Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis of Phytochemicals and Glycemic Index Evaluation
2.2.1. Carbohydrate Quantification
Starch Content
Free-Form Sugars
Determination of Resistant Starch
Amylose Quantification
Quantification of Insoluble Fiber
Glycemic Index (GI) Measurement
2.3. Analysis and Measurement of Bioactive Phytochemicals
2.3.1. Total Phenolic Content Assay (TPC)
2.3.2. Carotenoid Identification and Quantification
2.3.3. Quantification of Mineral Matter (Ash)
2.4. Analysis of Bioactive Properties
2.4.1. Evaluation of Antioxidant Activity
Measurement of Nitric Oxide (NO) Scavenging Potential
DPPH Radical Neutralization Test
ORAC (Oxygen Radical Absorbance Capacity) Assay
2.4.2. Evaluation of Immunomodulatory Anti-Inflammatory Bioactivity
Macrophage Culture
Determination of Cell Viability via MTS/PMS Assay
Evaluation of the Production of NO, IL-6, TNF-α, MCP-1, and PGE-2
Determination Nitric Oxide Production
IL-6 (Interleukin 6) Assay
TNF-Alpha (Tumor Necrosis Factor Alpha) Assay
MCP-1 (Monocyte Chemoattractant Protein-1) Assay
PGE-2 (Prostaglandin) Assay
2.5. Statistical Analysis
3. Results
3.1. Analysis of Phytochemicals and Glycemic Index Evaluation
3.2. Analysis and Measurement of Bioactive Phytochemicals
3.3. Antioxidant Bioactivity
3.4. Immunomodulatory Anti-Inflammatory Bioactivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 23 March 2024).
- NIH. Available online: https://www.ncbi.nlm.nih.gov/books/NBK234676 (accessed on 8 July 2024).
- Tize, I.; Fotso, A.K.; Nukenine, E.N.; Masso, C.; Ngome, F.A.; Suh, C.; Lendzemo, V.W.; Nchoutnji, I.; Manga, G.; Parkes, E.; et al. New cassava germplasm for food and nutritional security in Central Africa. Sci. Rep. 2021, 11, 7394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diallo, Y.; Gueye, M.T.; Sakho, M.; Kane, A.; Barthelemy, J.P.; Lognay, G. Importance nutritionnelle du manioc et perspectives pour l’alimentation de base au Sénégal. Biotechnol. Agron. Soc. Environ. 2013, 17, 634–643. [Google Scholar]
- Echebiri, R.N.; Edaba, M.E.I. Production and Utilization of Cassava in Nigeria: Prospects for Food Security and Infant Nutrition. PAT 2008, 4, 38–52. [Google Scholar]
- Gegios, A.; Amthor, R.; Maziya-Dixon, B.; Egesi, C.; Mallowa, S.; Nungo, R.; Gichuki, S.; Mbanaso, A.; Manary, M.J. Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake. Plant Foods Hum. Nutr. 2010, 65, 64–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olugbemi, T.; Mutayoba, S.; Lekule, F. Effect of Moringa (Moringa oleifera) Inclusion in Cassava Based Diets Fed to Broiler Chickens. Int. J. Poult. Sci. 2010, 9, 363–369. [Google Scholar] [CrossRef]
- Stupak, M.; Vanderschuren, H.; Gruissem, W.; Zhang, P. Biotechnological approaches to cassava protein improvement. Trends Food Sci. Technol. 2006, 17, 634–641. [Google Scholar] [CrossRef]
- Nestel, B.; Graham, M. Cassava as Animal Feed: Proceedings IDRC, Ottawa, ON, CA. Available online: https://idl-bnc-idrc.dspacedirect.org/handle/10625/519 (accessed on 23 March 2024).
- Ravindran, G.; Ravindran, V. Changes in the nutritional composition of cassava (Manihot esculenta Crantz) leaves during maturity. Food Chem. 1988, 27, 299–309. [Google Scholar] [CrossRef]
- Borin, K.; Lindberg, J.; Ogle, R. Effect of variety and preservation method of cassava leaves on diet digestibility by indigenous and improved pigs. Animal Sci. 2005, 80, 319–324. [Google Scholar] [CrossRef]
- Latif, S.; Müller, J. Potential of cassava leaves in human nutrition: A review. Trends Food Sci. Technol. 2015, 44, 147–158. [Google Scholar] [CrossRef]
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef]
- Boukhers, I.; Boudard, F.; Morel, S.; Servent, A.; Portet, K.; Guzman, C.; Vitou, M.; Kongolo, J.; Michel, A.; Poucheret, P. Nutrition, Healthcare Benefits and Phytochemical Properties of Cassava (Manihot esculenta) Leaves Sourced from Three Countries (Reunion, Guinea, and Costa Rica). Foods 2022, 11, 2027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguayo, V.M.; Kahn, S.; Ismael, C.; Meershoek, S. Vitamin A deficiency and child mortality in Mozambique. Public Health Nutr. 2005, 8, 29–31. [Google Scholar] [CrossRef]
- Darnton-Hill, I. Public Health Aspects in the Prevention and Control of Vitamin Deficiencies. Curr. Dev. Nutr. 2019, 3, nzz075. [Google Scholar] [CrossRef]
- Low, J.W.; Mwanga, R.O.M.; Andrade, M.; Carey, E.; Ball, A.M. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Glob. Food Secur. 2017, 14, 23–30. [Google Scholar] [CrossRef]
- Padmaja, G.; Steinkraus, K.H. Cyanide detoxification in cassava for food and feed uses. Critical Rev. Food Sci. Nutri. 1995, 35, 299–339. [Google Scholar] [CrossRef]
- Ayele, H.H.; Latif, S.; Bruins, M.E.; Müller, J. Partitioning of Proteins and Anti-Nutrients in Cassava (Manihot esculenta Crantz) Leaf Processing Fractions after Mechanical Extraction and Ultrafiltration. Foods 2021, 10, 1714. [Google Scholar] [CrossRef]
- Oresegun, A.; Fagbenro, O.A.; Ilona, P.; Bernard, E. Nutritional and anti-nutritional composition of cassava leaf protein concentrate from six cassava varieties for use in aqua feed. Cogent Food Agric. 2016, 2, 1147323. [Google Scholar] [CrossRef]
- UNICEF: The State of the World’s Children 2019. Available online: https://www.unicef.org/reports/state-of-worlds-children-2019 (accessed on 23 March 2024).
- Engidaw, M.T.; Gebremariam, A.D.; Tiruneh, S.A.; Tesfa, D.; Fentaw, Y.; Kefale, B.; Tiruneh, M.; Wubie, A.T. Micronutrient intake status and associated factors in children aged 6–23 months in sub-Saharan Africa. Sci. Rep. 2023, 13, 10179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grebmer, K.; Saltzaman, A.; Birol, E.; Wiesmann, D.; Yin, S.; Yohannes, Y.; Menon, P. Global Hunger Index: The Challenge of Hidden Hunger. 2014. Available online: https://www.globalhungerindex.org/pdf/en/2014.pdf (accessed on 23 March 2024). [CrossRef]
- WHO. Malnutrition. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/malnutrition (accessed on 23 March 2024).
- Adeyeye, S.A.O.; Ashaolu, T.J.; Bolaji, O.T.; Abegunde, T.A.; Omoyajowo, A.O. Africa and the Nexus of poverty, malnutrition and diseases. Critical Rev. Food Sci. Nutr. 2023, 63, 641–656. [Google Scholar] [CrossRef]
- Rodríguez, L.; Cervantes, E.; Ortiz, R. Malnutrition and Gastrointestinal and Respiratory Infections in Children: A Public Health Problem. Int. J. Environ. Res. Public Health 2011, 8, 1174–1205. [Google Scholar] [CrossRef]
- Martins, V.J.; Toledo Florêncio, T.M.; Grillo, L.P.; do Carmo P Franco, M.; Martins, P.A.; Clemente, A.P.; Santos, C.D.; de Fatima A Vieira, M.; Sawaya, A.L. Long-lasting effects of undernutrition. Int. J. Environ. Res. Public Health 2011, 8, 1817–1846. [Google Scholar] [CrossRef]
- Oz, H.S. Nutrients, Infectious and Inflammatory Diseases. Nutrients 2017, 9, 1085. [Google Scholar] [CrossRef]
- Bain, L.E.; Awah, P.K.; Geraldine, N.; Kindong, N.P.; Sigal, Y.; Bernard, N.; Tanjeko, A.T. Malnutrition in Sub-Saharan Africa: Burden, causes and prospects. Pan Afr. Med. J. 2013, 6, 120. [Google Scholar] [CrossRef]
- Bitew, Z.W.; Ayele, E.G.; Worku, T.; Alebel, A.; Alemu, A.; Worku, F.; Yesuf, A. Determinants of mortality among under-five children admitted with severe acute malnutrition in Addis Ababa, Ethiopia. Nutr. J. 2021, 20, 94. [Google Scholar] [CrossRef]
- Preziosi, P.; Galan, P.; Herbeth, B.; Valeix, P.; Roussel, A.M.; Malvy, D.; Paul-Dauphin, A.; Arnaud, J.; Richard, M.J.; Briancon, S.; et al. Effects of supplementation with a combination of antioxidant vitamins and trace elements, at nutritional doses, on biochemical indicators and markers of the antioxidant system in adult subjects. J. Am. Coll. Nutr. 1998, 17, 244–249. [Google Scholar] [CrossRef]
- Singh, A.; Yau, Y.F.; Leung, K.S.; El-Nezami, H.; Lee, J.C. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants 2020, 9, 669. [Google Scholar] [CrossRef]
- Chatterjee, S. Chapter Two—Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials; Dziubla, T., Butterfield, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 35–58. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 1990, 280, 1–8. [Google Scholar] [CrossRef]
- Favier, A. Stress oxydant et pathologies humaines. Ann. Pharm. Fr. 2006, 64, 390–396. [Google Scholar] [CrossRef]
- Migdal, C.; Serres, M. Espèces réactives de l’oxygène et stress oxydant. Med. Sci. 2011, 27, 405–412. [Google Scholar] [CrossRef]
- Ray, R.; Strickland, F.M.; Richardson, B.C. Oxidative Stress and Dietary Micronutrient Deficiencies Contribute to Overexpression of Epigenetically Regulated Genes by Lupus T Cells. Clin. Immunol. 2018, 196, 97–102. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J. Modelling and prediction of global non-communicable diseases. BMC Public Health 2020, 20, 822. [Google Scholar] [CrossRef]
- Nediani, C.; Dinu, M. Oxidative Stress and Inflammation as Targets for Novel Preventive and Therapeutic Approaches in Non-Communicable Diseases II. Antioxidants 2022, 11, 824. [Google Scholar] [CrossRef]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Corona, G.; Deiana, M.; Incani, A.; Vauzour, D.; Assunta Dessì, M.; Spencer, J.P.E. Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochem. Biophys. Res. Commun. 2007, 362, 606–611. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Laya, A.; Koubala, B.B. Polyphenols in cassava leaves (Manihot esculenta Crantz) and their stability in antioxidant potential after in vitro gastrointestinal digestion. Heliyon 2020, 6, e03567. [Google Scholar] [CrossRef]
- Chaiareekitwat, S.; Latif, S.; Mahayothee, B.; Khuwijitjaru, P.; Nagle, M.; Amawan, S.; Müller, J. Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf position. Food Chem. 2022, 372, 131173. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, O.O.; Yemitan, O.K.; Afolabi, L. Inhibition of chemically induced inflammation and pain by orally and topically administered leaf extract of Manihot esculenta Crantz in rodents. J. Ethnopharmacol. 2008, 119, 6–11. [Google Scholar] [CrossRef]
- Miladiyah, I. Analgesic activity of ethanolic extract of Manihot esculenta Crantz leaves in mice. Universa Med. 2011, 30, 3–10. [Google Scholar]
- Ceriello, A.; Bortolotti, N.; Crescentini, A.; Motz, E.; Lizzio, S.; Russo, A.; Ezsol, Z.; Tonutti, L.; Taboga, C. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur. J. Clin. Investig. 1998, 28, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, P.; Hamouda, W.; Garg, R.; Aljada, A.; Ghanim, H.; Dandona, P. Glucose Challenge Stimulates Reactive Oxygen Species (ROS) Generation by Leucocytes. J. Clin. Endoc. Metabol. 2000, 85, 2970–2973. [Google Scholar] [CrossRef]
- Botero, D.; Ebbeling, C.B.; Blumberg, J.B.; Ribaya-Mercado, J.D.; Creager, M.A.; Swain, J.F.; Feldman, H.A.; Ludwig, D.S. Acute effects of dietary glycemic index on antioxidant capacity in a nutrient-controlled feeding study. Obesity 2009, 17, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- deCarvalho Vidigal, F.; Guedes Cocate, P.; Gonçalves Pereira, L.; de Cássia Gonçalves Alfenas, R. The role of hyperglycemia in the induction of oxidative stress and inflammatory process. Nutr. Hosp. 2012, 27, 1391–1398. [Google Scholar] [CrossRef]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower Dietary Inflammatory Index Scores Are Associated with Lower Glycemic Index Scores among College Students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef]
- ISO 6647-1:2020; Rice—Determination of Amylose Content—Part 1: Spectrophotometric Method with a Defatting Procedure by Methanol and with Calibration Solutions of Potato Amylose and Waxy Rice Amylopectin. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/73669.html (accessed on 23 March 2024).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Morel, S.; Arnould, S.; Vitou, M.; Boudard, F.; Guzman, C.; Poucheret, P.; Fons, F.; Rapior, S. Antiproliferative and Antioxidant Activities of Wild Boletales Mushrooms from France. Int. J. Med. Mushrooms 2018, 20, 13–29. [Google Scholar] [CrossRef]
- Boukhers, I.; Morel, S.; Kongolo, J.; Domingo, R.; Servent, A.; Ollier, L.; Kodja, H.; Petit, T.; Poucheret, P. Immunomodulatory and Antioxidant Properties of Ipomoea batatas Flour and Extracts Obtained by Green Extraction. Curr. Issues Mol. Biol. 2023, 45, 6967–6985. [Google Scholar] [CrossRef]
- Lima, E.C.S.; Feijo, M.B.S.; Freitas, M.C.J.; dos Santos, E.R.; Sabaa-Srur, A.U.O.; Moura, L.S.M. Sensorial evolution of cassava flour (Manihot esculenta crantz) added to protein concentrate cassava leaves. Food Sci. Nutr. 2013, 1, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Saragih, B.; Kristina, F.; Pradita; Candra, K.P.; Emmawati, A. Nutritional Value, Antioxidant Activity, Sensory Properties, and Glycemic Index of Cookies with the Addition of Cassava (Manihot utilissima) Leaf Flour. J. Nutr. Sci. Vitaminol. 2020, 66, S162–S166. [Google Scholar] [CrossRef]
- Mejía-Agüero, L.E.; Galeno, F.; Hernández-Hernández, O.; Matehus, J.; Tovar, J. Starch determination, amylose content and susceptibility to in vitro amylolysis in flours from the roots of 25 cassava varieties. J. Sci. Food Agric. 2012, 92, 673–678. [Google Scholar] [CrossRef]
- Dudu, O.E.; Li, L.; Oyedeji, A.B.; Oyeyinka, S.A.; Ma, Y. Structural and functional characteristics of optimised dry-heat-moisture treated cassava flour and starch. Int. J. Biol. Macromolec. 2019, 133, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. J. Food Sci. Technol. 2014, 51, 3669–3679. [Google Scholar] [CrossRef] [PubMed]
- Hung, P.V.; Morita, N. Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohydr. Polym. 2005, 61, 314–321. [Google Scholar] [CrossRef]
- Ogbo, F.C.; Okafor, E.N. The resistant starch content of some cassava based Nigerian foods. Niger. Food J. 2015, 33, 29–34. [Google Scholar] [CrossRef]
- Morris, K.L.; Zemel, M.B. Glycemic index, cardiovascular disease, and obesity. Nutr. Rev. 1999, 57, 273–276. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Tobias, D.K.; Malik, V.S.; Pan, A.; Hruby, A.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and risk of type 2 diabetes: Results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014, 100, 218–232. [Google Scholar] [CrossRef]
- Oba, S.; Nanri, A.; Kurotani, K.; Goto, A.; Kato, M.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S. Japan Public Health Center-based Prospective Study Group. Dietary glycemic index, glycemic load and incidence of type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Nutr. J. 2013, 12, 165. [Google Scholar] [CrossRef]
- Brand, J.C.; Colagiuri, S.; Crossman, S.; Allen, A.; Roberts, D.S.; Truswell, A.S. Low-glycemic index foods improve long-term glycemic control in NIDDM. Diabetes Care 1991, 14, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Zenel, A.M.; Stewart, M.L. High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans. Nutrients 2015, 7, 5362–5374. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Regina, A.; Klingner, B.; Zajac, I.; Chapron, S.; Berbezy, P.; Bird, A.R. High-Amylose Wheat Lowers the Postprandial Glycemic Response to Bread in Healthy Adults: A Randomized Controlled Crossover Trial. J. Nutr. 2019, 149, 1335–1345. [Google Scholar] [CrossRef]
- InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: The EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015, 58, 1394–1408. [Google Scholar] [CrossRef]
- Kamil, K.M.; Rohana, A.J.; Mohamed, W.M.I.W.; Ishak, W.R.W. Effect of incorporating dietary fiber sources in bakery products on glycemic index and starch digestibility response: A review. Nutrire 2023, 48, 36. [Google Scholar] [CrossRef]
- Fujii, H.; Iwase, M.; Ohkuma, T.; Ogata-Kaizu, S.; Ide, H.; Kikuchi, Y.; Idewaki, Y.; Joudai, T.; Hirakawa, Y.; Uchida, K.; et al. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. Nutr. J. 2013, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Mohlig, M.; Koebnick, C.; Holst, J.J.; Namsolleck, P.; Ristow, M.; Osterhoff, M.; Rochlitz, H.; Rudovich, N.; Spranger, J.; et al. Impact of cereal fibre on glucose-regulating factors. Diabetologia 2005, 48, 2343–2353. [Google Scholar] [CrossRef]
- Weickert, M.O.; Möhlig, M.; Schöfl, C.; Arafat, A.M.; Otto, B.; Viehoff, H.; Koebnick, C.; Kohl, A.; Spranger, J.; Pfeiffer, A.F. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 2006, 29, 775–780. [Google Scholar] [CrossRef]
- Honsek, C.; Kabisch, S.; Kemper, M.; Gerbracht, C.; Arafat, A.M.; Birkenfeld, A.L.; Dambeck, U.; Osterhoff, M.A.; Weickert, M.O.; Pfeiffer, A.F.H. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: The randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018, 61, 1295–1305. [Google Scholar] [CrossRef]
- Russell, W.R.; Labat, A.; Scobbie, L.; Duncan, G.J.; Duthie, G.G. Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem. 2009, 115, 100–104. [Google Scholar] [CrossRef]
- Kabisch, S.; Meyer, N.M.T.; Honsek, C.; Gerbracht, C.; Dambeck, U.; Kemper, M.; Osterhoff, M.A.; Birkenfeld, A.L.; Arafat, A.M.; Weickert, M.O.; et al. Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes-A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019, 11, 2726. [Google Scholar] [CrossRef] [PubMed]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef]
- Nielsen, S.J.J.; Trak-Fellermeier, M.A.; Joshipura, K. The Association between Dietary Fiber Intake and CRP levels, US Adults, 2007–2010. FASEB J. 2017, 31, 648.8. [Google Scholar] [CrossRef]
- Yusuf, K.; Saha, S.; Umar, S. Health Benefits of Dietary Fiber for the Management of Inflammatory Bowel Disease. Biomedicines 2022, 10, 1242. [Google Scholar] [CrossRef] [PubMed]
- Afolami, I.; Samuel, F.; Borgonjen-van den Berg, K.; Mwangi, M.N.; Kalejaiye, O.; Sanusi, R.A.; Putri, L.A.R.; Brivio, F.; Brouwer, I.D.; Melse-Boonstra, A. The contribution of provitamin A biofortified cassava to vitamin A intake in Nigerian pre-schoolchildren. Br. J. Nutr. 2021, 126, 1364–1372. [Google Scholar] [CrossRef]
- Beyene, G.; Solomon, F.R.; Chauhan, R.D.; Gaitán-Solis, E.; Narayanan, N.; Gehan, J.; Siritunga, D.; Stevens, R.L.; Jifon, J.; Van Eck, J.; et al. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnol. J. 2018, 16, 1186–1200. [Google Scholar] [CrossRef]
- CGIAR: Nigeria Food Consumption and Nutrition Survey 2021. Available online: https://nutritionnigeria.org/wp-content/uploads/2024/05/NFCMS-2021-Report-2021.pdf (accessed on 30 March 2024).
- Anand, R.; Mohan, L.; Bharadvaja, N. Disease Prevention and Treatment Using β-Carotene: The Ultimate Provitamin A. Rev. Bras. Farmacogn. 2022, 32, 491–501. [Google Scholar] [CrossRef]
- WHO: Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995–2005. Available online: https://www.who.int/publications-detail-redirect/9789241598019 (accessed on 30 March 2024).
- Abolurin, O.O.; Adegbola, A.J.; Oyelami, O.A.; Adegoke, S.A.; Bolaji, O.O. Vitamin A deficiency among under-five Nigerian children with diarrhoea. Afr. Health Sci. 2018, 18, 737–742. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef]
- Aibana, O.; Franke, M.F.; Huang, C.C.; Galea, J.T.; Calderon, R.; Zhang, Z.; Becerra, M.C.; Smith, E.R.; Ronnenberg, A.G.; Contreras, C.; et al. Impact of Vitamin A and Carotenoids on the Risk of Tuberculosis Progression. Clin. Infect. Dis. 2017, 65, 900–909. [Google Scholar] [CrossRef]
- Bae, J.Y.; Park, W.S.; Kim, H.J.; Kim, H.S.; Kang, K.K.; Kwak, S.S.; Ahn, M.J. Protective Effect of Carotenoid Extract from Orange-Fleshed Sweet Potato on Gastric Ulcer in Mice by Inhibition of NO, IL-6 and PGE2 Production. Pharmaceuticals 2021, 14, 1320. [Google Scholar] [CrossRef]
- Ben Amara, N.; Tourniaire, F.; Maraninchi, M.; Attia, N.; Amiot-Carlin, M.J.; Raccah, D.; Valéro, R.; Landrier, J.F.; Darmon, P. Independent positive association of plasma β-carotene concentrations with adiponectin among non-diabetic obese subjects. Eur. J. Nutr. 2015, 54, 447–454. [Google Scholar] [CrossRef]
- El-Kholy, A.A.; Elkablawy, M.A.; El-Agamy, D.S. Lutein mitigates cyclophosphamide induced lung and liver injury via NF-κB/MAPK dependent mechanism. Biomed. Pharmacother. 2017, 92, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.J.; Kim, H. Lutein as a Modulator of Oxidative Stress-Mediated Inflammatory Diseases. Antioxidants 2021, 10, 1448. [Google Scholar] [CrossRef]
- Nilusha, R.A.T.; Jayasinghe, J.M.J.K.; Perera, O.D.A.N.; Perera, P.I.P.; Jayasinghe, C.V.L. Proximate Composition, Physicochemical, Functional, and Antioxidant Properties of Flours from Selected Cassava (Manihot esculenta Crantz) Varieties. Int. J. Food Sci. 2021, 2021, 6064545. [Google Scholar] [CrossRef] [PubMed]
- Alamu, E.O.; Dixon, A.; Eyinla, T.E.; Maziya-Dixon, B. Characterization of macro and micro-minerals in cassava leaves from genotypes planted in three different agroecological locations in Nigeria. Heliyon 2022, 8, e11618. [Google Scholar] [CrossRef] [PubMed]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Comp. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef]
- Hill, J.A.; Olson, E.N. Cardiac Plasticity. N. Engl. J. Med. 2008, 358, 1370–1380. [Google Scholar] [CrossRef]
- Otreba, M.; Kośmider, L.; Stojko, J.; Rzepecka-Stojko, A. Cardioprotective Activity of Selected Polyphenols Based on Epithelial and Aortic Cell Lines. A Review. Molecules 2020, 25, 5343. [Google Scholar] [CrossRef] [PubMed]
- Chahyadi, A.; Elfahmi. The influence of extraction methods on rutin yield of cassava leaves (Manihot esculenta Crantz). Saudi Pharm. J. 2020, 28, 1466. [Google Scholar] [CrossRef]
- Ryan-Harshman, M.; Aldoori, W. Health benefits of selected minerals. Can. Fam. Physician 2005, 51, 673–675. [Google Scholar]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chen, C.P.; Tanaka, T. Direct scavenging of nitric oxide by traditional crude drugs. Phytomed 2000, 6, 453–463. [Google Scholar] [CrossRef]
- Van Acker, S.A.; Tromp, M.N.; Haenen, G.R.; Vandervijgh, W.J.F.; Bast, A. Flavonoids as Scavengers of Nitric Oxide Radical. Biochem. Biophys. Res. Commun. 1995, 214, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Osipitan, A.A.; Sangowusi, V.T.; Lawal, O.Y.; Popoola, K.O. Correlation of Chemical Compositions of Cassava Varieties to Their Resistance to Prostephanus truncatus Horn (Coleoptera: Bostrichidae). J. Insect Sci. 2015, 15, 173. [Google Scholar] [CrossRef]
- Jumadin, L.; Maheshwari, H.; Ulupi, N.; Sismin Satyaningtijas, A. Potency of Bioactive Compound of Cassava Leaf Paste to Support Physiological Performance of Quail. J. Ilmu Teknol. Peternak. Trop. 2022, 9, 354–361. [Google Scholar]
- Yusuf, U.F.; Okechukwu, P.N. Anti-Inflammatory, Analgesic and Anti-Pyretic Activity Of Cassava Leaves Extract. Asian J. Pharm. Clin. Res. 2013, 6, 89–92. [Google Scholar]
- Fioroni, N.; Mouquet-Rivier, C.; Meudec, E.; Cheynier, V.; Boudard, F.; Hemery, Y.; Laurent-Babot, C. Antioxidant Capacity of Polar and Non-Polar Extracts of Four African Green Leafy Vegetables and Correlation with Polyphenol and Carotenoid Contents. Antioxidants 2023, 12, 1726. [Google Scholar] [CrossRef]
- Yi, B.; Hu, L.; Mei, W.; Zhou, K.; Wang, H.; Luo, Y.; Wei, X.; Dai, H. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules 2011, 16, 10157–10167. [Google Scholar] [CrossRef]
- Yu, L.; Nanguet, A.L.; Beta, T. Comparison of Antioxidant Properties of Refined and Whole Wheat Flour and Bread. Antioxidants 2013, 2, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Tsumbu, C.N.; Deby-Dupont, G.; Tits, M.; Angenot, L.; Franck, T.; Serteyn, D.; Mouithys-Mickalad, A. Antioxidant and Antiradical Activities of Manihot esculenta Crantz (Euphorbiaceae) Leaves and Other Selected Tropical Green Vegetables Investigated on Lipoperoxidation and Phorbol-12-myristate-13-acetate (PMA) Activated Monocytes. Nutrients 2011, 3, 818–838. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Bacchiocca, M. Polyphenols and antioxidant capacity of vegetables under fresh and frozen conditions. J. Agric. Food Chem. 2003, 51, 2222–2226. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Rebe, C.; Hichami, A.; Delmas, D. Immunomodulation and Anti-inflammatory Roles of Polyphenols as Anticancer Agents. Anticancer Agents Med. Chem. 2012, 12, 852–873. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kumar, K.; Brisc, C.; Rus, M.; Nistor-Cseppento, D.C.; Bustea, C.; Aron, R.A.C.; Pantis, C.; Zengin, G.; Sehgal, A.; et al. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed. Pharmacother. 2021, 133, 110959. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef]
- Calniquer, G.; Khanin, M.; Ovadia, H.; Linnewiel-Hermoni, K.; Stepensky, D.; Trachtenberg, A.; Sedlov, T.; Braverman, O.; Levy, J.; Sharoni, Y. Combined Effects of Carotenoids and Polyphenols in Balancing the Response of Skin Cells to UV Irradiation. Molecules 2021, 26, 1931. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, G.; Grosser, T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 2013, 104–105, 58–66. [Google Scholar] [CrossRef]
Composition and Glycemic Index of CF and CFL Samples | |||
---|---|---|---|
Samples | |||
CF | CFL | ||
Yield (%) | 32.19 ± 2.24 | - | |
Moisture (% flour) | 8.32 ± 0.23 a | 7.01 ± 0.41 b | |
Carbohydrates (% DM flour) | 84.12 ± 2.36 a | 59.24 ± 1.88 b | |
Total starch | 82.93 ± 2.66 a | 57.85 ± 1.98 b | |
Simple sugars | 1.19 ± 0.03 a | 1.39 ± 0.04 a | |
Amylose (% DM starch) | 20.36 ± 1.4 a | 20.28 ± 1.00 a | |
Resistant starch (% DM flour) | 13.14 ± 3.51 a | 9.09 ± 0.87 b | |
Total insoluble fibers (% DM flour) | 3.65 ± 0.17 b | 15.20 ± 0.91 a | |
Hemicellulose | 1.92 ± 0.25 b | 5.01 ± 0.61 a | |
Cellulose | 1.60 ± 0.02 b | 3.40 ± 0.05 a | |
Lignin | 0.13 ± 0.017 b | 6.79 ± 0.81 a | |
Glycemic index | 91.09 ± 1.75 a | 72.12 ± 3.25 b |
Composition of Potentially Bioactive Micronutrients | ||||
---|---|---|---|---|
Sample | TPC in mg GAE/g EDW | Minerals Matters (% DM/g‧100 g−1) | Carotenoids (% DM/mg‧100 g−1) | |
Lutein | β-Carotene | |||
CF | 15.16 ± 0.87 b | 2.4 ± 0.6 b | - | - |
CFL | 86. 59 ± 3.09 a | 4.01 ± 0.48 a | 7.82 ± 1.02 | 10.53 ± 0.98 |
Antioxidant Activity | |||||
---|---|---|---|---|---|
Samples | NO Scavenging | DPPH | ORAC | ||
Inhibition (%) at 100 µg/mL | Inhibition (%) at 50 µg/mL | µmol TE/g EDW | Inhibition (%) at 1 mg/mL | µmol/TE/g EDW | |
CF | 11.22 ± 1.93 b | 7.83 ± 1.13 b | 15.62 ± 0.93 b | 11.96 ± 0.65 b | 457.30 ± 7.72 b |
CFL | 58.76 ± 2.01 a | 30.66 ± 1.63 a | 93.49 ± 7.32 a | 60.47 ± 1.17 a | 1626.17 ± 202.45 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukhers, I.; Domingo, R.; Septembre-Malaterre, A.; Antih, J.; Silvestre, C.; Petit, T.; Kodja, H.; Poucheret, P. Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves. Nutrients 2024, 16, 3023. https://doi.org/10.3390/nu16173023
Boukhers I, Domingo R, Septembre-Malaterre A, Antih J, Silvestre C, Petit T, Kodja H, Poucheret P. Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves. Nutrients. 2024; 16(17):3023. https://doi.org/10.3390/nu16173023
Chicago/Turabian StyleBoukhers, Imane, Romain Domingo, Axelle Septembre-Malaterre, Julien Antih, Charlotte Silvestre, Thomas Petit, Hippolyte Kodja, and Patrick Poucheret. 2024. "Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves" Nutrients 16, no. 17: 3023. https://doi.org/10.3390/nu16173023
APA StyleBoukhers, I., Domingo, R., Septembre-Malaterre, A., Antih, J., Silvestre, C., Petit, T., Kodja, H., & Poucheret, P. (2024). Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves. Nutrients, 16(17), 3023. https://doi.org/10.3390/nu16173023