Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity
Abstract
:1. Introduction
2. Material & Methods
2.1. Animals and Diets
2.2. Glucose Tolerance Test and Serum Parameters
2.3. WAT and Liver Sample Preparation and Analysis
2.4. 3T3-L1 Cell Culture and RSG and Sex Hormones Combined Treatments
2.5. Gene Expression Analysis
2.6. Mitochondrial DNA Quantification
2.7. Western-Blot Analyses
2.8. Statistical Analysis
3. Results
3.1. RSG and Sex Effects on Body Weight and Adiposity
3.2. RSG and Sex Effects on Glucose Tolerance and Serum Parameters
3.3. RSG and Sex Effects on Insulin Sensitivity and Lipid Mobilization of WAT
3.4. RSG and Sex Effects on Mitochondrial Biogenesis and Dynamics in WAT
3.5. RSG and Sex Hormone Effects on Mitochondrial Biogenesis and Function in 3T3-L1 Adipocytes
3.6. RSG and Sex Effects on Inflammation, Hypoxia and Apoptosis in WAT
3.7. RSG and Sex Effects on Liver Weight and Lipid Content
3.8. RSG and Sex Effects on Adiponectin Signalling and Insulin Sensitivity in the Liver
3.9. RSG and Sex Effects on Lipid Metabolism in Liver
3.10. RSG and Sex Effects on Mitochondrial Biogenesis in Liver
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of Obesity and Its Associated Diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Wolfenden, L.; Ezzati, M.; Larijani, B.; Dietz, W. The Challenge for Global Health Systems in Preventing and Managing Obesity. Obes. Rev. 2019, 20, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Crewe, C.; Funcke, J.B.; Li, S.; Joffin, N.; Gliniak, C.M.; Ghaben, A.L.; An, Y.A.; Sadek, H.A.; Gordillo, R.; Akgul, Y.; et al. Extracellular Vesicle-Based Interorgan Transport of Mitochondria from Energetically Stressed Adipocytes. Cell Metab. 2021, 33, 1853–1868.e11. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Carobbio, S.; Pellegrinelli, V.; Vidal-Puig, A. Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2017; Volume 960, pp. 161–196. [Google Scholar]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex Differences in Type 2 Diabetes. Diabetologia 2023, 66, 986–1002. [Google Scholar] [CrossRef]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.-F.; Montagner, A.; Gourdy, P. Sex Differences in Metabolic Regulation and Diabetes Susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef]
- Chen, Y.; Kim, M.; Paye, S.; Benayoun, B.A. Sex as a Biological Variable in Nutrition Research: From Human Studies to Animal Models. Annu. Rev. Nutr. 2022, 42, 227–250. [Google Scholar] [CrossRef]
- Amengual-Cladera, E.; Lladó, I.; Proenza, A.M.; Gianotti, M. High-Fat Diet Feeding Induces a Depot-Dependent Response on the pro-Inflammatory State and Mitochondrial Function of Gonadal White Adipose Tissue. Br. J. Nutr. 2013, 109, 413–424. [Google Scholar] [CrossRef]
- Galmés-Pascual, B.M.; Nadal-Casellas, A.; Bauza-Thorbrügge, M.; Sbert-Roig, M.; García-Palmer, F.J.; Proenza, A.M.; Gianotti, M.; Lladó, I. 17β-Estradiol Improves Hepatic Mitochondrial Biogenesis and Function through PGC1B. J. Endocrinol. 2017, 232, 297–308. [Google Scholar] [CrossRef]
- Nadal-Casellas, A.; Amengual-Cladera, E.; María Proenza, A.; Lladó, I.; Gianotti, M. Cell Long-Term High-Fat-Diet Feeding Impairs Mitochondrial Biogenesis in Liver of Male and Female Rats. Physiol. Biochem. 2010, 26, 291–302. [Google Scholar] [CrossRef]
- Gómez-Pérez, Y.; Amengual-Cladera, E.; Català-Niell, A.; Thomàs-Moyà, E.; Gianotti, M.; Maria Proenza, A.; Lladó, I. Gender Dimorphism in High-Fat-Diet-Induced Insulin Resistance in Skeletal Muscle of Aged Rats. Cell. Physiol. Biochem. 2008, 22, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Justo, R.; Boada, J.; Frontera, M.; Oliver, J.; Bermúdez, J.; Gianotti, M.; Oliver, J. Gender Dimorphism in Rat Liver Mitochondrial Oxidative Metabolism and Biogenesis. Am. J. Physiol. Cell Physiol. 2005, 289, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Guevara, R.; Santandreu, F.M.; Valle, A.; Gianotti, M.; Oliver, J.; Roca, P. Sex-Dependent Differences in Aged Rat Brain Mitochondrial Function and Oxidative Stress. Free Radic. Biol. Med. 2009, 46, 169–175. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef]
- Ahmed, F.; Kamble, P.G.; Hetty, S.; Fanni, G.; Vranic, M.; Sarsenbayeva, A.; Kristófi, R.; Almby, K.; Svensson, M.K.; Pereira, M.J.; et al. Role of Estrogen and Its Receptors in Adipose Tissue Glucose Metabolism in Pre- and Postmenopausal Women. J. Clin. Endocrinol. Metab. 2022, 107, e1879–e1889. [Google Scholar] [CrossRef]
- Sun, C.; Mao, S.; Chen, S.; Zhang, W.; Liu, C. PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 8974. [Google Scholar] [CrossRef]
- Kotzbeck, P.; Taschler, U.; Haudum, C.; Foessl, I.; Schoiswohl, G.; Boulgaropoulos, B.; Bounab, K.; Einsiedler, J.; Pajed, L.; Tilp, A.; et al. Rosiglitazone Reverses Inflammation in Epididymal White Adipose Tissue in Hormone-Sensitive Lipase-Knockout Mice. J. Lipid Res. 2022, 64, 100305. [Google Scholar] [CrossRef]
- Hiradate, R.; Khalil, I.A.; Matsuda, A.; Sasaki, M.; Hida, K.; Harashima, H. A Novel Dual-Targeted Rosiglitazone-Loaded Nanoparticle for the Prevention of Diet-Induced Obesity via the Browning of White Adipose Tissue. J. Control. Release 2021, 329, 665–675. [Google Scholar] [CrossRef]
- Kusminski, C.M.; Holland, W.L.; Sun, K.; Park, J.; Spurgin, S.B.; Lin, Y.; Askew, G.R.; Simcox, J.A.; McClain, D.A.; Li, C.; et al. MitoNEET-Driven Alterations in Adipocyte Mitochondrial Activity Reveal a Crucial Adaptive Process That Preserves Insulin Sensitivity in Obesity. Nat. Med. 2012, 18, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Aubert, R.E.; Herrera, V.; Chen, W.; Haffner, S.M.; Pendergrass, M. Rosiglitazone and Pioglitazone Increase Fracture Risk in Women and Men with Type 2 Diabetes. Diabetes Obes. Metab. 2010, 12, 716–721. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Tao, H.; Xiong, H.; Duan, S.Z.; McGowan, F.X.; Mortensen, R.M.; Balschi, J.A. Rosiglitazone Causes Cardiotoxicity via Peroxisome Proliferator-Activated Receptor γ-Independent Mitochondrial Oxidative Stress in Mouse Hearts. Toxicol. Sci. 2014, 138, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Rodbell, M. Metabolism of isolated fat cells. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 1964, 239, 375–380. [Google Scholar] [CrossRef]
- Parlee, S.D.; Lentz, S.I.; Mori, H.; MacDougald, O.A. Quantifying Size and Number of Adipocytes in Adipose Tissue. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2014; Volume 537, pp. 93–122. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Opie, L.; Newsholme, E. The Activities of Fructose 1,6-Diphosphatase, Phosphofructokinase and Phosphoenolpyruvate Carboxykinase in White Muscle and Red Muscle. Biochem. J. 1967, 103, 391–399. [Google Scholar] [CrossRef]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bauzá-Thorbrügge, M.; Galmés-Pascual, B.M.; Sbert-Roig, M.; García-Palmer, F.J.; Gianotti, M.; Proenza, A.M.; Lladó, I. Antioxidant Peroxiredoxin 3 Expression Is Regulated by 17beta-Estradiol in Rat White Adipose Tissue. J. Steroid Biochem. Mol. Biol. 2017, 172, 9–19. [Google Scholar] [CrossRef]
- Wang, P.; Renes, J.; Bouwman, F.; Bunschoten, A.; Mariman, E.; Keijer, J. Absence of an Adipogenic Effect of Rosiglitazone on Mature 3T3-L1 Adipocytes: Increase of Lipid Catabolism and Reduction of Adipokine Expression. Diabetologia 2007, 50, 654–665. [Google Scholar] [CrossRef]
- Yung, J.H.M.; Giacca, A. Role of C-Jun N-Terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; Webb, D. The LDL to HDL Cholesterol Ratio as a Valuable Tool to Evaluate Coronary Heart Disease Risk. J. Am. Coll. Nutr. 2008, 27, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Olefsky, J.M. Treatment of Insulin Resistance with Peroxisome Proliferator–Activated Receptor γ Agonists. J. Clin. Investig. 2000, 106, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Day, C. Thiazolidinediones: A New Class of Antidiabetic Drugs. Diabet. Med. 1999, 16, 179–192. [Google Scholar] [CrossRef]
- Tonks, K.T.; Ng, Y.; Miller, S.; Coster, A.C.F.; Samocha-Bonet, D.; Iseli, T.J.; Xu, A.; Patrick, E.; Yang, J.Y.H.; Junutula, J.R.; et al. Impaired Akt Phosphorylation in Insulin-Resistant Human Muscle Is Accompanied by Selective and Heterogeneous Downstream Defects. Diabetologia 2013, 56, 875–885. [Google Scholar] [CrossRef]
- Diep Nguyen, T. Adiponectin: Role in Physiology and Pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- Shabalala, S.C.; Dludla, P.V.; Mabasa, L.; Kappo, A.P.; Basson, A.K.; Pheiffer, C.; Johnson, R. The Effect of Adiponectin in the Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Potential Role of Polyphenols in the Modulation of Adiponectin Signaling. Biomed. Pharmacother. 2020, 131, 110785. [Google Scholar] [CrossRef]
- Duan, S.Z.; Usher, M.G.; Foley, E.L.; Milstone, D.S.; Brosius, F.C.; Mortensen, R.M. Sex Dimorphic Actions of Rosiglitazone in Generalised Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ)-Deficient Mice. Diabetologia 2010, 53, 1493–1505. [Google Scholar] [CrossRef]
- Shimabukuro, M.; Zhou, Y.-T.; Lee, Y.; Unger, R.H. Troglitazone Lowers Islet Fat and Restores Beta Cell Function of Zucker Diabetic Fatty Rats. J. Biol. Chem. 1998, 273, 3547–3550. [Google Scholar] [CrossRef]
- Ye, J.-M.; Doyle, P.J.; Iglesias, M.A.; Watson, D.G.; Cooney, G.J.; Kraegen, E.W. Peroxisome Proliferator—Activated Receptor (PPAR)-AActivation Lowers Muscle Lipids and Improves Insulin Sensitivity in High Fat—Fed Rats. Diabetes 2001, 50, 411–417. [Google Scholar] [CrossRef]
- Mayerson, A.B.; Hundal, R.S.; Dufour, S.; Lebon, V.; Befroy, D.; Cline, G.W.; Enocksson, S.; Inzucchi, S.E.; Shulman, G.I.; Petersen, K.F. The Effects of Rosiglitazone on Insulin Sensitivity, Lipolysis, and Hepatic and Skeletal Muscle Triglyceride Content in Patients With Type 2 Diabetes. Diabetes 2002, 51, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Arimura, N.; Horiba, T.; Imagawa, M.; Shimizu, M.; Sato, R. The Peroxisome Proliferator-Activated Receptor γ Regulates Expression of the Perilipin Gene in Adipocytes. J. Biol. Chem. 2004, 279, 10070–10076. [Google Scholar] [CrossRef] [PubMed]
- Brasaemle, D.L.; Rubin, B.; Harten, I.A.; Gruia-Gray, J.; Kimmel, A.R.; Londos, C. Perilipin A Increases Triacylglycerol Storage by Decreasing the Rate of Triacylglycerol Hydrolysis. J. Biol. Chem. 2000, 275, 38486–38493. [Google Scholar] [CrossRef] [PubMed]
- Otero, M.; Lago, R.; Lago, F.; Casanueva, F.F.; Dieguez, C.; Gómez-Reino, J.J.; Gualillo, O. Leptin, from Fat to Inflammation: Old Questions and New Insights. FEBS Lett. 2005, 579, 295–301. [Google Scholar] [CrossRef]
- Montecucco, F.; Bianchi, G.; Gnerre, P.; Bertolotto, M.; Dallegri, F.; Ottonello, L. Induction of Neutrophil Chemotaxis by Leptin. Ann. N. Y. Acad. Sci. 2006, 1069, 463–471. [Google Scholar] [CrossRef]
- Eun, H.K.; Park, J.Y.; Park, H.S.; Min, J.J.; Je, W.R.; Kim, M.; Sun, Y.K.; Kim, M.S.; Kim, S.W.; In, S.P.; et al. Essential Role of Mitochondrial Function in Adiponectin Synthesis in Adipocytes. Diabetes 2007, 56, 2973–2981. [Google Scholar] [CrossRef]
- Choo, H.J.; Kim, J.H.; Kwon, O.B.; Lee, C.S.; Mun, J.Y.; Han, S.S.; Yoon, Y.S.; Yoon, G.; Choi, K.M.; Ko, Y.G. Mitochondria Are Impaired in the Adipocytes of Type 2 Diabetic Mice. Diabetologia 2006, 49, 784–791. [Google Scholar] [CrossRef]
- Wilson-Fritch, L.; Nicoloro, S.; Chouinard, M.; Lazar, M.A.; Chui, P.C.; Leszyk, J.; Straubhaar, J.; Czech, M.P.; Corvera, S. Mitochondrial Remodeling in Adipose Tissue Associated with Obesity and Treatment with Rosiglitazone. J. Clin. Investig. 2004, 114, 1281–1289. [Google Scholar] [CrossRef]
- Heinonen, S.; Jokinen, R.; Rissanen, A.; Pietiläinen, K.H. White Adipose Tissue Mitochondrial Metabolism in Health and in Obesity. Obes. Rev. 2020, 21, e12958. [Google Scholar] [CrossRef]
- Enguix, N.; Pardo, R.; González, A.; López, V.M.; Simó, R.; Kralli, A.; Villena, J.A. Mice Lacking PGC-1β in Adipose Tissues Reveal a Dissociation between Mitochondrial Dysfunction and Insulin Resistance. Mol. Metab. 2013, 2, 215–226. [Google Scholar] [CrossRef]
- Bach, D.; Pich, S.; Soriano, F.X.; Vega, N.; Baumgartner, B.; Oriola, J.; Daugaard, J.R.; Lloberas, J.; Camps, M.; Zierath, J.R.; et al. Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism. J. Biol. Chem. 2003, 278, 17190–17197. [Google Scholar] [CrossRef] [PubMed]
- Twig, G.; Elorza, A.; Molina, A.J.A.; Mohamed, H.; Wikstrom, J.D.; Walzer, G.; Stiles, L.; Haigh, S.E.; Katz, S.; Las, G.; et al. Fission and Selective Fusion Govern Mitochondrial Segregation and Elimination by Autophagy. EMBO J. 2008, 27, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Sebastián, D.; Hernández-Alvarez, M.I.; Segalés, J.; Sorianello, E.; Muñoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Gopalacharyulu, P.; et al. Mitofusin 2 (Mfn2) Links Mitochondrial and Endoplasmic Reticulum Function with Insulin Signaling and Is Essential for Normal Glucose Homeostasis. Proc. Natl. Acad. Sci. USA 2012, 109, 5523–5528. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Cohen, D.E. Mechanisms of Hepatic Triglyceride Accumulation in Non-Alcoholic Fatty Liver Disease. J. Gastroenterol. 2013, 48, 434–441. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward (5′ → 3′) Reverse (3′ → 5′) | Accession Number | Product Length (pb) |
---|---|---|---|
r18S | CGA ACC TCC GAC TTT CGT TCT GCG GTG AAA TTC TTG GAC CGG | NR_046237.1 | 90 |
mActb | CCG GGA CCT GAC GGA CTA CCT CAT GAA GAT AAT AGT GAT GAC TTG GCC GTC AGG CAG CTC | NM_007393.5 | 205 |
rAdipoQ | GAA GGG AGA GAA GGG AGA CG CGC TGA ATG CTG AGT GAT ACA | NM_144744.3 | 158 |
mAdipoQ | GTT GCA AGC TCT CCT GTT CC TCT CCA GGA GTG CCA TCT CT | NM_009605.5 | 192 |
rBad | AGA GTT TGA GCC GAG TGA GC ACT CCG GGT CTC CAT AGT CC | NM_022698.1 | 186 |
rBcl2 | CTT CTT TGA GTT CGG TGG GGT GGA GAA ATC AAA CAG AGG TCG C | NM_016993.1 | 151 |
rCd36 | CTCACACAACTCAGATACTGCTG TCCAAACACAGCCAGGACAG | NM_031561 | 200 |
rCd68 | CCC GAA CAA AAC CAA GGT CC CTG CGC TGA GAA TGT CCA CT | NM_001031638.1 | 195 |
rCisd1 | ACG CTA AAG AGA GTC GCA CC CAT CGC AGA ACG GGA ACT TTT | NM_001106385.2 | 150 |
mCisd1 | GCT GTG CGA GTT GAG TGG AT TGG TGC GAT TCT CTT TAG CGT A | NM_134007.4 | 103 |
mCox4 | AGA AGG CGC TGA AGG AGA AGG A CCA GCA TGC CGA GGG AGT GA | NM_009941.3 | 386 |
mCs | GTT AGC TGG AGA CGC TTT AGA GGC CTG GAA GGA AAC | NM_026444.4 | 158 |
rFabpl1 | TGC GAA CTG GAG ACC ATG AC TGT AGA CGA TGT CAC CCA GTG | NM_012556 | 157 |
rFis1 | TGT AGC GTG AAG GAT TGC AG CTT CAT CTC TGG GCA TCC AT | NM_001105919.1 | 197 |
mFis1 | CTG GCC GTG GGC AAC TAC CAG CCC TCG CAC ATA CTT TAG A | NM_001347504.1 | 63 |
rHif1a | CCC CTT CCT CCT TCA TTT TC GGA CAA ACT CCC TCA CCA AA | NM_024359.1 | 159 |
rHsl | GGA CAG TGA TCC CAG GAA CG ATG CTG TGT GAG AAT GCC GA | NM_012859.1 | 151 |
Mt-nd1 | TAC ACG ATG AGG CAA CCA AA GGT AGG GGG TGT GTT GTG AG | NC_001665 | 162 |
rMfn1 | GAC GAC AGC ACA TGG AAA GA CTT GCC TGA AAT CCT TCT GC | NM_138976.1 | 142 |
mMfn1 | CAA CAC TGA TGA ACA CGG AGA AA CCC AAC GGT TAT TCA GAA TGA AG | NM_024200.5 | 90 |
rMfn2 | AGG AAA TTG CTG CCA TGA AC GTC TCT TCT CGG TGC AGG TC | NM_130894.4 | 174 |
mMfn2 | TGC TGG TGG CCA ACT CAG A GGA GAG ACG TTC ACT CAC TTT GTG | NM_001355590.1 | 77 |
rMttp | ACCTGCGAACCTGTCCAACG CCAGGATGGCTTCCAGTGAG | NM_001107727 | 182 |
rPlin5 | CAC TGT GCT GAG GCG CT ACG CAC AAA GTA GCC CTG TT | NM_001134637.1 | 181 |
rPpargc1a | ATC TAC TGC CTG GGG ACC TT ATG TGT CGC CTT CTT GCT CT | NM_031347 | 180 |
mPpargc1a | AAC CAC ACC CAC AGG ATC AGA CTC TTC GCT TTA TTG CTC CAT GA | NM_008904.3 | 74 |
rmPpargc1b | ACT ATG ATC CCA CGT CTG AAG AGT C CCT TGT CTG AGG TAT TGA GGT ATT C | NM_176075 | 152 |
rPpara | TGCCTTCCCTGTGAACTGAC GCTTCAAGTGGGGAGAGAGG | NM_013196 | 151 |
rPparg | TCA GAG GGA CAA GGA TTC ATG A CAC CAA AGG GCT TCC GCA GGC T | NM_013124 | 61 |
mPparg | TTT TCA AGG GTG CCA GTT TC AAT CCT TGG CCC TCT GAG AT | NM_011146.4 | 198 |
rSerpine1 | GAC AAT GGA AGA GCA ACA TG ACC TCG ATC TTG ACC TTT TG | NM_012620.3 | 205 |
rSrebp1c | CGCTACCGTTCCTCTATCAATGAC AGTTTCTGGTTGCTGTGCTGTAAG | NM_001276707 | 140 |
rTnf | GGT TCC GTC CCT CTC ATA CA AGA CAC CGC CTG GAG TTC T | NM_012675.3 | 132 |
HFD | HFD + RSG | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|
Glucose (mg/dL) | Males | 156 | ± | 2.3 | 144 | ± | 5.4 | R |
Females | 154 | ± | 5 | 136 | ± | 5.1 | ||
Insulin (µg/L) | Males | 0.85 | ± | 0.10 | 0.61 | ± | 0.04 a | S, R, S*R |
Females | 0.50 | ± | 0.01 b | 0.52 | ± | 0.03 b | ||
Adiponectin (µg/mL) | Males | 21.3 | ± | 1.6 | 54.3 | ± | 3.0 a | S, R, S*R |
Females | 36.6 | ± | 0.6 b | 56.7 | ± | 4.3 a | ||
Leptin (ng/mL) | Males | 23.3 | ± | 3.2 | 13.0 | ± | 2.1 | S, R |
Females | 7.70 | ± | 1.04 | 6.29 | ± | 0.38 | ||
Leptin/Adiponectin | Males | 1.07 | ± | 0.16 | 0.24 | ± | 0.04 a | S, R, S*R |
Females | 0.28 | ± | 0.02 b | 0.11 | ± | 0.021 ab | ||
TG (mg/dL) | Males | 314 | ± | 12 | 163 | ± | 4 a | S, R, S*R |
Females | 229 | ± | 17 b | 166 | ± | 4 a | ||
NEFA (µg/L) | Males | 0.73 | ± | 0.01 | 0.57 | ± | 0.01 a | R, S*R |
Females | 0.60 | ± | 0.03 b | 0.59 | ± | 0.06 | ||
Total cholesterol (mM) | Males | 2.67 | ± | 0.13 | 2.55 | ± | 0.05 | S |
Females | 1.93 | ± | 0.08 | 2.02 | ± | 0.08 | ||
LDL-c (mM) | Males | 0.52 | ± | 0.06 | 0.45 | ± | 0.03 | S |
Females | 0.34 | ± | 0.03 | 0.29 | ± | 0.04 | ||
HDL-c (mM) | Males | 0.44 | ± | 0.07 | 1.08 | ± | 0.05 a | R, S*R |
Females | 0.76 | ± | 0.05 b | 0.89 | ± | 0.10 | ||
LDL-c/HDL-c | Males | 1.20 | ± | 0.26 | 0.42 | ± | 0.03 | S, R |
Females | 0.55 | ± | 0.11 | 0.30 | ± | 0.04 |
HFD | HFD + RSG | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|
Hepatic specific weight (g/100 g BW) | Males | 2.83 | ± | 0.05 | 2.69 | ± | 0.06 | S |
Females | 2.54 | ± | 0.07 | 2.47 | ± | 0.06 | ||
TG (mg/g tissue) | Males | 49.8 | ± | 3.2 | 19.8 | ± | 1.2 a | S, R, S*R |
Females | 25.3 | ± | 0.6 b | 19.5 | ± | 1.9 a | ||
Total cholesterol (mg/g tissue) | Males | 13.9 | ± | 1.3 | 7.49 | ± | 1.19 a | S, R, S*R |
Females | 7.38 | ± | 0.15 b | 6.42 | ± | 0.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauzá-Thorbrügge, M.; Amengual-Cladera, E.; Galmés-Pascual, B.M.; Morán-Costoya, A.; Gianotti, M.; Valle, A.; Proenza, A.M.; Lladó, I. Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity. Nutrients 2024, 16, 3063. https://doi.org/10.3390/nu16183063
Bauzá-Thorbrügge M, Amengual-Cladera E, Galmés-Pascual BM, Morán-Costoya A, Gianotti M, Valle A, Proenza AM, Lladó I. Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity. Nutrients. 2024; 16(18):3063. https://doi.org/10.3390/nu16183063
Chicago/Turabian StyleBauzá-Thorbrügge, Marco, Emilia Amengual-Cladera, Bel Maria Galmés-Pascual, Andrea Morán-Costoya, Magdalena Gianotti, Adamo Valle, Ana Maria Proenza, and Isabel Lladó. 2024. "Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity" Nutrients 16, no. 18: 3063. https://doi.org/10.3390/nu16183063
APA StyleBauzá-Thorbrügge, M., Amengual-Cladera, E., Galmés-Pascual, B. M., Morán-Costoya, A., Gianotti, M., Valle, A., Proenza, A. M., & Lladó, I. (2024). Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity. Nutrients, 16(18), 3063. https://doi.org/10.3390/nu16183063