; et al. Practices in prescribing protein substitutes for PKU in Europe: No uniformity of approach. Mol. Genet. Metab. 2015, 115, 17–22. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Geisler, C.; Prado, C.M.; Müller, M.J. Inadequacy of Body Weight-Based Recommendations for Individual Protein Intake-Lessons from Body Composition Analysis. Nutrients 2016, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Inwood, A.; Lewis, K.; Balasubramaniam, S.; Wiley, V.; Kreis, C.; Harrigan, K.; Mitchell, A.; Mullane, E.; Clover, E.; Thompson, S. Australasian Consensus Guidelines for the Management of Phenylketonuria (PKU) throughout the Lifespan; The Australasian Society of Inborn Errors of Metabolism (ASIEM): Alexandria, Australia, 2017. [Google Scholar]
- Firman, S.J.; Ramachandran, R.; Whelan, K.; Witard, O.C.; O’Keeffe, M. Protein status in phenylketonuria: A scoping review. Clin. Nutr. 2022, 41, 894–922. [Google Scholar] [CrossRef]
- Ahring, K.K. Large neutral amino acids in daily practice. J. Inherit. Metab. Dis. 2010, 33 (Suppl. S3), S187–S190. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, D.; van der Goot, E.; van Ginkel, W.G.; van Faassen, H.J.R.; de Blaauw, P.; Kema, I.P.; Heiner-Fokkema, M.R.; van der Zee, E.A.; van Spronsen, F.J. The increasing importance of LNAA supplementation in phenylketonuria at higher plasma phenylalanine concentrations. Mol. Genet. Metab. 2022, 135, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.H.; Quirk, M.E.; Douglas, T.D.; Brauchla, M.C. BH(4) therapy impacts the nutrition status and intake in children with phenylketonuria: 2-year follow-up. J. Inherit. Metab. Dis. 2010, 33, 689–695. [Google Scholar] [CrossRef]
- Longo, N.; Arnold, G.L.; Pridjian, G.; Enns, G.M.; Ficicioglu, C.; Parker, S.; Cohen-Pfeffer, J.L. Long-term safety and efficacy of sapropterin: The PKUDOS registry experience. Mol. Genet. Metab. 2015, 114, 557–563. [Google Scholar] [CrossRef]
- Gama, M.I.; Daly, A.; Ashmore, C.; Evans, S.; Moreira-Rosário, A.; Rocha, J.C.; MacDonald, A. Impact on Diet Quality and Burden of Care in Sapropterin Dihydrochloride Use in Children with Phenylketonuria: A 6 Month Follow-Up Report. Nutrients 2023, 15, 3603. [Google Scholar] [CrossRef] [PubMed]
Centre A | Centre B | Centre C | Centre D | Centre E | Centre F | Centre G | Centre H | Centre I | |
---|---|---|---|---|---|---|---|---|---|
Number of patients with data on dietary treatment (%) | 318 (99) | 97 (100) | 95 (94) | 81 (84) | 115 (99) | 59 (100) | 247 (79) | 62 (100) | 89 (56) |
Dietetic treatment guidelines: Exchange system (Yes/No) -If yes, type of exchange | Yes 1 exchange = 15 mg Phe, 0.5 g protein for fruits = 15 mg Phe, 0.6 g protein = 50 mg Phe, 1 g protein for bread, cereals | Yes 1 exchange = 50 mg Phe = 1 g protein | No | Yes 1 exchange = 20 mg Phe | Yes 1 exchange = 20 mg Phe | No | Yes 1 exchange = 25 mg Phe | No | Yes 1 exchange = 50 mg Phe = 1 g protein |
Unmeasured/unlimited use of fruit and vegetables (except potatoes) containing Phe ≤ 75 mg/100 g (Yes/No) | No | Yes | Yes | No | Yes | No | No | Yes | Yes |
Foods containing protein ≤0.5 g/100 g given in unlimited amounts | No | Yes | No | No | Yes | No | No | Yes | Yes |
Type of protein substitutes used | L-AA (powder, liquid) LNAA (powder, tablets) | L-AA (powder, liquid, tablets) GMP (powder, liquid) | L-AA (powder, liquid, tablets) | L-AA (powder, liquid) | L-AA (powder, liquid, tablets) GMP (powder, liquid, bars) LNAA (powder, tablets) | L-AA (powder, liquid) | L-AA (powder, liquid, tablets, bars) GMP (powder, liquid, bars) LNAA (powder, tablets) | L-AA (powder, liquid) | L-AA (powder, liquid, tablets) GMP (powder, liquid, bars) LNAA (powder, tablets) |
Therapeutic target range for blood Phe (μmol/L) | <12 y: 120–360 >12 y: 120–600 | <12 y: 120–360 >12 y: 120–600 | <12 y: 120–360 >12 y: 120–600 | 2012–2017: <12 y: 120–600 >12 y: 600–1200 2018: <12 y: 120–360 >12 y: 360–900 | <12 y: 120–360 >12 y: 120–480 | <12 y: 120–360 >12 y: 120–600 | 2012–2017: 0–4 y: 180–300 4–8 y: 180–400 8–10 y: 180–600 10–12 y: 180–700 >12 y: 180–900 2018: <12 y: 120–360 >12 y: 360–600 | 2012–2017: 0–6 y: 120–360 6–9 y: 120–540 10–18 y: 120–600 >18 y: 120–840 2018: <12 y: 120–360 >12 y: 360–600 | <12 y: 120–360 >12 y: 120–600 |
Frequency of clinic visits | 0–1 y: monthly; 1–2 y: 2 monthly; 2–3 y: 3 monthly; 4–18 y: 4 times a year >18 y: 6 monthly | 0–1 y: 3 monthly; 1–18 y: 6 monthly | 0–1 y: 2 monthly; 1–18 y: twice/three times a year; >18 y: once a year | 0–1 y: 3 monthly; 1–18 y: 6 monthly; >18 y: once a year | 0–6 m: monthly; 6–12 m: 2 monthly; 1–12 y: 3 monthly; 12–18 y: 2/3 times a yearly; >18 y: once/twice a year | 0–1 y: monthly; 2–5 y: 2 monthly; 6–12 y: 3/4 monthly; 13–18 y: 6 monthly; >18 y: once a year | 0–6 m: 2 monthly; 6–18 m: 3 monthly; 18 m-6 y: 6 monthly; >6 y: once a year | 0–1 y: monthly; 1–6 y: 3 monthly; >6 y: 6 monthly | 0–1 y: monthly; 1–12 y: 6 monthly; >12 y: once a year |
Number of dietitians full time dedicated to IMD | 3 (not specific to IMD) | 1.3 (specific to PKU) | 1.8 | 5 (not specific to IMD) | 2 | 1 | 2.7 | 0 | 2 |
Centre | % Blood Phe Levels in Target | Phe Mean ± SD (Median; Range) | Natural Protein Mean ± SD (Median; Range) | Protein Equivalent from Protein Substitute Mean ± SD (Median; Range) | Total Protein Mean ± SD (Median; Range) | ||||
---|---|---|---|---|---|---|---|---|---|
(N of Patients) | (Mean % ± SD) | mg/day | mg/kg/day | g/day | g/kg/day | g/day | g/kg/day | g/day | g/kg/day |
A (n = 320) | 70 ± 48 | 658 ± 492 (465; 180–3350) | 21 ± 22 (15; 0–176) | 13 ± 10 (9; 4–67) | 0.5 ± 0.4 (0.4; 0.1–3.5) | 17 ± 14 (19; 0–60) | 0.7 ± 0.5 (0.7; 0–3.2) | 36 ± 11 (35; 7–70) | 1.3 ± 0.6 (1.3; 0–4.0) |
B * (n = 97) | 83 ± 30 | 417 ± 367 (250; 123–1750) | 18 ± 19 (12; 0–125) | 8 ± 7 (5; 2–35) | 0.4 ± 0.4 (0.2; 0–2.5) | 52 ± 20 (60; 2–90) | 2.0 ± 0.7 (2.0; 0.5–3.5) | 61 ± 20 (64; 5–102) | 2.3 ± 0.7 (2.4; 0.6–4.5) |
C (n = 101) | 79 ± 53 | 1065 ± 816 (800; 100–4500) | 17 ± 19 (12; 0–173) | 21 ± 16 (16; 4–90) | 0.4 ± 0.4 (0.3; 0.0–3.5) | 41 ± 21 (42; 0–84) | 0.8 ± 0.5 (0.8; 0–2.4) | 62 ± 20 (65; 10–109) | 1.3 ± 0.6 (1.1; 0.4–4.4) |
D (n = 96) | 67 ± 52 | 887 ± 748 (565; 104–4725) | 29 ± 34 (18; 0–219) | 22 ± 18 (15; 2–105) | 0.8 ± 0.7 (0.5; 0–4.9) | 23 ± 21 (22; 0–75) | 0.7 ± 0.6 (0.8; 0–2.2) | 45 ± 21 (42; 5–108) | 1.5 ± 0.6 (1.5; 0.1–4.9) |
E + (n = 116) | 87 ± 49 | 2097 ± 1738 (1427; 262–9009) | 45 ± 37 (32; 0–215) | 45 ± 34 (31; 6–182) | 1.0 ± 0.8 (0.7; 0.1–4.4) | 37 ± 24 (39; 0–94) | 0.8 ± 0.5 (0.8; 0–2.4) | 80 ± 29 (82; 0–182) | 1.7 ± 0.6 (1.6; 0.5–4.4) |
F (n = 59) | 66 ± 32 | 379 ± 194 (350; 83–1200) | 16 ± 12 (12; 3–64) | 8 ± 4 (7; 2–24) | 0.3 ± 0.2 (0.2; 0.1–1.3) | 44 ± 21 (42; 4–90) | 1.5 ± 0.5 (1.4; 0.5–3.3) | 51 ± 22 (49; 8–110) | 1.8 ± 0.5 (1.8; 0.9–3.6) |
G (n = 314) | 65 ± 54 | 984 ± 951 (579; 0–7500) | 18 ± 24 (12; 0–205) | 22 ± 20 (14; 0–150) | 0.5 ± 0.5 (0.4; 0–4.1) | 45 ± 25 (40; 0–120) | 1.2 ± 0.7 (1.1; 0–5.3) | 67 ± 26 (68; 6–192) | 1.7 ± 0.7 (1.6; 0.2–6.4) |
H (n = 62) | 71 ± 44 | 710 ± 667 (500; 0–3000) | 14 ± 18 (7; 0–129) | 15 ± 17 (10; 0–60) | 0.4 ± 0.7 (0.2; 0–2.6) | 53 ± 29 (60; 0–100) | 1.2 ± 0.8 (1.2; 0–3.3) | 76 ± 19 (84; 16–128) | 1.8 ± 0.7 (1.5; 0.7–3.9) |
I (n = 158) | 88 ± 49 | 942 ± 875 (620; 104–5000) | 16 ± 23 (12; 0–171) | 21 ± 19 (14; 2–100) | 0.5 ± 0.5 (0.4; 0–3.4) | 36 ± 23 (36; 0–100) | 1.0 ± 0.8 (1.1; 0–3.0) | 57 ± 23 (58; 10–120) | 1.7 ± 0.7 (1.6; 0.1–3.6) |
Total (n = 1323) | 71 ± 46 | 904 ± 761 (565; 0–9009) | 22 ± 23 (15; 0–219) | 19 ± 16 (14; 0–182) | 0.5 ± 0.5 (0.4; 0–10.0) | 39 ± 22 (40; 0–120) | 1.1 ± 0.6 (1.1; 0–5.3) | 59 ± 21 (64; 10–192) | 1.7 ± 0.6 (1.6; 0.1–6.4) |
Sex and Age (Number of Patients) | Mean ± SD (Median; Range) | WHO/FAO/UNU 2007 Safe Levels for Total Protein | % of Mean Total Protein Intake Meeting Recommendations | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Phe | Natural Protein | Protein Equivalent from Protein Substitute | Total Protein | |||||||
mg/day | mg/kg/day | g/day | g/kg/day | g/day | g/kg/day | g/day | g/kg/day | g/kg/day | ||
Female (n = 666) | 881 ± 875 (500; 0–5820) | 20 ± 25 (13; 0–219) | 19 ± 19 (11; 0–181) | 0.5 ± 0.6 (0.3; 0.0–4.9) | 35 ± 26 (32; 0–120) | 1.0 ± 0.7 (1.0; 0.0–4.6) | 57 ± 25 (55; 0–167) | 1.6 ± 0.7 (1.5; 0.0–5.8) | NA | NA |
Male (n = 657) | 1027 ± 1200 (550; 0–9009) | 29 ± 34 (12; 0–215) | 22 ± 24 (12; 0–182) | 0.5 ± 0.6 (0.4; 0.0–4.2) | 35 ± 25 (31; 0–113) | 1.0 ± 0.7 (1.0; 0–5.0) | 60 ± 28 (56; 0–192) | 1.8 ± 0.7 (1.6; 0.1–6.4) | NA | NA |
p-value | 0.218 | 0.019 | 0.250 | 0.019 | 0.830 | 0.013 | 0.850 | <0.001 | ||
<2 y (n= 47) | 318 ± 206 (250; 0–1297) | 34 ± 35 (29; 0–162) | 7 ± 5 (5; 0–30) | 1.0 ± 0.7 (0.9; 0.0–3.5) | 7 ± 9 (7; 0–54) | 1.1 ± 1.1 (1.1; 0.0–5.3) | 17 ± 9 (15; 6–58) | 2.4 ± 1.3 (2.4; 0.0–6.4) | 1.14 1–1.31 2 | 210–183% |
2–5 y (n = 213) | 521 ± 468 (352; 100–3802) | 29 ± 32 (21; 0–219) | 11 ± 10 (8; 0–78) | 0.8 ± 0.7 (0.5; 0.0–4.9) | 19 ± 15 (19; 0–60) | 1.3 ± 0.9 (1.4; 0.0–5.3) | 33 ± 12 (32; 0–92) | 2.2 ± 0.8 (2.2; 0.0–6.4) | 0.94 | 234% |
6–12 y (n = 353) | 750 ± 756 (450; 0–5360) | 22 ± 25 (15; 0–206) | 16 ± 17 (10; 0–181) | 0.5 ± 0.6 (0.3; 0.0–4.2 | 36 ± 22 (34; 0–106) | 1.1 ± 0.7 (1.1; 0.0–3.3) | 54 ± 18 (52; 10–115) | 1.7 ± 0.6 (1.7; 0.0–4.2) | 0.89 3–0.94 4 | 191–181% |
13–18 y (n = 268) | 1301 ± 1349 (750; 0–9009) | 20 ± 25 (11; 0–215) | 27 ± 26 (17; 2–158) | 0.5 ± 0.5 (0.3; 0.0–3.5) | 47 ± 26 (48; 0–116) | 0.8 ± 0.4 (0.8; 0.0–2.3) | 75 ± 22 (8; 0–175) | 1.3 ± 0.4 (1.2; 0.0–3.6) | 0.84 5–0.89 6 | 155–146% |
19–30 y (n = 280) | 1419 ± 1328 (900; 0–9009) | 18 ± 19 (11; 0–123) | 31 ± 28 (20; 0–182) | 0.4 ± 0.4 (0.3; 0.0–2.5) | 48 ± 25 (53; 0–110) | 0.7 ± 0.4 (0.8; 0.0–1.6) | 78 ± 24 (79; 0–182) | 1.2 ± 0.4 (1.2; 0.2–2.5) | 0.84 | 143% |
31–40 y (n = 107) | 1377 ± 1027 (1148; 100–4725) | 14 ± 13 (10; 0–62) | 30 ± 23 (25; 4–105) | 0.4 ± 0.3 (0.3; 0.0–1.8) | 47 ± 26 (52; 0–120) | 0.6 ± 0.4 (0.7; 0.0–1.3) | 78 ± 23 (76; 0–143) | 1.0 ± 0.3 (1.0; 0.1–2.0) | 0.84 | 119% |
≥41 y (n = 55) | 1255 ± 917 (750; 350–3750) | 7 ± 11 (0; 0–53) | 27 ± 20 (15; 7–75) | 0.3 ± 0.3 (0.2; 0.0–1.1) | 47 ± 24 (50; 0–106) | 0.6 ± 0.3 (0.7; 0.0–1.2) | 80 ± 22 (77; 35–192) | 1.0 ± 0.3 (1.0; 0.4–2.1) | 0.84 | 119% |
PKU Severity | Age Group | Mean ± SD (Median; Range) | |||||||
---|---|---|---|---|---|---|---|---|---|
Phe | Natural Protein | Protein Equivalent from Protein Substitute | Total Protein | ||||||
mg/day | mg/kg/day | g/day | g/kg/day | g/day | g/kg/day | g/day | g/kg/day | ||
HPA | <2 y | 656 ± 286 (590; 175–1297) | 19 ± 43 (0; 0–162) | 14 ± 7 (13; 3–30) | 1.3 ± 1.2 (1.1; 0–3.5) | 1 ± 3 (0; 0–13) | 0.1 ± 0.4 (0; 0–1.7) | 18 ± 8 (15; 10–37) | 1.4 ± 1.5 (1.7; 0–4.4) |
2–5 y | 1385 ± 734 (1359; 150–3802) | 26 ± 50 (0; 0–219) | 29 ± 15 (28; 4–78) | 1.6 ± 1.2 (1.8; 0–4.9) | 2 ± 5 (0; 0–36) | 0.1 ± 0.3 (0; 0–1.8) | 34 ± 13 (31; 5–82) | 1.6 ± 1.3 (1.9; 0–4.9) | |
6–12 y | 2074 ± 1281 (1719; 400–5360) | 31 ± 43 (0; 0–206) | 44 ± 27 (40; 8–111) | 1.3 ± 0.9 (1.2; 0–4.2) | 9 ± 13 (0; 0–50) | 0.3 ± 0.4 (0; 0–1.6) | 58 ± 22 (51; 24–111) | 1.6 ± 1.0 (1.6; 0–4.2) | |
13–18 y | 3325 ± 1577 (3219; 500–7724) | 40 ± 41 (34; 0–170) | 70 ± 32 (70; 10–158) | 1.1 ± 0.8 (1.1; 0–3.5) | 13 ± 17 (0; 0–70) | 0.2 ± 0.3 (0; 0–1.5) | 84 ± 28 (89; 35–158) | 1.5 ± 0.7 (1.5; 0–3.6) | |
19–30 y | 2851 ± 2128 (2300; 239–7473) | 24 ± 31 (6; 0–106) | 59 ± 44 (50; 7–153) | 0.7 ± 0.6 (0.6; 0–2.2) | 28 ± 30 (23; 0–108) | 0.3 ± 0.4 (0.1; 0–1.1) | 85 ± 32 (80; 0–153) | 1.2 ± 0.4 (1.1; 0.4–2.2) | |
31–40 y | 1104 ± 389 (1250; 663–1400) | 4 ± 9 (0; 0–22) | 23 ± 6 (25; 16–28) | 0.3 ± 0.2 (0.3; 0–0.4) | 47 ± 3 (45; 45–50) | 0.9 ± 0.1 (0.9; 0.8–1.0) | 70 ± 4 (70; 66–73) | 1.3 ± 0.0 (1.3; 1.2–1.3) | |
≥41 y | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | |
HPA Total | 2270 ± 1586 (1910; 150–7724) | 29 ± 45 (0; 0–219) | 48 ± 33 (41; 3–158) | 1.3 ± 1.0 (1.1; 0–4.9) | 8 ± 15 (0; 0–108) | 0.2 ± 0.4 (0; 0–1.8) | 61 ± 31 (52; 0–158) | 1.5 ± 1.0 (1.6; 0.0–4.9) | |
mPKU | <2 y | 334 ± 222 (258; 0–1225) | 45 ± 37 (41; 0–128) | 7 ± 4 (5; 0–25) | 1.1 ± 0.7 (1.1; 0–2.6) | 7 ± 5 (7; 0–22) | 1.3 ± 1.1 (1.3; 0–4.4) | 15 ± 5 (15; 6–32) | 2.6 ± 1.2 (2.5; 0–6.4) |
2–5 y | 615 ± 452 (432; 150–2450) | 38 ± 31 (28; 0–175) | 13 ± 9 (9; 3–49) | 0.9 ± 0.6 (0.7; 0–3.9) | 20 ± 14 (20; 0–60) | 1.4 ± 0.9 (1.4; 0–4.4) | 34 ± 12 (33; 0–72) | 2.3 ± 0.8 (2.3; 0–6.4) | |
6–12 y | 941 ± 664 (750; 184–4306) | 28 ± 24 (21; 0–122) | 20 ± 14 (16; 4–95) | 0.7 ± 0.5 (0.5; 0–2.9) | 31 ± 20 (30; 0–84) | 1.0 ± 0.7 (1.1; 0–2.8) | 53 ± 17 (52; 20–106) | 1.7 ± 0.5 (1.7; 0–3.7) | |
13–18 y | 1637 ± 1131 (1371; 250–6014) | 23 ± 21 (16; 0–110) | 34 ± 23 (29; 5–125) | 0.6 ± 0.4 (0.4; 0–2.2) | 37 ± 23 (36; 0–84) | 0.6 ± 0.4 (0.6; 0–1.5) | 72 ± 23 (74; 0–128) | 1.2 ± 0.4 (1.1; 0–2.7) | |
19–30 y | 1892 ± 1529 (1500; 295–9009) | 22 ± 23 (15; 0–123) | 40 ± 32 (30; 7–182) | 0.6 ± 0.5 (0.5; 0–2.5) | 38 ± 22 (38; 0–110) | 0.6 ± 0.4 (0.6; 0–1.4) | 78 ± 27 (78; 0–182) | 1.2 ± 0.4 (1.1; 0.4–2.5) | |
mPKU | 31–40 y | 1744 ± 962 (1550; 100–4650) | 17 ± 14 (19; 0–50) | 38 ± 22 (31; 8–105) | 0.5 ± 0.3 (0.4; 0–1.8) | 41 ± 24 (48; 0–100) | 0.5 ± 0.3 (0.6; 0–1.2) | 80 ± 20 (78; 10–128) | 1.1 ± 0.3 (1.1; 0.1–2.0) |
≥41 y | 1433 ± 995 (1057; 363–3750) | 8 ± 14 (0; 0–53) | 33 ± 23 (24; 7–75) | 0.4 ± 0.3 (0.3; 0–1.1) | 42 ± 24 (42; 0–76) | 0.5 ± 0.4 (0.4; 0–1.1) | 77 ± 16 (78; 35–105) | 1.0 ± 0.3 (0.9; 0.4–1.5) | |
mPKU Total | 1262 ± 1166 (900; 0–9009) | 28 ± 26 (21; 0–175) | 26 ± 23 (20; 0–182) | 0.7 ± 0.5 (0.5; 0–3.9) | 32 ± 22 (30; 0–110) | 0.9 ± 0.7 (0.9; 0–4.4) | 60 ± 28 (58; 0–182) | 1.7 ± 0.7 (1.5; 0–6.4) | |
cPKU | <2 y | 251 ± 102 (234; 83–500) | 38 ± 23 (34; 0–125) | 5 ± 2 (5; 0–10) | 0.8 ± 0.4 (0.8; 0–2.5) | 12 ± 9 (9; 2–54) | 1.8 ± 0.9 (1.5; 0–5.3) | 18 ± 10 (14; 6–58) | 2.6±1.1 (2.5; 0–6.3) |
2–5 y | 337 ± 155 (310; 100–1631) | 24 ± 13 (22; 0–88) | 7 ± 3 (7; 0–35) | 0.5 ± 0.2 (0.5; 0–1.8) | 26 ± 11 (24; 2–60) | 1.8 ± 0.6 (1.7; 0–5.3) | 33 ± 11 (31; 6–92) | 2.3±0.6 (2.2; 0.7–6.3) | |
6–12 y | 414 ± 207 (400; 0–2000) | 14 ± 8 (13; 0–70) | 9 ± 8 (8; 0–75) | 0.3 ± 0.4 (0.3; 0–4.2) | 45 ± 19 (42; 0–106) | 1.4 ± 0.5 (1.4; 0–3.3) | 54 ± 18 (51; 23–115) | 1.7±0.5 (1.7; 0.6–3.5) | |
13–18 y | 654 ± 474 (500; 0–4500) | 11 ± 9 (9; 0–66) | 14 ± 11 (11; 2–90) | 0.2 ± 0.2 (0.2; 0–1.3) | 58 ± 22 (60; 0–116) | 1.0 ± 0.4 (1.0; 0–2.3) | 72 ± 20 (74; 16–175) | 1.2±0.3 (1.2; 0.3–2.4) | |
19–30 y | 1033 ± 904 (719; 0–6096) | 13 ± 14 (10; 0–87) | 23 ± 20 (15; 0–129) | 0.3 ± 0.3 (0.2; 0–1.8) | 53 ± 24 (60; 0–106) | 0.8 ± 0.4 (0.8; 0–1.6) | 76 ± 21 (78; 0–146) | 1.2±0.3 (1.2; 0.2–2.4) | |
31–40 y | 1206 ± 1060 (845; 171–4725) | 12 ± 13 (12; 0–62) | 26 ± 23 (17; 4–105) | 0.3 ± 0.3 (0.2; 0–1.3) | 50 ± 26 (60; 0–120) | 0.6 ± 0.4 (0.7; 0–1.3) | 78 ± 25 (77; 0–143) | 1.0±0.3 (1.0; 0.1–1.9) | |
≥41 y | 1284 ± 949 (714; 350–3085) | 6 ± 11 (0; 0–45) | 27 ± 20 (17; 7–71) | 0.3 ± 0.3 (0.2; 0–1.0) | 48 ± 25 (54; 16–106) | 0.6 ± 0.3 (0.7; 0–1.2) | 83 ± 25 (77; 45–192) | 1.0±0.3 (1.0; 0.4–2.1) | |
cPKU Total | 593 ± 585 (425; 0–6096) | 16 ± 13 (13; 0–125) | 13 ± 14 (9; 0–129) | 0.4 ± 0.3 (0.3; 0–4.2) | 44 ± 23 (40; 0–120) | 1.2 ± 1.6 (1.2; 0–5.3) | 57 ± 25 (54; 0–192) | 1.7 ± 0.7 (1.5; 0–6.3) |
Age Group | Differences by Severities | Difference of Mean Values between Severities | |||||
---|---|---|---|---|---|---|---|
Phe | Natural Protein | Protein Equivalent from Protein Substitute | |||||
mg/Day | mg/kg/Day | g/Day | g/kg/Day | g/Day | g/kg/Day | ||
<2 y | HPA-cPKU mPKU-cPKU | +405 +83 | −19 +7 | +9 +2 | +0.5 +0.3 | −12 −5 | −1.7 −0.5 |
2–5 y | HPA-cPKU mPKU-cPKU | +1048 +278 | +2 +14 | +22 +6 | +1.1 +0.4 | −24 −6 | −1.7 −0.4 |
6–12 y | HPA-cPKU mPKU-cPKU | +1660 +527 | +17 +14 | +35 +11 | +1.0 +0.4 | −36 −14 | −1.1 −0.4 |
13–18 y | HPA-cPKU mPKU-cPKU | +2671 +983 | +29 +12 | +56 +20 | +0.9 +0.4 | −45 −21 | −0.8 −0.4 |
19–30 y | HPA-cPKU mPKU-cPKU | +1818 +859 | +11 +9 | +36 +17 | +0.4 +0.3 | −25 −15 | −0.5 −0.2 |
31–40 y | HPA-cPKU mPKU-cPKU | −102 +538 | −8 +5 | −3 +12 | 0 +0.2 | −3 −9 | +0.3 −0.1 |
≥41 y | HPA-cPKU mPKU-cPKU | n/a +149 | n/a +2 | n/a +6 | n/a +0.1 | n/a −6 | n/a −0.1 |
Type of Treatment (Number of Patients) | Mean ± SD (Median; Range) | |||||||
---|---|---|---|---|---|---|---|---|
Phe | Natural Protein | Protein Equivalent from Protein Substitute | Total Protein | |||||
mg/Day | mg/kg/Day | g/Day | g/kg/Day | g/Day | g/kg/Day | g/Day | g/kg/Day | |
BH4 (n = 222) | 1649 ± 919 (1500; 100–6774) | 50 ± 43 (24; 0–173) | 35 ± 19 (30; 5–139) | 0.9 ± 0.6 (0.7; 0.0–3.5) | 24 ± 22 (22; 0–84) | 0.6 ± 0.5 (0.5; 0–2.8) | 63 ± 23 (62; 10–139) | 1.5 ± 0.6 (1.4; 0.1–4.5) |
Diet-only (n = 1101) | 846 ± 1036 (487; 0–9009) | 29 ± 30 (32; 6–192) | 19 ± 83 (10; 0–182) | 0.5 ± 1.5 (0.4; 0–4.9) | 37 ± 25 (34; 0–120) | 1.2 ± 0.7 (1.1; 0–5.3) | 59 ± 85 (54; 0–192) | 1.7 ± 1.6 (1.6; 0–6.4) |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.067 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, A.; Ahring, K.; Almeida, M.F.; Ashmore, C.; Bélanger-Quintana, A.; Burlina, A.; Coşkun, T.; Daly, A.; van Dam, E.; Dursun, A.; et al. Longitudinal Dietary Intake Data in Patients with Phenylketonuria from Europe: The Impact of Age and Phenylketonuria Severity. Nutrients 2024, 16, 2909. https://doi.org/10.3390/nu16172909
Pinto A, Ahring K, Almeida MF, Ashmore C, Bélanger-Quintana A, Burlina A, Coşkun T, Daly A, van Dam E, Dursun A, et al. Longitudinal Dietary Intake Data in Patients with Phenylketonuria from Europe: The Impact of Age and Phenylketonuria Severity. Nutrients. 2024; 16(17):2909. https://doi.org/10.3390/nu16172909
Chicago/Turabian StylePinto, Alex, Kirsten Ahring, Manuela Ferreira Almeida, Catherine Ashmore, Amaya Bélanger-Quintana, Alberto Burlina, Turgay Coşkun, Anne Daly, Esther van Dam, Ali Dursun, and et al. 2024. "Longitudinal Dietary Intake Data in Patients with Phenylketonuria from Europe: The Impact of Age and Phenylketonuria Severity" Nutrients 16, no. 17: 2909. https://doi.org/10.3390/nu16172909
APA StylePinto, A., Ahring, K., Almeida, M. F., Ashmore, C., Bélanger-Quintana, A., Burlina, A., Coşkun, T., Daly, A., van Dam, E., Dursun, A., Evans, S., Feillet, F., Giżewska, M., Gökmen-Özel, H., Hickson, M., Hoekstra, Y., Ilgaz, F., Jackson, R., Leśniak, A., ... MacDonald, A. (2024). Longitudinal Dietary Intake Data in Patients with Phenylketonuria from Europe: The Impact of Age and Phenylketonuria Severity. Nutrients, 16(17), 2909. https://doi.org/10.3390/nu16172909