Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Methodological Quality Assessment
2.4. Study Selection
3. Results
3.1. Overview of Vaccinium spp.
3.2. Study Selection and Characteristics
3.3. Clinical Study
Study | Study Design | Study Population | Type of Intervention | Dose (mg/day) | Trial Duration | ALT Levels (U/L) | AST Levels (U/L) | Insulin (µ/mL) | HOMA IR | Jadad Scale |
---|---|---|---|---|---|---|---|---|---|---|
Hormoznejad et al. 2020 [34] | Randomized double-blind, placebo-controlled clinical trial | Age ≥ 18 years; BMI 25 ± 5 kg/m2, N = 41 (groups: cranberry n = 20, placebo n = 21) | The placebo and cranberry groups received either placebo or cranberry tablets (two tablets; one tablet after lunch and another one after dinner) | 288 | 12 weeks | Before: in the cranberry group: 58.35 ± 18.03; in the placebo group: 55.33 ± 26.10; after: in the cranberry group: 36.90 ± 9.00; in the placebo group: 45.42 ± 15.59 | Before: in the cranberry group: 26.85 ± 10.30; in the placebo group: 29.95 ± 15.02; after: in the cranberry group: 22.60 ± 7.68; in the placebo group: 24.90 ± 15.79 | Before: in the cranberry group: 10.55 ± 1.43; in the placebo group: 10.66 ± 1.55; after: in the cranberry group: 8.20 ± 0.61; in the placebo group: 9.80 ± 1.36 | Before: in the cranberry group: 2.59 ± 0.86; in the placebo group: 2.38 ± 0.71; after: in the cranberry group: 1.88 ± 0.20; in the placebo group: 2.20 ± 0.45 | 5 |
Shirazi et al. 2021 [85] | Randomized double-blind, placebo-controlled clinical trial (parallel) | Age ≥ 18 years, N = 110 (groups: cranberry n = 46, placebo n = 48) | The cranberry capsule includes 144 mg Vaccinium macrocarpon (equal to 13 g dried cranberry fruit) | 144 | 6 months | Before: in the cranberry group: 42.74 ± 15.04; in the placebo group: 47.48 ± 18.35; after: in the cranberry group: 39.54 ± 16.95; in the placebo group: 38.69 ± 14.20 | Before: in the cranberry group: 37.22 ± 13.51; in the placebo group: 41.17 ± 16.69; after: in the cranberry group: 32.98 ± 14.33; in the placebo group: 31.98 ± 12.48 | Before: in the cranberry group: 10.38 ± 3.09; in the placebo group: 10.65 ± 3.02; after: in the cranberry group: 5.62 ± 2.04; in the placebo group: 10.06 ± 2.94 | Before: in the cranberry group: 2.78 ± 0.99; in the placebo group: 2.84 ± 0.98; after: in the cranberry group: 1.39 ± 0.62; in the placebo group: 2.51 ± 0.85 | 5 |
3.4. Preclinical Study
3.4.1. Vaccinium and the Alleviation of Liver Steatosis and Hepatocellular Damage
3.4.2. Vaccinium and the Alleviation of Hepatic Fibrosis
3.4.3. Anti-Inflammatory Effects of Vaccinium
3.4.4. Antioxidant Effects of Vaccinium
3.4.5. Vaccinium, Lipid Metabolism, and NAFLD
Impact of Vaccinium on Peroxisome Proliferator-Activated Receptors (PPARs)
Impact of Vaccinium on Sterol Regulatory Element-Binding Proteins (SREBPs)
Influence of Vaccinium on AMP-Activated Protein Kinase (AMPK)
3.4.6. The Effect of Vaccinium on Glucose Metabolism
Study | Study Types | Type of Intervention | Effects | STAIR | |
---|---|---|---|---|---|
Animal Model | Dosage and Duration | Metabolism/Molecular | |||
Ren, Huang, and Cheng 2014 [75] | Male Sprague Dawley rats (200 to 250 g) | Blueberry juice (15 g/kg, once a day) / 8 weeks | Rats were divided into 2 groups: (1) HFD—50 rats; (2) control group—8 rats | ↓ The degrees of NAFLD and degenerated hepatocytes; ↓ Serum activities of AST and ALT; ↓The ratio of TG/HDL-c; ↑ The mRNA levels of SIRT1, PPAR-α; ↓ The levels of SREBP-1c. | 5 |
Morrison et al. 2015 [72] | Female ApoE 3Leiden mice | 0.1% (w/w) Mirtoselect—standardized Vaccinium myrtillus L. extract (36% anthocyanins)/20 weeks | Mice were divided into 3 treatment groups: (1) HCD; (2) HCD and 0.1% (w/w) Mirtoselect; and (3) Western-type diet without cholesterol supplementation | ↓ The development of hepatic steatosis; ↓ Microvesicular steatosis; ↓ An accumulation of lipids esterified to cholesterol (cholesteryl esters); ↓ The hepatic free cholesterol; ↓ p65-NF-κB activity; Expression of Emr1 or Ccl2—not significant; ↓ Neutrophil infiltration and the expression of two neutrophil chemoattractants—Cxcl1 and Cxcl2; ↓ The pronounced increase in collagen and significantly reduced Col1a1 expression. | 4 |
Glisan et al. 2016 [33] | Male C57BL/6J mice (4 weeks old) | 0.8% CBE—4 g per day (CBE, D13051702) (CBE—macerated sulfite-free dried cranberries)/21 weeks | Mice were divided into 2 treatment groups: (1) HFD (n = 24) and (2) CBE diet (n = 24) for 10 weeks | Blood glucose levels, plasma insulin levels, and HOMA-IR—not significant; ↓ The plasma levels of free fatty acids; ↓ The plasma levels of IL-1β; ↓ The serum levels of ALT levels; ↓ The total lipid droplet area in the liver and the total hepatic lipid area; ↓ The hepatic expression of the NF-κB-dependent proinflammatory genes TNF-α (↓47%) and Cox2 (↓46%); ↓ The hepatic mRNA expression of Il1b (55%) and Ucp2 (57%); ↓ The hepatic mRNA levels of C-C chemokine receptor 2 (Ccr2), the CCL2 receptor expressed on recruited monocytes, by 56% and Ccl3 by 55%; ↓ The hepatic expression of Nlrp3 (43%) and Txnip (30%); ↑ The gene expression of hepatic PPAR-α. ↓ The transcription factor responsible for regulating Txnip expression (24%). | 5 |
Ren et al. 2017 [76] | Male Sprague Dawley rats (6 to 8 weeks old) | 10 mL/kg blueberry juice (1 kg blueberries were thawed, milled, and pressed)/12 weeks | Rats were divided into 2 groups: (1) blueberry juice group (injected with 50 μL/kg saline solution and orally received 10 mL/kg blueberry juice and 10 mL/kg liquid placebo daily); (2) blueberry juice and PPAR-α inhibitor group (injected with 50 μL/kg PPAR-α in saline solution and orally received 10 mL/kg blueberry juice and 10 mL/kg liquid placebo daily) | Blueberry juice: ↓ The serum levels of ALT and AST; ↑ The levels of SOD and GSH; ↓ The serum levels of MDA, TG, TC, and LDL-C increased HDL-C levels; ↑ the mRNA levels of PPAR-α, which reduced the level of SREBP-1c and PNPLA-3. Blueberry juice and PPAR-α inhibitor: ↓ the mRNA levels of SREBP-1c and PNPLA3-α. | 5 |
Shimizu et al. 2019 [84] | Male mice C57BL/6 (6 weeks old) | 1% cranberry powder or 5% cranberry powder (anthocyanin 120 mg/100g and proanthocyanidin 2600 mg/100 g)/8 weeks | Mice were divided into 4 treatment groups: (1) ND, (2) HFD, (3) HFD + 1% cranberry powder, and (4) HFD + 5% cranberry powder | ↓ Body weight and concomitantly triggered hyperphagia; ↓ Oxidative stress and proinflammatory cytokine expression (IL-6); The serum levels of glucose—not significant; ↓ The serum levels of TG; ↓ The serum level of ALT; ↓ The serum level of hepatic mRNA of PPAR-γ and MCP-1. | 4 |
Haga et al. 2019 [74] | Male homozygous leptin receptor-deficient (BKS.Cg-+ Leprdb/+ Leprdb/Jcl; db/db) mice (10 weeks old) | 5% and 10% bilberry fruits extracts (≥36% anthocyanin glycosides)/8 weeks | Mice were divided into 4 treatment groups: (1) ND, (2) HFD + HCD, (3) HFD + HCD + 5% bilberry fruit extracts, and (4) HFD + HCD + 10% bilberry fruit extracts | ↓ Fat accumulation and TG contents in mouse liver; Less fibrosis; ↓ The serum levels of ALT and AST; ↓ The plasma levels of GLU and TC; ↓ Proinflammatory cytokine levels (TNF-α, IL-9, IL-1β, and IFN-γ). | 4 |
Li et al. 2020 [35] | Male Sprague Dawley rats (8 weeks old) | Freeze-dried leaf extract of Vaccinium corymbosum L. (PBL)/8 weeks | Mice were divided into 4 groups: (1) ND; (2) HFD (3) HFD + high dose PBL (H-PBL); (4) HFD + low dose PBL (L-PBL). Rats received: PBL at a dose of 400 mg kg/day (H-PBL group) or 100 mg/kg/day (L-PBL group) or an equal volume of vehicle (0.9% NaCl, ND, and HFD groups) by gavage for 9 weeks | ↓ The hepatic TC, TC, L-LDL, ALT, and AST levels; ↓ The hepatic steatosis and inflammatory infiltration; ↓ The generation of hepatic malondialdehyde (MDA); ↓ The hepatic ROS levels; Protection against hepatic oxidative stress; ↓ pAMPKα, PGC-1α, and SIRT3 proteins in liver; ↑ ERRα, Nrf-1, and Nrf-2 genes in liver. | 5 |
Nakano et al. 2020 [81] | Male mice C57BL/6N (5 weeks old) | 2% bilberry anthocyanin extract powder (Mirtoselect)/18 weeks | Mice were randomly divided into 4 groups: (1) ND group, (2) ND + 2% bilberry anthocyanins, (3) WD group, and (4) WD + 2% bilberry anthocyanins | ↓ Body weight, liver weight, epididymal fat mass, liver-to-body-weight ratio, and hepatic fat mass; ↓ The serum level of AST and ALT; ↓ The serum level of MCP-1; ↓ The serum level of TC; ↓ The serum level of insulin; ↑ Insulin resistance; The serum levels of HDL-c, TG, and glucose—not significantly different; ↑ The level of lactic acid in the gut; ↑ The levels of Nrf-2 and SOD2; ↓ The level of Keap1 and TBARS in the liver. | 5 |
Faheem et al. 2020 [71] | Male albino Wistar rats (12 weeks old) | Cranberry nutraceutical (186c1025) diluted in water (40 mg/mL)/8 weeks | Mice were divided into 5 groups: control group: (1) ND for 8 weeks and received 1 mL/kg distilled water orally thrice weekly; HFCD group: (2) HFCD for 8 weeks and received 1 mL/kg distilled water orally three times weekly; 50/HFCD group: (3) HFCD and cranberry (50 mg/kg/day) orally three times weekly; 100/HFCD group: (4) HFCD and cranberry (100 mg/kg/day) orally three times weekly; treated group: (5) ND and cranberry (100 mg/kg/day) orally three times weekly | ↓ Body weight; ↓ The serum levels of ALT and AST; ↓ The serum levels of TG; ↓ HOMA IR; ↑ SOD and GSH; ↑ ADP levels; ↑ Nrf-2; ↓ The serum level of TNF-α, IL-6, NF-κB, ↓ TGF-β and α-SMA tissue levels; ↓ Reduction of collagen deposition; ↑ IRS-2 expression. | 5 |
Zhao et al. 2021 [78] | Male mice C57BL/6 (6–8 weeks old) | Blueberry-derived exosome-like nanoparticles (BELNs) at 25, 50, or 100 mg/kg/4 weeks | Mice in the 3 HFD groups received intragastric administration of blueberry-derived exosome-like nanoparticles at doses of 25, 50, or 100 mg/kg, administered once every other day | ↓ The serum level of insulin, fasting glucose; ↑ Insulin resistance; ↓ The accumulation of lipid droplets in the liver and the liver weight; ↓ The contents of TC and TG, the levels of ALT and AST, and LDL-C; ↑ The content of HDL-C; ↑ The activities of SOD and GSH; ↓ The content of MDA in the liver; Accelerated the translocation of Nrf-2 from the cytoplasm to nuclei in the liver; ↓ The mRNA levels of FAS and ACC1 in the liver; ↓ The expression of Bcl-2, Bax, and HO-1 in the liver. | 5 |
Hewage et al. 2021 [32] | Male C57BL/6J mice (6 weeks old) | (5% w/w) Manitoba lingonberry Vaccinium vitis-idaea L./freeze-dried berry powder/12 weeks | Mice were divided into 3 groups: (1) control (D12450J) diet, (2) HFD (D12492), or (3) HFD supplemented with (5% w/w) Manitoba lingonberry | ↓ The serum levels of ALT and AST; ↓ The hepatic accumulation of TG and TC; ↓ MDA levels and restored GSH levels; ↓ The hepatic GSSG level and restored GSH/GSSG ratio; ↓ The hepatic ACC-1, SREBP-1c mRNA expression, and the nuclear protein level of SREBP-1c; ↑ The expression of Gclc in the liver; ↓ The serum levels of IL-6, MCP-1, and TNF-α mRNA expression; ↑ pAMPK level and pAMPK/AMPK ratio; ↑ Nuclear Nrf-2 protein level in the liver. | 4 |
Ryyti et al. 2021 [80] | Male C57BL/6N mice (8 weeks old) | 20% w/w air-dried lingonberry Vaccinium vitis-idaea L. powder (900 g of fresh lingonberries were used to produce 100 g of berry powder)/6 weeks | Mice were divided into 3 groups: (1) LFD (10 kcal% fat); (2) HFD (46 kcal% fat); (3) HFD with air-dried lingonberry powder (20% w/w) | ↓ The serum levels of ALT; ↓ The expression of the acute phase inflammatory factors Saa1 and Saa2; ↓ The expression of Cyp46a1; ↑ The expression of hydroxysteroid (17-beta) dehydrogenase 6 (Hsd17b6) and insulin-like growth factor binding protein 2 (Igfbp2); ↓ The expression of genes associated with lipid metabolic process (Mogat1, Plin4), inflammatory/immune response or cell migration (Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10), and cell cycle regulation (Cdkn1a, Tubb2a, Tubb6). | 4 |
Hewage et al. 2022 [31] | Male C57BL/6J mice (6 weeks old) | 5% w/w Manitoba wild lingonberry/12 weeks | Mice were divided into 3 groups: (1) a control diet (D12450J) containing 11% kcal fat, 18% kcal protein, and 71% kcal carbohydrate, or (2) an HFD (D12492) containing 62% kcal fat, 18% kcal protein, and 20% kcal carbohydrate, or (3) an HFD supplemented with (5% w/w) Manitoba wild lingonberry | ↓ The hepatic accumulation of TG and TC; ↓ Notch1 expression in the liver; ↓ Liver NICD1 protein and HES1 mRNA levels; ↓ The expression of SREBP-1c and ACC1; ↑ The hepatic mRNA levels of ACOX1 and CPTIα; ↓ Gene expressions of CD36, DGAT1 and DGAT2. | 3 |
Zhu et al. 2022 [77] | Male C57BL/6 mice (8–10 weeks old) | TEC–blueberry monomers were prepared as 1000 ppb, 800, 600, 400, 200, and 100 ppb with 0.1% formic acid methanol solution/16 weeks | Mice were treated with TEC via gavage at doses of 7.5, 15.0, or 30.0 mg/kg daily for 6 weeks following 10 weeks on a high-fat diet (HFD). To achieve tRF-47 knockdown in vivo, a tRF-47 antagomir (5 μg/mouse in 1.5 mL saline) was injected into the tail vein of NASH mice three times a week for 2 weeks, starting after 9 weeks on the HFD | ↓ The serum levels of ALT, AST and MDA; ↑ The level of autophagy marker LC3B in the liver; ↓ The activation of inflammasomes and TLR4; TEC relies on tRF-47 (tRF-47-58ZZJQJYSWRYVMMV5BO) to promote autophagy and weaken pyroptosis. | 5 |
Sotelo-González et al. 2023 [82] | Male Wistar rats | 10% (w/v) blueberry aqueous extracts/18 weeks | Mice were divided into 3 groups: (1) standard-diet-fed group; (2) HFFD (standard diet added with 20% lard and 18% fructose); (3) HFFD with blueberry beverage | ↓ The serum level of TG; ↓ The accumulation of lipid vacuoles; ↓ The accumulation of saturated, monounsaturated, and polyunsaturated fatty acids; ↓ FAS and ACC expression. | 5 |
3.5. Cell Culture Experiments
Study | Study Types | Effects | |
---|---|---|---|
Model | Dosage and Duration | ||
Liu et al. 2011 [79] | Human hepatocellular cancer cell line (HepG2) | Anthocyanin-rich and phenolic-acid-rich fractions from fresh blueberries (Vaccinium spp.) |
|
Wang et al. 2016 [109] | Human hepatocellular cancer cell line (HepG2) | purified ACNs from wild blueberries (Vaccinium spp.); −10, 20, and 40 µg/mL |
|
Haga et al. 2019 [74] | Alpha mouse liver 12 cells | A 90% ethanolic extract of bilberry fruits (≥36% anthocyanin glycosides) |
|
Li et al. 2020 [35] | Human hepatocellular cancer cell line (HepG2) | Blueberry (Vaccinium corymbosum L.) leaves (PBL);3 doses of PBL at 10 (high), 5 (medium), and 2.5 (low) μg/mL |
|
Zhao et al. 2021 [78] | Human hepatocellular cancer cell line (HepG2) | Blueberry-derived exosome-like nanoparticles (BELNs)—100 µg/mL |
|
Wang et al. 2021 [110] | Human hepatocellular cancer cell line (HepG2) | Blueberry leaves (PBL)—6.25, 12.5, 25 µg/mL for 48 h |
|
Zhu et al. 2022 [77] | Human hepatoma cell line HepG2 | 25, 50, and 75 μM C3Glu, myricetin, myricetin 3-o-galactoside, delphinidin, and blueberry monomers (TEC) |
|
Hewage et al. 2022 [31] | Human hepatoma cells (HepG2, cell line: HB-8065) | 5% w/w Manitoba wild lingonberry |
|
4. Discussion
5. Future Research
6. Strength and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paik, J.M.; Golabi, P.; Younossi, Y.; Mishra, A.; Younossi, Z.M. Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: The Growing Impact of NAFLD. Hepatology 2020, 72, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the Epidemic of Nonalcoholic Fatty Liver Disease Demonstrates an Exponential Increase in Burden of Disease. Hepatology 2018, 67, 123–133. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Z.; Xu, M.; Zhang, D.; Ling, J.; Yu, P.; Shen, Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022, 11, 3637. [Google Scholar] [CrossRef]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic Review: The Epidemiology and Natural History of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis in Adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Sanyal, A.J. The Global NAFLD Epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.L.P.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.H.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global Incidence and Prevalence of Nonalcoholic Fatty Liver Disease. Clin. Mol. Hepatol. 2023, 29, S32. [Google Scholar] [CrossRef] [PubMed]
- Charytoniuk, T.; Drygalski, K.; Konstantynowicz-Nowicka, K.; Berk, K.; Chabowski, A. Alternative Treatment Methods Attenuate the Development of NAFLD: A Review of Resveratrol Molecular Mechanisms and Clinical Trials. Nutrition 2017, 34, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; et al. Prevalence, Incidence, and Outcome of Non-Alcoholic Fatty Liver Disease in Asia, 1999–2019: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2019, 4, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Rauf, N.; Nabi, G.; Ullah, H.; Shen, Y.; Zhou, Y.D.; Fu, J. Role of Nutrition in the Pathogenesis and Prevention of Non-Alcoholic Fatty Liver Disease: Recent Updates. Int. J. Biol. Sci. 2019, 15, 265. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, M.; Vairetti, M.; Ferrigno, A. Current Options and Future Directions for NAFLD and NASH Treatment. Int. J. Mol. Sci. 2021, 22, 7571. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Friedman, S.L.; Mccullough, A.J.; Dimick-Santos, L. Challenges and Opportunities in Drug and Biomarker Development for Nonalcoholic Steatohepatitis: Findings and Recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology 2015, 61, 1392–1405. [Google Scholar] [CrossRef]
- Cobbina, E.; Akhlaghi, F. Non-Alcoholic Fatty Liver Disease (NAFLD)—Pathogenesis, Classification, and Effect on Drug Metabolizing Enzymes and Transporters. Drug Metab. Rev. 2017, 49, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Golabi, P.; Otgonsuren, M.; Cable, R.; Felix, S.; Koenig, A.; Sayiner, M.; Younossi, Z.M. Non-Alcoholic Fatty Liver Disease (NAFLD) Is Associated with Impairment of Health Related Quality of Life (HRQOL). Health Qual. Life Outcomes 2016, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Konyn, P.; Ahmed, A.; Kim, D. Causes and Risk Profiles of Mortality among Individuals with Nonalcoholic Fatty Liver Disease. Clin. Mol. Hepatol. 2023, 29, S43. [Google Scholar] [CrossRef] [PubMed]
- Konyn, P.; Alshuwaykh, O.; Dennis, B.B.; Cholankeril, G.; Ahmed, A.; Kim, D. Gallstone Disease and Its Association With Nonalcoholic Fatty Liver Disease, All-Cause and Cause-Specific Mortality. Clin. Gastroenterol. Hepatol. 2023, 21, 940–948.e2. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Dalbeni, A. Treatments for NAFLD: State of Art. Int. J. Mol. Sci. 2021, 22, 2350. [Google Scholar] [CrossRef]
- Domingues, I.; Leclercq, I.A.; Beloqui, A. Nonalcoholic Fatty Liver Disease: Current Therapies and Future Perspectives in Drug Delivery. J. Control. Release 2023, 363, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Ciardullo, S.; Muraca, E.; Vergani, M.; Invernizzi, P.; Perseghin, G. Advancements in Pharmacological Treatment of NAFLD/MASLD: A Focus on Metabolic and Liver-Targeted Interventions. Gastroenterol. Rep. 2023, 12, goae029. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, S.; Han, L.; Liu, J. Pharmacotherapies of NAFLD: Updated Opportunities Based on Metabolic Intervention. Nutr. Metab. 2023, 20, 30. [Google Scholar] [CrossRef]
- Keam, S.J. Resmetirom: First Approval. Drugs 2024, 84, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Kokkorakis, M.; Boutari, C.; Hill, M.A.; Kotsis, V.; Loomba, R.; Sanyal, A.J.; Mantzoros, C.S. Resmetirom, the First Approved Drug for the Management of Metabolic Dysfunction-Associated Steatohepatitis: Trials, Opportunities, and Challenges. Metabolism 2024, 154, 155835. [Google Scholar] [CrossRef] [PubMed]
- Semmler, G.; Datz, C.; Reiberger, T.; Trauner, M. Diet and Exercise in NAFLD/NASH: Beyond the Obvious. Liver Int. 2021, 41, 2249–2268. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Hekmatdoost, A.; Mirmiran, P. What Are the Main Areas of Focus to Prevent or Treat Non-Alcoholic Fatty Liver Disease? J. Dig. Dis. 2019, 20, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Glass, O.; Filozof, C.; Noureddin, M.; Berner-Hansen, M.; Schabel, E.; Omokaro, S.O.; Schattenberg, J.M.; Barradas, K.; Miller, V.; Francque, S.; et al. Standardisation of Diet and Exercise in Clinical Trials of NAFLD-NASH: Recommendations from the Liver Forum. J. Hepatol. 2020, 73, 680–693. [Google Scholar] [CrossRef]
- Yan, T.; Yan, N.; Wang, P.; Xia, Y.; Hao, H.; Wang, G.; Gonzalez, F.J. Herbal Drug Discovery for the Treatment of Nonalcoholic Fatty Liver Disease. Acta Pharm. Sin. B 2020, 10, 3–18. [Google Scholar] [CrossRef]
- Koperska, A.; Wesołek, A.; Moszak, M.; Szulińska, M. Berberine in Non-Alcoholic Fatty Liver Disease—A Review. Nutrients 2022, 14, 3459. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, C.; Hao, S.; Song, H.; Yang, L. The Therapeutic Effect of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Evid.-Based Complement. Altern. Med. 2016, 2016, 3593951. [Google Scholar] [CrossRef] [PubMed]
- Mansour-Ghanaei, F.; Hadi, A.; Pourmasoumi, M.; Joukar, F.; Golpour, S.; Najafgholizadeh, A. Green Tea as a Safe Alternative Approach for Nonalcoholic Fatty Liver Treatment: A Systematic Review and Meta-Analysis of Clinical Trials. Phyther. Res. 2018, 32, 1876–1884. [Google Scholar] [CrossRef]
- Li, H.Y.; Gan, R.Y.; Shang, A.; Mao, Q.Q.; Sun, Q.C.; Wu, D.T.; Geng, F.; He, X.Q.; Li, H. Bin Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. Oxid. Med. Cell. Longev. 2021, 2021, 6621644. [Google Scholar] [CrossRef]
- Madduma Hewage, S.; Au-Yeung, K.K.W.; Prashar, S.; Wijerathne, C.U.B.; Karmin, O.; Siow, Y.L. Lingonberry Improves Hepatic Lipid Metabolism by Targeting Notch1 Signaling. Antioxidants 2022, 11, 472. [Google Scholar] [CrossRef] [PubMed]
- Hewage, S.M.; Prashar, S.; Karmin, O.; Siow, Y.L. Lingonberry Improves Non-Alcoholic Fatty Liver Disease by Reducing Hepatic Lipid Accumulation, Oxidative Stress and Inflammatory Response. Antioxidants 2021, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Glisan, S.L.; Ryan, C.; Neilson, A.P.; Lambert, J.D. Cranberry Extract Attenuates Hepatic Inflammation in High-Fat-Fed Obese Mice. J. Nutr. Biochem. 2016, 37, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Hormoznejad, R.; Mohammad Shahi, M.; Rahim, F.; Helli, B.; Alavinejad, P.; Sharhani, A. Combined Cranberry Supplementation and Weight Loss Diet in Non-Alcoholic Fatty Liver Disease: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Int. J. Food Sci. Nutr. 2020, 71, 991–1000. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy Using Blueberry Leaf Polyphenols to Alleviate Non-Alcoholic Fatty Liver Disease through Improving Mitochondrial Function and Oxidative Defense. Phytomedicine 2020, 69, 153209. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Chen, F.; Wang, L.; Wang, J.; Jin, S.; Ma, Y. min Protective Effects of Blueberries (Vaccinium corymbosum L.) Extract against Cadmium-Induced Hepatotoxicity in Mice. Environ. Toxicol. Pharmacol. 2014, 37, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Kianbakht, S.; Hashem-Dabaghian, F. Antihypertensive Efficacy and Safety of Vaccinium Arctostaphylos Berry Extract in Overweight/Obese Hypertensive Patients: A Randomized, Double-Blind and Placebo-Controlled Clinical Trial. Complement. Ther. Med. 2019, 44, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Chehri, A.; Yarani, R.; Yousefi, Z.; Shakouri, S.K.; Ostadrahimi, A.; Mobasseri, M.; Araj-Khodaei, M. Phytochemical and Pharmacological Anti-Diabetic Properties of Bilberries (Vaccinium myrtillus), Recommendations for Future Studies. Prim. Care Diabetes 2022, 16, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H. Update of the Stroke Therapy Academic Industry Roundtable Preclinical Recommendations. Stroke 2009, 40, 2244–2250. [Google Scholar] [CrossRef]
- Halpern, S.H.; Douglas, J.M. Appendix: Jadad Scale for Reporting Randomized Controlled Trials. In Evidence-Based Obstetric Anesthesia; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 237–238. [Google Scholar] [CrossRef]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Olejnik, A.; Rychlik, J.; Grajek, W. Cranberries (Oxycoccus quadripetalus) Inhibit Lipid Metabolism and Modulate Leptin and Adiponectin Secretion in 3T3-L1 Adipocytes. Food Chem. 2015, 185, 383–388. [Google Scholar] [CrossRef]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; et al. Bilberries Reduce Low-Grade Inflammation in Individuals with Features of Metabolic Syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; et al. Vascular Endothelial Growth Factor in Ocular Fluid of Patients with Diabetic Retinopathy and Other Retinal Disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Mauramo, M.; Onali, T.; Wahbi, W.; Vasara, J.; Lampinen, A.; Mauramo, E.; Kivimäki, A.; Martens, S.; Häggman, H.; Sutinen, M.; et al. Bilberry (Vaccinium myrtillus L.) Powder Has Anticarcinogenic Effects on Oral Carcinoma in Vitro and in Vivo. Antioxidants 2021, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Tumbas Šaponjac, V.; Čanadanović-Brunet, J.; Ćetković, G.; Djilas, S.; Četojević-Simin, D. Dried Bilberry (Vaccinium myrtillus L.) Extract Fractions as Antioxidants and Cancer Cell Growth Inhibitors. LWT-Food Sci. Technol. 2015, 61, 615–621. [Google Scholar] [CrossRef]
- Mykkänen, O.T.; Huotari, A.; Herzig, K.H.; Dunlop, T.W.; Mykkänen, H.; Kirjavainen, P.V. Wild Blueberries (Vaccinium myrtillus) Alleviate Inflammation and Hypertension Associated with Developing Obesity in Mice Fed with a High-Fat Diet. PLoS ONE 2014, 9, e114790. [Google Scholar] [CrossRef] [PubMed]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M.; Bhowmick, M.; Chattaraj, B.; Mohanto, S.; Srivastava, S.; et al. Blueberries in Focus: Exploring the Phytochemical Potentials and Therapeutic Applications. J. Agric. Food Res. 2024, 18, 101300. [Google Scholar] [CrossRef]
- Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Saad Azab, S. Non Alcoholic Fatty Liver Disease: Pathogenesis, Role of (TNF-α, IL-6) in Hepatic Inflammation and Future Potential Nutraceutical Treatment. Arch. Pharm. Sci. Ain Shams Univ. 2019, 3, 154–169. [Google Scholar] [CrossRef]
- Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 2021, 11, 5655. [Google Scholar] [CrossRef]
- Colak, N.; Primetta, A.K.; Riihinen, K.R.; Jaakola, L.; Grúz, J.; Strnad, M.; Torun, H.; Ayaz, F.A. Phenolic Compounds and Antioxidant Capacity in Different-Colored and Non-Pigmented Berries of Bilberry (Vaccinium myrtillus L.). Food Biosci. 2017, 20, 67–78. [Google Scholar] [CrossRef]
- Zhu, C.W.; Lü, H.; Du, L.L.; Li, J.; Chen, H.; Zhao, H.F.; Wu, W.L.; Chen, J.; Li, W.L. Five Blueberry Anthocyanins and Their Antioxidant, Hypoglycemic, and Hypolipidemic Effects in Vitro. Front. Nutr. 2023, 10, 1172982. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ke, H.; Li, Y.; Xie, L.; Su, H.; Xie, J.; Mo, J.; Chen, W. Malvidin-3-O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. J. Agric. Food Chem. 2021, 69, 4663–4673. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Balandrano, D.D.; Chai, Z.; Hutabarat, R.P.; Beta, T.; Feng, J.; Ma, K.; Li, D.; Huang, W. Hypoglycemic and Hypolipidemic Effects of Blueberry Anthocyanins by AMPK Activation: In Vitro and in Vivo Studies. Redox Biol. 2021, 46, 102100. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.; Das, R.; Mondal, S. Anthocyanins: Potential Phytochemical Candidates for the Amelioration of Non-Alcoholic Fatty Liver Disease. Ann. Pharm. Françaises 2024, 82, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Fenger, J.A. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Cuadrado, C.; Redondo, I.B.; Giampieri, F.; González-Paramás, A.M.; Santos-Buelga, C. Novel Approaches in Anthocyanin Research-Plant Fortification and Bioavailability Issues. Trends Food Sci. Technol. 2021, 117, 92–105. [Google Scholar] [CrossRef]
- Czank, C.; Cassidy, A.; Zhang, Q.; Morrison, D.J.; Preston, T.; Kroon, P.A.; Botting, N.P.; Kay, C.D. Human Metabolism and Elimination of the Anthocyanin, Cyanidin-3-Glucoside: A 13C-Tracer Study. Am. J. Clin. Nutr. 2013, 97, 995–1003. [Google Scholar] [CrossRef]
- Wu, H.; Oliveira, G.; Lila, M.A. Protein-Binding Approaches for Improving Bioaccessibility and Bioavailability of Anthocyanins. Compr. Rev. Food Sci. Food Saf. 2023, 22, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W. Blueberry Anthocyanins: An Updated Review on Approaches to Enhancing Their Bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Hahm, T.H.; Tanaka, M.; Matsui, T. Current Knowledge on Intestinal Absorption of Anthocyanins. J. Agric. Food Chem. 2022, 70, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kitts, D.D.; Dolati, D.; Pratap-Singh, A.; Singh, A. Enhancing Resveratrol Bioavailability and Intestinal Uptake Using an Oil-Based Blueberry Extract Formulated with Chitosan/PEG Containing Nanoparticles. Food Hydrocoll. 2024, 156, 110373. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, H.; Tian, J.; Shu, C.; Sun, R.; Li, B.; Meng, X. Protective Effects of α-Casein or β-Casein on the Stability and Antioxidant Capacity of Blueberry Anthocyanins and Their Interaction Mechanism. LWT 2019, 115, 108434. [Google Scholar] [CrossRef]
- Lang, Y.; Li, B.; Gong, E.; Shu, C.; Si, X.; Gao, N.; Zhang, W.; Cui, H.; Meng, X. Effects of α-Casein and β-Casein on the Stability, Antioxidant Activity and Bioaccessibility of Blueberry Anthocyanins with an in Vitro Simulated Digestion. Food Chem. 2021, 334, 127526. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Yue, P.; Chi, J.; Liang, J.; Gao, X. Formation and Stability of Anthocyanins-Loaded Nanocomplexes Prepared with Chitosan Hydrochloride and Carboxymethyl Chitosan. Food Hydrocoll. 2018, 74, 23–31. [Google Scholar] [CrossRef]
- Ge, J.; Yue, X.; Wang, S.; Chi, J.; Liang, J.; Sun, Y.; Gao, X.; Yue, P. Nanocomplexes Composed of Chitosan Derivatives and β-Lactoglobulin as a Carrier for Anthocyanins: Preparation, Stability and Bioavailability in Vitro. Food Res. Int. 2019, 116, 336–345. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F.; Chen, L. Encapsulation of Anthocyanin in Liposomes Using Supercritical Carbon Dioxide: Effects of Anthocyanin and Sterol Concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, J.; Li, L.; Ren, J.; Lu, J.; Luo, F. Advances in Embedding Techniques of Anthocyanins: Improving Stability, Bioactivity and Bioavailability. Food Chem. X 2023, 20, 100983. [Google Scholar] [CrossRef]
- Cai, X.; Du, X.; Cui, D.; Wang, X.; Yang, Z.; Zhu, G. Improvement of Stability of Blueberry Anthocyanins by Carboxymethyl Starch/Xanthan Gum Combinations Microencapsulation. Food Hydrocoll. 2019, 91, 238–245. [Google Scholar] [CrossRef]
- Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Ayoub, I.M.; Azab, S.S. Hepatoprotective Effect of Cranberry Nutraceutical Extract in Non-Alcoholic Fatty Liver Model in Rats: Impact on Insulin Resistance and Nrf-2 Expression. Front. Pharmacol. 2020, 11, 511975. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.C.; Liang, W.; Mulder, P.; Verschuren, L.; Pieterman, E.; Toet, K.; Heeringa, P.; Wielinga, P.Y.; Kooistra, T.; Kleemann, R. Mirtoselect, an Anthocyanin-Rich Bilberry Extract, Attenuates Non-Alcoholic Steatohepatitis and Associated Fibrosis in ApoE∗3Leiden Mice. J. Hepatol. 2015, 62, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shen, T.; Jiang, X.; Xia, M.; Sun, X.; Guo, H.; Ling, W. Purified Anthocyanins from Bilberry and Black Currant Attenuate Hepatic Mitochondrial Dysfunction and Steatohepatitis in Mice with Methionine and Choline Deficiency. J. Agric. Food Chem. 2015, 63, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Haga, S.; YiMin; Yamaki, H.; Jin, S.; Sogon, T.; Morita, N.; Ozaki, M. Extracts of Bilberry (Vaccinium myrtillus L.) Fruits Improve Liver Steatosis and Injury in Mice by Preventing Lipid Accumulation and Cell Death. Biosci. Biotechnol. Biochem. 2019, 83, 2110–2120. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Huang, C.; Cheng, M. Dietary Blueberry and Bifidobacteria Attenuate Nonalcoholic Fatty Liver Disease in Rats by Affecting SIRT1-Mediated Signaling Pathway. Oxid. Med. Cell. Longev. 2014, 2014, 469059. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Zhu, J.; Zhu, L.; Cheng, M. The Combination of Blueberry Juice and Probiotics Ameliorate Non-Alcoholic Steatohepatitis (NASH) by Affecting SREBP-1c/PNPLA-3 Pathway via PPAR-α. Nutrients 2017, 9, 198. [Google Scholar] [CrossRef]
- Zhu, J.; Wen, Y.; Zhang, Q.; Nie, F.; Cheng, M.; Zhao, X. The Monomer TEC of Blueberry Improves NASH by Augmenting TRF-47-Mediated Autophagy/Pyroptosis Signaling Pathway. J. Transl. Med. 2022, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Bian, Y.; Wang, Q.; Yin, F.; Yin, L.; Zhang, Y.L.; Liu, J.H. Blueberry-Derived Exosomes-like Nanoparticles Ameliorate Nonalcoholic Fatty Liver Disease by Attenuating Mitochondrial Oxidative Stress. Acta Pharmacol. Sin. 2021, 43, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, D.; Zhang, D.; Lv, Y.; Wei, Y.; Wu, W.; Zhou, F.; Tang, M.; Mao, T.; Li, M.; et al. Inhibitory Effect of Blueberry Polyphenolic Compounds on Oleic Acid-Induced Hepatic Steatosis in Vitro. J. Agric. Food Chem. 2011, 59, 12254–12263. [Google Scholar] [CrossRef]
- Ryyti, R.; Pemmari, A.; Peltola, R.; Hämäläinen, M.; Moilanen, E. Effects of Lingonberry (Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021, 13, 3693. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Wu, S.; Sakao, K.; Hara, T.; He, J.; Garcia, S.; Shetty, K.; Hou, D.X. Bilberry Anthocyanins Ameliorate NAFLD by Improving Dyslipidemia and Gut Microbiome Dysbiosis. Nutrients 2020, 12, 3252. [Google Scholar] [CrossRef]
- Sotelo-González, A.M.; Reynoso-Camacho, R.; Hernández-Calvillo, A.K.; Castañón-Servín, A.P.; García-Gutiérrez, D.G.; Gómez-Velázquez, H.D.d.J.; Martínez-Maldonado, M.Á.; de los Ríos, E.A.; Pérez-Ramírez, I.F. Strawberry, Blueberry, and Strawberry-Blueberry Blend Beverages Prevent Hepatic Steatosis in Obese Rats by Modulating Key Genes Involved in Lipid Metabolism. Int. J. Environ. Res. Public Health 2023, 20, 4418. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, M.; Zhang, B.; Nie, F.; Jiang, H. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats. PLoS ONE 2013, 8, e58659. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Ono, M.; Imoto, A.; Nagayama, H.; Tetsumura, N.; Terada, T.; Tomita, K.; Nishinaka, T. Cranberry Attenuates Progression of Non-Alcoholic Fatty Liver Disease Induced by High-Fat Diet in Mice. Biol. Pharm. Bull. 2019, 42, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Masnadi Shirazi, K.; Shirinpour, E.; Masnadi Shirazi, A.; Nikniaz, Z. Effect of Cranberry Supplementation on Liver Enzymes and Cardiometabolic Risk Factors in Patients with NAFLD: A Randomized Clinical Trial. BMC Complement. Med. Ther. 2021, 21, 283. [Google Scholar] [CrossRef]
- Käräjämäki, A.J.; Bloigu, R.; Kauma, H.; Kesäniemi, Y.A.; Koivurova, O.P.; Perkiömäki, J.; Huikuri, H.; Ukkola, O. Non-Alcoholic Fatty Liver Disease with and without Metabolic Syndrome: Different Long-Term Outcomes. Metabolism 2017, 66, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, R.; Verschuren, L.; Van Erk, M.J.; Nikolsky, Y.; Cnubben, N.H.P.; Verheij, E.R.; Smilde, A.K.; Hendriks, H.F.J.; Zadelaar, S.; Smith, G.J.; et al. Atherosclerosis and Liver Inflammation Induced by Increased Dietary Cholesterol Intake: A Combined Transcriptomics and Metabolomics Analysis. Genome Biol. 2007, 8, R200. [Google Scholar] [CrossRef] [PubMed]
- Francque, S.; Szabo, G.; Abdelmalek, M.F.; Byrne, C.D.; Cusi, K.; Dufour, J.F.; Roden, M.; Sacks, F.; Tacke, F. Nonalcoholic Steatohepatitis: The Role of Peroxisome Proliferator-Activated Receptors. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 24–39. [Google Scholar] [CrossRef]
- Rinella, M.E.; Sanyal, A.J. Management of NAFLD: A Stage-Based Approach. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 196–205. [Google Scholar] [CrossRef]
- Lindenmeyer, C.C.; McCullough, A.J. The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clin. Liver Dis. 2018, 22, 11–21. [Google Scholar] [CrossRef]
- Suzuki, M.; Takeuchi, H.; Kakita, T.; Unno, M.; Katayose, Y.; Matsuno, S. The Involvement of the Intracellular Superoxide Production System in Hepatic Ischemia-Reperfusion Injury: In Vivo and in Vitro Experiments Using Transgenic Mice Manifesting Excessive CuZn-SOD Activity. Free Radic. Biol. Med. 2000, 29, 756–763. [Google Scholar] [CrossRef]
- Sayed, A.A.R. Ferulsinaic Acid Modulates SOD, GSH, and Antioxidant Enzymes in Diabetic Kidney. Evid. Based. Complement. Alternat. Med. 2012, 2012, 580104. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, S.; Tan, F.; Li, H.; Chu, R.; Wang, X.; Sun, H.; Zhang, M. A Novel Green Production Process of Citric Acid on the Pilot Scale by Directly Recycling Its Extraction Effluent. J. Clean. Prod. 2020, 277, 124068. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Zhang, J.; Zeng, F.Y.; Zhu, Y.Z. Roles of the Peroxisome Proliferator-Activated Receptors (PPARs) in the Pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Pharmacol. Res. 2023, 192, 106786. [Google Scholar] [CrossRef] [PubMed]
- Fougerat, A.; Montagner, A.; Loiseau, N.; Guillou, H.; Wahli, W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020, 9, 1638. [Google Scholar] [CrossRef] [PubMed]
- Hebbachi, A.M.; Knight, B.L.; Wiggins, D.; Patel, D.D.; Gibbons, G.F. Peroxisome Proliferator-Activated Receptor α Deficiency Abolishes the Response of Lipogenic Gene Expression to Re-Feeding: Restoration of the Normal Response by Activation of Liver x Receptor α. J. Biol. Chem. 2008, 283, 4866–4876. [Google Scholar] [CrossRef]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wu, Y.L.; Yang, Q.; Cao, G. Peroxisome Proliferator-Activated Receptors in the Pathogenesis and Therapies of Liver Fibrosis. Pharmacol. Ther. 2021, 222, 107791. [Google Scholar] [CrossRef]
- Su, F.; Koeberle, A. Regulation and Targeting of SREBP-1 in Hepatocellular Carcinoma. Cancer Metastasis Rev. 2023, 43, 673–708. [Google Scholar] [CrossRef]
- Kawamura, S.; Matsushita, Y.; Kurosaki, S.; Tange, M.; Fujiwara, N.; Hayata, Y.; Hayakawa, Y.; Suzuki, N.; Hata, M.; Tsuboi, M.; et al. Inhibiting SCAP/SREBP Exacerbates Liver Injury and Carcinogenesis in Murine Nonalcoholic Steatohepatitis. J. Clin. Investig. 2022, 132, 1–18. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int. J. Mol. Sci. 2024, 25, 1109. [Google Scholar] [CrossRef]
- Bayram, H.M.; Majoo, F.M.; Ozturkcan, A. Polyphenols in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: An Update of Preclinical and Clinical Studies. Clin. Nutr. ESPEN 2021, 44, 1–14. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Z.; Lin, Y.; Ge, S.; Hamzah, S.S.; Hu, J. Bound Phenolics from Fresh Lotus Seeds Exert Anti-Obesity Effects in 3T3-L1 Adipocytes and High-Fat Diet-Fed Mice by Activation of AMPK. J. Funct. Foods 2019, 58, 74–84. [Google Scholar] [CrossRef]
- Green, C.L.; Lamming, D.W.; Fontana, L. Molecular Mechanisms of Dietary Restriction Promoting Health and Longevity. Nat. Rev. Mol. Cell Biol. 2022, 23, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yao, Y.; Zhao, J.; Cao, J.; Ma, H. Dehydroepiandrosterone Protects against Hepatic Glycolipid Metabolic Disorder and Insulin Resistance Induced by High Fat via Activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 Signaling Pathways. Int. J. Obes. 2020, 44, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Pan, J.; Qu, N.; Lei, Y.; Han, J.; Zhang, J.; Han, D. The AMPK Pathway in Fatty Liver Disease. Front. Physiol. 2022, 13, 970292. [Google Scholar] [CrossRef]
- Zhao, P.; Saltiel, A.R. From Overnutrition to Liver Injury: AMP-Activated Protein Kinase in Nonalcoholic Fatty Liver Diseases. J. Biol. Chem. 2020, 295, 12279–12289. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Zhao, L.; Wang, Y.; Pan, F.; Hao, S.; Zhang, H.; Iftikhar, A.; Usman, M. Dietary Anthocyanins as Potential Natural Modulators for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Food Res. Int. 2021, 142, 110180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, L.; Wang, D.; Huo, Y.; Ji, B. Anthocyanin-Rich Extracts from Blackberry, Wild Blueberry, Strawberry, and Chokeberry: Antioxidant Activity and Inhibitory Effect on Oleic Acid-Induced Hepatic Steatosis in Vitro. J. Sci. Food Agric. 2016, 96, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.R.; Chen, H.W.; Li, Y.; Zhou, M.Y.; Wong, V.K.W.; Jiang, Z.H.; Zhang, W. Network Pharmacology Exploration Reveals Anti-Apoptosis as a Common Therapeutic Mechanism for Non-Alcoholic Fatty Liver Disease Treated with Blueberry Leaf Polyphenols. Nutrients 2021, 13, 4060. [Google Scholar] [CrossRef] [PubMed]
- Pafili, K.; Roden, M. Nonalcoholic Fatty Liver Disease (NAFLD) from Pathogenesis to Treatment Concepts in Humans. Mol. Metab. 2021, 50, 101122. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.; González-Rodríguez, Á.; García-Monzón, C.; Valverde, Á.M. Understanding Lipotoxicity in NAFLD Pathogenesis: Is CD36 a Key Driver? Cell Death Dis. 2020, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.; Ariaii, P.; Fallah, H. Effects of Celery Extracts on the Oxidative Stability of Canola Oil Under Thermal Condition. J. Food Process. Preserv. 2016, 40, 531–540. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Dorairaj, V.; Sulaiman, S.A.; Abu, N.; Murad, N.A.A. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021, 10, 15. [Google Scholar] [CrossRef]
- Li, L.; Fu, J.; Sun, J.; Liu, D.; Chen, C.; Wang, H.; Hou, Y.; Xu, Y.; Pi, J. Is Nrf2-ARE a Potential Target in NAFLD Mitigation? Curr. Opin. Toxicol. 2019, 13, 35–44. [Google Scholar] [CrossRef]
- Bhatt-Wessel, B.; Jordan, T.W.; Miller, J.H.; Peng, L. Role of DGAT Enzymes in Triacylglycerol Metabolism. Arch. Biochem. Biophys. 2018, 655, 1–11. [Google Scholar] [CrossRef]
- Sergazy, S.; Shulgau, Z.; Kamyshanskiy, Y.; Zhumadilov, Z.; Krivyh, E.; Gulyayev, A.; Aljofan, M. Blueberry and Cranberry Extracts Mitigate CCL4-Induced Liver Damage, Suppressing Liver Fibrosis, Inflammation and Oxidative Stress. Heliyon 2023, 9, e15370. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Y.; Long, C.; He, P.; Gu, J.; Yang, L.; Liang, Y.; Wang, Y. Anthocyanins Isolated from Blueberry Ameliorates CCl4 Induced Liver Fibrosis by Modulation of Oxidative Stress, Inflammation and Stellate Cell Activation in Mice. Food Chem. Toxicol. 2018, 120, 491–499. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Książek, E.; Goluch, Z.; Bochniak, M. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients 2024, 16, 2940. https://doi.org/10.3390/nu16172940
Książek E, Goluch Z, Bochniak M. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients. 2024; 16(17):2940. https://doi.org/10.3390/nu16172940
Chicago/Turabian StyleKsiążek, Ewelina, Zuzanna Goluch, and Marta Bochniak. 2024. "Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research" Nutrients 16, no. 17: 2940. https://doi.org/10.3390/nu16172940
APA StyleKsiążek, E., Goluch, Z., & Bochniak, M. (2024). Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients, 16(17), 2940. https://doi.org/10.3390/nu16172940