Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Grip Strength
2.3. Histological Analysis
2.4. Statistical Analysis
3. Results
3.1. LPD’s Effect on Lifespan
3.2. Lifelong Effects of Lactational LPD on Body Weight and TA Muscle Weight of Male and Female Mice
3.3. Lifelong Effect of LPD during Lactation on Myofibres of TA Muscle in Male and Female Mice
3.4. Effect of LPD during Lactation on the Grip Strength of Ageing Male and Female Mice
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timson, B.F.; Dudenhoeffer, G.A. Skeletal Muscle Fibre Number in the Rat from Youth to Adulthood. J. Anat. 1990, 173, 33–36. [Google Scholar] [PubMed]
- Amthor, H.; Christ, B.; Weil, M.; Patel, K. The Importance of Timing Differentiation during Limb Muscle Development. Curr. Biol. 1998, 8, 642–652. [Google Scholar] [CrossRef]
- Pereira, C.C.; Pagotto, V.; de Oliveira, C.; Silveira, E.A. Low Muscle Mass and Mortality Risk Later in Life: A 10-Year Follow-up Study. PLoS ONE 2022, 17, e0271579. [Google Scholar] [CrossRef]
- Wang, H.; Hai, S.; Liu, Y.; Liu, Y.; Dong, B. Skeletal Muscle Mass as a Mortality Predictor among Nonagenarians and Centenarians: A Prospective Cohort Study. Sci. Rep. 2019, 9, 2420. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xia, J.; Zhang, X.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; McKenzie, S.; Song, Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018, 50, 458–467. [Google Scholar] [CrossRef]
- Marzetti, E.; Lees, H.A.; Wohlgemuth, S.E.; Leeuwenburgh, C. Sarcopenia of Aging: Underlying Cellular Mechanisms and Protection by Calorie Restriction. Biofactors 2009, 35, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Lexell, J. Human Aging, Muscle Mass, and Fiber Type Composition. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 11–16. [Google Scholar] [CrossRef]
- Snijders, T.; Verdijk, L.B.; van Loon, L.J.C. The Impact of Sarcopenia and Exercise Training on Skeletal Muscle Satellite Cells. Ageing Res. Rev. 2009, 8, 328–338. [Google Scholar] [CrossRef]
- McCoski, S.; Bradbery, A.; Marques, R.D.; Posbergh, C.; Sanford, C. Maternal Nutrition and Developmental Programming of Male Progeny. Animals 2021, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Beermann, D.H. Effects of Maternal Dietary Restriction during Gestation and Lactation, Muscle, Sex and Age on Various Indices of Skeletal Muscle Growth in the Rat. J. Anim. Sci. 1983, 57, 328–337. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Te Pas, M.F.W.; Wimmers, K.; Brameld, J.M.; Nissen, P.M.; Berri, C.; Valente, L.M.P.; Power, D.M.; Picard, B.; Stickland, N.C.; et al. Advances in Research on the Prenatal Development of Skeletal Muscle in Animals in Relation to the Quality of Muscle-Based Food. I. Regulation of Myogenesis and Environmental Impact. Animal 2011, 5, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef]
- Uzman, A. Molecular Biology of the Cell (4th Ed.): Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Biochem. Mol. Biol. Educ. 2003, 31, 212–214. [Google Scholar] [CrossRef]
- Moretto, V.L.; Ballen, M.O.; Gonçalves, T.S.S.; Kawashita, N.H.; Stoppiglia, L.F.; Veloso, R.V.; Latorraca, M.Q.; Martins, M.S.F.; Gomes-da-Silva, M.H.G. Low-Protein Diet during Lactation and Maternal Metabolism in Rats. ISRN Obstet. Gynecol. 2011, 2011, 876502. [Google Scholar] [CrossRef]
- Cambraia, R.P.; Vannucchi, H.; De-Oliveira, L.M. Food Intake and Weight of Lactating Rats Maintained on Different Protein-Calorie Diets, and Pup Growth. Braz. J. Med. Biol. Res. 1997, 30, 985–988. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, L.; Liu, J.; Li, Y.; Zhang, J. Long-Term Effects of Maternal Low-Protein Diet and Post-Weaning High-Fat Feeding on Glucose Metabolism and Hypothalamic POMC Promoter Methylation in Offspring Mice. Front. Nutr. 2021, 8, 657848. [Google Scholar] [CrossRef]
- Alexander, B.T.; Henry Dasinger, J.; Intapad, S. Effect of Low Birth Weight on Women’s Health. Clin. Ther. 2014, 36, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.P.; Jameson, K.A.; Syddall, H.E.; Martin, H.J.; Stewart, C.E.; Cooper, C.; Sayer, A.A. Developmental Influences, Muscle Morphology, and Sarcopenia in Community-Dwelling Older Men. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 82–87. [Google Scholar] [CrossRef]
- Loche, E.; Ozanne, S.E. Early Nutrition, Epigenetics, and Cardiovascular Disease. Curr. Opin. Lipidol. 2016, 27, 449–458. [Google Scholar] [CrossRef]
- da Silva Aragão, R.; Guzmán-Quevedo, O.; Pérez-García, G.; Manhães-de-Castro, R.; Bolaños-Jiménez, F. Maternal Protein Restriction Impairs the Transcriptional Metabolic Flexibility of Skeletal Muscle in Adult Rat Offspring. Br. J. Nutr. 2014, 112, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.J.; Mercader, J.M.; Catalán, V.; Moreno-Navarrete, J.M.; Pueyo, N.; Sabater, M.; Gómez-Ambrosi, J.; Anglada, R.; Fernández-Formoso, J.A.; Ricart, W.; et al. Targeting the Circulating MicroRNA Signature of Obesity. Clin. Chem. 2013, 59, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Toscano, A.E.; Manhães-de-Castro, R.; Canon, F. Effect of a Low-Protein Diet during Pregnancy on Skeletal Muscle Mechanical Properties of Offspring Rats. Nutrition 2008, 24, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Giakoumaki, I.; Pollock, N.; Aljuaid, T.; Sannicandro, A.J.; Alameddine, M.; Owen, E.; Myrtziou, I.; Ozanne, S.E.; Kanakis, I.; Goljanek-Whysall, K.; et al. Postnatal Protein Intake as a Determinant of Skeletal Muscle Structure and Function in Mice-A Pilot Study. Int. J. Mol. Sci. 2022, 23, 8815. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Chen, J.-H.; Martin-Gronert, M.S.; Tarry-Adkins, J.; Ozanne, S.E. Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice. PLoS ONE 2009, 4, e4950. [Google Scholar] [CrossRef]
- Heppolette, C.A.A.; Chen, J.-H.; Carr, S.K.; Palmer, D.B.; Ozanne, S.E. The Effects of Aging and Maternal Protein Restriction during Lactation on Thymic Involution and Peripheral Immunosenescence in Adult Mice. Oncotarget 2016, 7, 6398–6409. [Google Scholar] [CrossRef]
- Lamming, D.W.; Cummings, N.E.; Rastelli, A.L.; Gao, F.; Cava, E.; Bertozzi, B.; Spelta, F.; Pili, R.; Fontana, L. Restriction of Dietary Protein Decreases MTORC1 in Tumors and Somatic Tissues of a Tumor-Bearing Mouse Xenograft Model. Oncotarget 2015, 6, 31233–31240. [Google Scholar] [CrossRef]
- Ersoy, U.; Kanakis, I.; Alameddine, M.; Pedraza-Vazquez, G.; Ozanne, S.E.; Peffers, M.J.; Jackson, M.J.; Goljanek-Whysall, K.; Vasilaki, A. Lifelong Dietary Protein Restriction Accelerates Skeletal Muscle Loss and Reduces Muscle Fibre Size by Impairing Proteostasis and Mitochondrial Homeostasis. Redox Biol. 2024, 69, 102980. [Google Scholar] [CrossRef]
- Dearden, L.; Bouret, S.G.; Ozanne, S.E. Sex and Gender Differences in Developmental Programming of Metabolism. Mol. Metab. 2018, 15, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Capllonch-Amer, G.; Lladó, I.; Proenza, A.M.; García-Palmer, F.J.; Gianotti, M. Opposite Effects of 17-β Estradiol and Testosterone on Mitochondrial Biogenesis and Adiponectin Synthesis in White Adipocytes. J. Mol. Endocrinol. 2014, 52, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Sheth, K.A.; Iyer, C.C.; Wier, C.G.; Crum, A.E.; Bratasz, A.; Kolb, S.J.; Clark, B.C.; Burghes, A.H.M.; Arnold, W.D. Muscle Strength and Size Are Associated with Motor Unit Connectivity in Aged Mice. Neurobiol. Aging 2018, 67, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Carlson, G.; van Putten, M.; Aartsma-Rus, A. The Use of Four Limb Hanging Tests to Monitor Muscle Strength and Condition over Time. Available online: https://www.treat-nmd.org/wp-content/uploads/2023/07/DMD_M_2.1.004.pdf (accessed on 25 July 2024).
- Wen, Y.; Murach, K.A.; Vechetti, I.J.; Fry, C.S.; Vickery, C.; Peterson, C.A.; McCarthy, J.J.; Campbell, K.S. MyoVision: Software for Automated High-Content Analysis of Skeletal Muscle Immunohistochemistry. J. Appl. Physiol. 2017, 124, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Ozanne, S.E.; Hales, C.N. Lifespan: Catch-up Growth and Obesity in Male Mice. Nature 2004, 427, 411–412. [Google Scholar] [CrossRef]
- Guzmán, C.; Cabrera, R.; Cárdenas, M.; Larrea, F.; Nathanielsz, P.W.; Zambrano, E. Protein Restriction during Fetal and Neonatal Development in the Rat Alters Reproductive Function and Accelerates Reproductive Ageing in Female Progeny. J. Physiol. 2006, 572, 97–108. [Google Scholar] [CrossRef]
- Carey, M.R.; Archer, C.R.; Rapkin, J.; Castledine, M.; Jensen, K.; House, C.M.; Hosken, D.J.; Hunt, J. Mapping Sex Differences in the Effects of Protein and Carbohydrates on Lifespan and Reproduction in Drosophila Melanogaster: Is Measuring Nutrient Intake Essential? Biogerontology 2022, 23, 129–144. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S. Maternal and Child Undernutrition: Consequences for Adult Health and Human Capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef]
- Pezeshki, A.; Zapata, R.C.; Singh, A.; Yee, N.J.; Chelikani, P.K. Low Protein Diets Produce Divergent Effects on Energy Balance. Sci. Rep. 2016, 6, 25145. [Google Scholar] [CrossRef]
- Cho, W.K.; Suh, B.-K. Catch-up Growth and Catch-up Fat in Children Born Small for Gestational Age. Korean J. Pediatr. 2016, 59, 1–7. [Google Scholar] [CrossRef]
- McGlory, C.; van Vliet, S.; Stokes, T.; Mittendorfer, B.; Phillips, S.M. The Impact of Exercise and Nutrition on the Regulation of Skeletal Muscle Mass. J. Physiol. 2019, 597, 1251–1258. [Google Scholar] [CrossRef]
- Huang, R.-Y.; Yang, K.-C.; Chang, H.-H.; Lee, L.-T.; Lu, C.-W.; Huang, K.-C. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan. Nutrients 2016, 8, 373. [Google Scholar] [CrossRef] [PubMed]
- Huh, Y.; Son, K.Y. Association between Total Protein Intake and Low Muscle Mass in Korean Adults. BMC Geriatr. 2022, 22, 319. [Google Scholar] [CrossRef]
- Deschenes, M.R. Effects of Aging on Muscle Fibre Type and Size. Sports Med. 2004, 34, 809–824. [Google Scholar] [CrossRef]
- Schiaffino, S.; Reggiani, C. Fiber Types in Mammalian Skeletal Muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef]
- Nakazato, K.; Song, H. Increased Oxidative Properties of Gastrocnemius in Rats Fed on a High-Protein Diet. J. Nutr. Biochem. 2008, 19, 26–32. [Google Scholar] [CrossRef]
- Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition. Physiology 2015, 30, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Maher, A.C.; Akhtar, M.; Tarnopolsky, M.A. Men Supplemented with 17beta-Estradiol Have Increased Beta-Oxidation Capacity in Skeletal Muscle. Physiol. Genom. 2010, 42, 342–347. [Google Scholar] [CrossRef]
- Zambrano, E.; Rodríguez-González, G.L.; Guzmán, C.; García-Becerra, R.; Boeck, L.; Díaz, L.; Menjivar, M.; Larrea, F.; Nathanielsz, P.W. A Maternal Low Protein Diet during Pregnancy and Lactation in the Rat Impairs Male Reproductive Development. J. Physiol. 2005, 563, 275–284. [Google Scholar] [CrossRef] [PubMed]
- da Silva Faria, T.; de Bittencourt Brasil, F.; Sampaio, F.J.B.; da Fonte Ramos, C. Effects of Maternal Undernutrition during Lactation on Estrogen and Androgen Receptor Expressions in Rat Ovary at Puberty. Nutrition 2010, 26, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Metter, E.J.; Conwit, R.; Tobin, J.; Fozard, J.L. Age-Associated Loss of Power and Strength in the Upper Extremities in Women and Men. J. Gerontol. A Biol. Sci. Med. Sci. 1997, 52, B267–B276. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Adamson, A.; Siervo, M.; Mathers, J.C.; Jagger, C. Low Protein Intake, Muscle Strength and Physical Performance in the Very Old: The Newcastle 85+ Study. Clin. Nutr. 2018, 37, 2260–2270. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alameddine, M.; Altinpinar, A.E.; Ersoy, U.; Kanakis, I.; Myrtziou, I.; Ozanne, S.E.; Goljanek-Whysall, K.; Vasilaki, A. Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring. Nutrients 2024, 16, 2926. https://doi.org/10.3390/nu16172926
Alameddine M, Altinpinar AE, Ersoy U, Kanakis I, Myrtziou I, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring. Nutrients. 2024; 16(17):2926. https://doi.org/10.3390/nu16172926
Chicago/Turabian StyleAlameddine, Moussira, Atilla Emre Altinpinar, Ufuk Ersoy, Ioannis Kanakis, Ioanna Myrtziou, Susan E. Ozanne, Katarzyna Goljanek-Whysall, and Aphrodite Vasilaki. 2024. "Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring" Nutrients 16, no. 17: 2926. https://doi.org/10.3390/nu16172926
APA StyleAlameddine, M., Altinpinar, A. E., Ersoy, U., Kanakis, I., Myrtziou, I., Ozanne, S. E., Goljanek-Whysall, K., & Vasilaki, A. (2024). Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring. Nutrients, 16(17), 2926. https://doi.org/10.3390/nu16172926