Dietary Shifts since COVID-19: A Study of Racial Differences
Abstract
:1. Introduction
2. Methods
2.1. Design, Participants, and Procedure
2.2. Demographic Characteristics
2.3. Nutritional Assessment
2.4. Software and Statistical Tests
3. Results
3.1. Demographic Characteristics
3.2. Changes in Dietary Consumption by Race
3.3. Comparison of Nutritional Risk before and since COVID-19
3.4. Logistic Regression Results for Food Consumption Changes
3.5. Racial Disparities in Nutritional Vulnerability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janssen, M.; Chang, B.P.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in food consumption during the COVID-19 pandemic: Analysis of consumer survey data from the first lockdown period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 635859. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.; Young, E.; Butler, I.; Coe, S. The impact of lockdown during the COVID-19 outbreak on dietary habits in various population groups: A scoping review. Front. Nutr. 2021, 8, 626432. [Google Scholar] [CrossRef] [PubMed]
- AlMughamis, N.; AlAsfour, S.; Mehmood, S. Poor eating habits and predictors of weight gain during the COVID-19 quarantine measures in Kuwait: A cross sectional study. F1000Research 2020, 9, 914. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Allès, B.; A Andreeva, V.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M.; et al. Diet and physical activity during the coronavirus disease 2019 (COVID-19) lockdown (March–May 2020): Results from the French NutriNet-Santé cohort study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef]
- Husain, W.; Ashkanani, F. Does COVID-19 change dietary habits and lifestyle behaviours in Kuwait: A community-based cross-sectional study. Environ. Health Prev. Med. 2020, 25, 61. [Google Scholar] [CrossRef]
- Zachary, Z.; Brianna, F.; Brianna, L.; Garrett, P.; Jade, W.; Alyssa, D.; Mikayla, K. Self-quarantine and weight gain related risk factors during the COVID-19 pandemic. Obes. Res. Clin. Pract. 2020, 14, 210–216. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Ponzo, V.; Rosato, R.; Scumaci, E.; Goitre, I.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Ghigo, E.; et al. Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. Nutrients 2020, 12, 2016. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.A.; Gallo, T.F.; Young, S.L.; Moritz, K.M.; Akison, L.K. The impact of isolation measures due to COVID-19 on energy intake and physical activity levels in Australian university students. Nutrients 2020, 12, 1865. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Bracale, R.; Vaccaro, C.M. Changes in food choice following restrictive measures due to COVID-19. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1423–1426. [Google Scholar] [CrossRef] [PubMed]
- Scarmozzino, F.; Visioli, F. COVID-19 and the subsequent lockdown modified dietary habits of almost half the population in an Italian sample. Foods 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- González-Monroy, C.; Gómez-Gómez, I.; Olarte-Sánchez, C.M.; Motrico, E. Eating behaviour changes during the COVID-19 pandemic: A systematic review of longitudinal studies. Int. J. Environ. Res. Public Health 2021, 18, 11130. [Google Scholar] [CrossRef]
- Caso, D.; Guidetti, M.; Capasso, M.; Cavazza, N. Finally, the chance to eat healthily: Longitudinal study about food consumption during and after the first COVID-19 lockdown in Italy. Food Qual. Prefer. 2022, 95, 104275. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish COVIDiet study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef]
- Souza, T.C.M.; Oliveira, L.A.; Daniel, M.M.; Ferreira, L.G.; Della Lucia, C.M.; Liboredo, J.C.; Anastácio, L.R. Lifestyle and eating habits before and during COVID-19 quarantine in Brazil. Public Health Nutr. 2022, 25, 65–75. [Google Scholar] [CrossRef]
- Monroe-Lord, L.; Harrison, E.; Ardakani, A.; Duan, X.; Spechler, L.; Jeffery, T.D.; Jackson, P. Changes in food consumption trends among American adults since the COVID-19 pandemic. Nutrients 2023, 15, 1769. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Hiza, H.A.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef]
- Thompson, F.E.; McNeel, T.S.; Dowling, E.C.; Midthune, D.; Morrissette, M.; Zeruto, C.A. Interrelationships of added sugars intake, socioeconomic status, and race/ethnicity in adults in the United States: National Health Interview Survey, 2005. J. Am. Diet. Assoc. 2009, 109, 1376–1383. [Google Scholar] [CrossRef]
- Tao, H.; Liu, L.; Nguyen, S.D.T. Trends in diet quality by race/ethnicity among adults in the United States for 2011–2018. Nutrients 2022, 14, 4178. [Google Scholar] [CrossRef] [PubMed]
- Ogedegbe, G.; Ravenell, J.; Adhikari, S.; Butler, M.; Cook, T.; Francois, F.; Iturrate, E.; Jean-Louis, G.; Jones, S.A.; Onakomaiya, D.; et al. Assessment of racial/ethnic disparities in hospitalization and mortality in patients with COVID-19 in New York City. JAMA Netw. Open 2020, 3, e2026881. [Google Scholar] [CrossRef] [PubMed]
- Azar, K.M.J.; Shen, Z.; Romanelli, R.J.; Lockhart, S.H.; Smits, K.; Robinson, S.; Brown, S.; Pressman, A.R. Disparities in outcomes among COVID-19 patients in a large health care system in California. Health Aff. 2020, 39, 1253–1262. [Google Scholar] [CrossRef]
- Vasquez Reyes, M. The disproportional impact of COVID-19 on African Americans. Health Hum. Rights 2020, 22, 299–307. [Google Scholar]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Tai, D.B.; Shah, A.; Doubeni, C.A.; Sia, I.G.; Wieland, M.L. The disproportionate impact of COVID-19 on racial and ethnic minorities in the United States. Clin. Infect. Dis. 2021, 72, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Diaz, C.E.; Guilamo-Ramos, V.; Mena, L.; Hall, E.; Honermann, B.; Crowley, J.S.; Baral, S.; Prado, G.J.; Marzan-Rodriguez, M.; Beyrer, C.; et al. Risk for COVID-19 infection and death among Latinos in the United States: Examining heterogeneity in transmission dynamics. Ann. Epidemiol. 2020, 52, 46–53. [Google Scholar] [CrossRef]
- Morales, D.X.; Morales, S.A.; Beltran, T.F. Racial/ethnic disparities in household food insecurity during the COVID-19 Pandemic: A nationally representative study. J. Racial Ethn. Health Disparities 2020, 8, 1300–1314. [Google Scholar] [CrossRef]
- Qualtrics. Provo, UT. 2020. Available online: https://www.qualtrics.com (accessed on 13 August 2020).
- United States Census Bureau. The Urban and Rural Classifications; United States Census Bureau: Washington, DC, USA, 2013.
- Bailey, R.L.; Miller, P.E.; Mitchell, D.C.; Hartman, T.J.; Lawrence, F.R.; Sempos, C.T.; Smiciklas-Wright, H. Dietary screening tool identifies nutritional risk in older adults. Am. J. Clin. Nutr. 2009, 90, 177–183. [Google Scholar] [CrossRef]
- Bailey, R.L.; Mitchell, D.C.; Miller, C.K.; Still, C.D.; Jensen, G.L.; Tucker, K.L.; Smiciklas-Wright, H. A dietary screening questionnaire identifies dietary patterns in older adults. J. Nutr. 2007, 137, 421–426. [Google Scholar] [CrossRef]
- Marra, M.; Thuppal, S.V.; Johnson, E.J.; Bailey, R.L. Validation of a dietary screening tool in a middle-aged Appalachian population. Nutrients 2018, 10, 345. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Start Simple with MyPlate, 2020. Available online: https://www.myplate.gov/eat-healthy/what-is-myplate (accessed on 22 November 2021).
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Morita, S.X.; Kato, H. Racial disparity and trend of food scarcity amid COVID-19 pandemic in the United States. Cureus 2023, 15, e33232. [Google Scholar] [CrossRef]
- Snetselaar, L.G.; DeSilva, D.M.; Stoody, E.E. Dietary guidelines for Americans, 2020–2025: Understanding the scientific process, guidelines, and key recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kimani, M.E.; Sarr, M.; Cuffee, Y.; Liu, C.; Webster, N.S. Associations of race/ethnicity and food insecurity with COVID-19 infection rates across US counties. JAMA Netw. Open 2021, 4, e2112852. [Google Scholar] [CrossRef] [PubMed]
- Satia, J.A. Diet-related disparities: Understanding the problem and accelerating solutions. J. Am. Diet. Assoc. 2009, 109, 610–615. [Google Scholar] [CrossRef]
- Johansson, R. Another Look at Availability and Prices of Food Amid the COVID-19 Pandemic, 2020. Available online: https://www.usda.gov/media/blog/2020/05/28/another-look-availability-and-prices-food-amid-covid-19-pandemic (accessed on 23 October 2022).
- Liu, X.; Ho, M.S.; Hewings, G.J.; Dou, Y.; Wang, S.; Wang, G.; Guan, D.; Li, S. Aging population, balanced diet and China’s grain demand. Nutrients 2023, 15, 2877. [Google Scholar] [CrossRef]
- Um, C.Y.; Hodge, R.A.; McCullough, M.L. Change in diet quality and meal sources during the COVID-19 pandemic in a diverse subset of men and women in the cancer prevention study-3. Nutrients 2023, 15, 849. [Google Scholar] [CrossRef]
- Ardakani, A.; Monroe-Lord, L.; Spechler, L. P070 COVID-19 pandemic changes in fruit and vegetable consumption among various demographic populations. J. Nutr. Educ. Behav. 2022, 54, S50–S51. [Google Scholar] [CrossRef]
- Ojo, A.S.; Nnyanzi, L.A.; Giles, E.L.; Ells, L.J.; Awolaran, O.; Okeke, S.R.; Afaya, A.; Bolarinwa, O.A. Perceptions of dietary intake amongst Black, Asian and other minority ethnic groups in high-income countries: A systematic review of qualitative literature. BMC Nutr. 2023, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.M.; Firestone, M.J.; Popp, C.J.; Russo, R.; Yi, S.S. Age and racial/ethnic differences in dietary sources of protein, NHANES, 2011–2016. Front. Nutr. 2020, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Monroe-Lord, L.; Ardakani, A.; Spechler, L. Protein consumption since COVID-19 pandemic among different races. Innov. Aging 2022, 6, 507–508. [Google Scholar] [CrossRef]
- Monroe-Lord, L.; Spechler, L.; Ardakani, A. COVID-19 pandemic beverages consumption among white and non-white older adults in the United States. Curr. Dev. Nutr. 2022, 6 (Suppl. S1), 219. [Google Scholar] [CrossRef]
- Zhang, H.; Greenwood, D.C.; Risch, H.A.; Bunce, D.; Hardie, L.J.; Cade, J.E. Meat consumption and risk of incident dementia: Cohort study of 493,888 UK Biobank participants. Am. J. Clin. Nutr. 2021, 114, 175–184. [Google Scholar] [CrossRef]
- Li, C.; Bishop, T.R.P.; Imamura, F.; Sharp, S.J.; Pearce, M.; Brage, S.; Ong, K.K.; Ahsan, H.; Bes-Rastrollo, M.; Beulens, J.W.J.; et al. Meat consumption and incident type 2 diabetes: An individual-participant federated meta-analysis of 1.97 million adults with 100,000 incident cases from 31 cohorts in 20 countries. Lancet Diabetes Endocrinol. 2024, 12, 619–630. [Google Scholar] [CrossRef]
Characteristic | Frequency (n) | Percentage (%) |
---|---|---|
Gender | ||
Male | 4283 | 42.62 |
Female | 5767 | 57.38 |
Age (years) | ||
40–60 | 3866 | 38.47 |
61–80 | 5908 | 58.79 |
81–100 | 263 | 2.62 |
Missing | 13 | 0.13 |
Ethnicity/race | ||
White | 7390 | 73.53 |
African American | 1393 | 13.86 |
Asian | 701 | 6.98 |
Hispanic | 429 | 4.27 |
Missing | 137 | 1.36 |
Education | ||
Less than high school | 1634 | 16.26 |
Some college | 3210 | 31.94 |
College degree and more | 5191 | 51.65 |
Missing | 15 | 0.15 |
Annual income (USD) | ||
Less than 25,000 | 1551 | 15.43 |
25,000–49,999 | 2243 | 22.32 |
50,000–99,999 | 3281 | 32.65 |
100,000 or more | 2566 | 25.53 |
Missing | 409 | 4.07 |
Food Item | Race | Before | Since | MPC | p-Value |
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | (%) | |||
Fruit | African American | 8.66 (3.64) | 8.25 (3.79) | −4.76 | <0.001 |
Asian | 8.73 (3.32) | 8.43 (3.45) | −3.41 | <0.001 | |
Hispanic | 8.43 (3.51) | 7.83 (3.73) | −7.15 | <0.001 | |
White | 8.43 (3.75) | 8.1 (3.88) | −3.97 | <0.001 | |
Grains | African American | 7.16 (4.3) | 6.62 (4.36) | −7.54 | <0.001 |
Asian | 7.44 (4.64) | 6.74 (4.61) | −9.39 | <0.001 | |
Hispanic | 6.93 (4.15) | 6.37 (4.15) | −8.00 | <0.001 | |
White | 7.61 (4.56) | 7.06 (4.63) | −7.16 | <0.001 | |
Vegetables | African American | 8.52 (4.03) | 8.49 (4.18) | −0.31 | 0.88 |
Asian | 8.85 (4.11) | 8.88 (4.22) | 0.30 | 0.87 | |
Hispanic | 7.93 (4.35) | 7.9 (4.63) | −0.35 | 0.96 | |
White | 8.22 (4.12) | 8.25 (4.2) | 0.40 | 0.045 | |
Lean protein | African American | 5.64 (2.49) | 5.48 (2.53) | −2.76 | 0.003 |
Asian | 5.24 (2.64) | 5.19 (2.8) | −0.93 | 0.42 | |
Hispanic | 5.03 (2.36) | 4.9 (2.51) | −2.58 | 0.18 | |
White | 5.13 (2.42) | 5.08 (2.49) | −0.98 | 0.03 | |
Dairy | African American | 4.18 (2.58) | 4.03 (2.57) | −3.43 | 0.004 |
Asian | 4.2 (2.66) | 4.18 (2.73) | −0.64 | 0.58 | |
Hispanic | 4.7 (2.53) | 4.5 (2.55) | −4.34 | 0.02 | |
White | 4.57 (2.56) | 4.53 (2.59) | −0.84 | 0.006 | |
Fat, sugar, and sweets | African American | 13.39 (4.63) | 14 (4.7) | 4.56 | <0.001 |
Asian | 15.12 (4.27) | 15.83 (4.45) | 4.64 | <0.001 | |
Hispanic | 14.22 (4.64) | 14.99 (4.73) | 5.36 | <0.001 | |
White | 13.56 (4.41) | 13.99 (4.64) | 3.18 | <0.001 | |
Processed meats | African American | 6.34 (2.98) | 6.44 (2.85) | 1.62 | 0.07 |
Asian | 8.14 (2.3) | 8.17 (2.28) | 0.35 | 0.81 | |
Hispanic | 6.87 (2.82) | 6.91 (2.58) | 0.50 | 0.87 | |
White | 7.29 (2.62) | 7.24 (2.6) | −0.67 | 0.02 |
Food Item | Race | Decreased Consumption | No Change | Increased Consumption | p-Value |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | |||
Fruit | African American | 501 (35.97) | 588 (42.21) | 304 (21.82) | |
Asian | 224 (31.95) | 336 (47.93) | 141 (20.11) | ||
Hispanic | 160 (37.30) | 186 (43.36) | 83 (19.35) | ||
White | 2215 (29.97) | 3918 (53.02) | 1257 (17.07) | ||
p-value | <0.001 | ||||
Grains | African American | 492 (35.32) | 611 (43.86) | 290 (20.82) | |
Asian | 259 (36.95) | 338 (48.22) | 104 (14.84) | ||
Hispanic | 151 (35.20) | 186 (43.36) | 92 (21.45) | ||
White | 2285 (30.92) | 4047 (54.76) | 1058 (14.32) | ||
p-value | <0.001 | ||||
Vegetables | African American | 287 (20.60) | 795 (57.07) | 311 (22.33) | |
Asian | 144 (20.54) | 405 (57.77) | 152 (21.68) | ||
Hispanic | 105 (24.48) | 239 (55.71) | 85 (19.81) | ||
White | 1245 (16.85) | 4746 (64.22) | 1399 (18.93) | ||
p-value | <0.001 | ||||
Lean protein | African American | 330 (23.69) | 800 (57.43) | 263 (18.88) | |
Asian | 126 (17.97) | 460 (65.62) | 115 (16.41) | ||
Hispanic | 82 (19.11) | 279 (65.03) | 68 (15.85) | ||
White | 1206 (16.32) | 5140 (69.55) | 1044 (14.13) | ||
p-value | <0.001 | ||||
Dairy | African American | 313 (22.47) | 819 (58.79) | 261 (18.74) | |
Asian | 103 (14.96) | 481 (68.62) | 117 (16.69) | ||
Hispanic | 91 (21.21) | 267 (62.24) | 71 (16.55) | ||
White | 1111 (15.03) | 5223 (70.68) | 1056 (14.29) | ||
p-value | <0.001 | ||||
Fat, sugar, and sweets | African American | 595 (42.71) | 436 (31.30) | 362 (25.99) | |
Asian | 321 (45.79) | 240 (34.24) | 140 (19.97) | ||
Hispanic | 192 (44.76) | 143 (33.33) | 94 (21.91) | ||
White | 2794 (37.81) | 2883 (39.01) | 1713 (23.18) | ||
p-value | <0.001 | ||||
Processed meats | African American | 284 (20.39) | 852 (61.16) | 88 (12.55) | |
Asian | 91 (12.98) | 522 (74.47) | 257 (18.45) | ||
Hispanic | 82 (19.11) | 256 (59.67) | 91 (21.21) | ||
White | 986 (13.34) | 5255 (71.11) | 1149 (15.55) | ||
p-value | <0.001 |
African American | Asian | Hispanic | White | ||
---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | ||
Not at risk | Before | 74 (5.31) | 65 (9.27) | 25 (5.83) | 510 (6.90) |
Since | 80 (5.74) | 77 (10.98) | 26 (6.06) | 485 (6.56) | |
Possible risk | Before | 487 (34.96) | 306 (43.65) | 138 (32.17) | 2710 (36.67) |
Since | 435 (31.23) | 277 (39.51) | 143 (33.33) | 2586 (34.99) | |
At risk | Before | 832 (59.73) | 330 (47.08) | 266 (62.00) | 4170 (56.43) |
Since | 878 (63.03) | 347 (49.50) | 260 (60.61) | 4319 (58.44) |
Odds Ratio | 95% CI 1 | p-Value | |
---|---|---|---|
Fruit | |||
0.009 | |||
African American vs. White | 1.21 | 1.07, 1.38 | 0.003 |
Asian vs. White | 1.09 | 0.91, 1.29 | 0.35 |
Hispanic vs. White | 1.25 | 1.01, 1.54 | 0.04 |
Asian vs. African American | 0.90 | 0.73, 1.10 | 0.29 |
Asian vs. Hispanic | 0.87 | 0.67, 1.13 | 0.30 |
African American vs. Hispanic | 0.97 | 0.77, 1.22 | 0.80 |
Grains | |||
0.001 | |||
African American vs. White | 1.17 | 1.03, 1.33 | 0.01 |
Asian vs. White | 1.34 | 1.13, 1.59 | <0.001 |
Hispanic vs. White | 1.18 | 0.95, 1.46 | 0.13 |
Asian vs. African American | 1.15 | 0.94, 1.40 | 0.17 |
Asian vs. Hispanic | 1.14 | 0.88, 1.48 | 0.32 |
African American vs. Hispanic | 0.99 | 0.79, 1.25 | 0.95 |
Vegetables | |||
0.21 | |||
African American vs. White | 1.06 | 0.91, 1.24 | 0.45 |
Asian vs. White | 1.08 | 0.87, 1.32 | 0.50 |
Hispanic vs. White | 1.28 | 1.01, 1.63 | 0.04 |
Asian vs. African American | 1.01 | 0.80, 1.29 | 0.91 |
Asian vs. Hispanic | 0.84 | 0.62, 1.13 | 0.25 |
African American vs. Hispanic | 0.82 | 0.64, 1.07 | 0.15 |
Lean protein | |||
<0.001 | |||
African American vs. White | 1.36 | 1.17, 1.58 | <0.001 |
Asian vs. White | 1.04 | 0.84, 1.29 | 0.69 |
Hispanic vs. White | 1.07 | 0.83, 1.39 | 0.58 |
Asian vs. African American | 0.77 | 0.60, 0.98 | 0.03 |
Asian vs. Hispanic | 0.97 | 0.71, 1.33 | 0.85 |
African American vs. Hispanic | 1.26 | 0.96, 1.67 | 0.09 |
Dairy | |||
<0.001 | |||
African American vs. White | 1.43 | 1.22, 1.66 | <0.001 |
Asian vs. White | 0.90 | 0.72, 1.14 | 0.39 |
Hispanic vs. White | 1.34 | 1.05, 1.72 | 0.02 |
Asian vs. African American | 0.63 | 0.49, 0.82 | <0.001 |
Asian vs. Hispanic | 0.67 | 0.49, 0.93 | 0.01 |
African American vs. Hispanic | 1.06 | 0.81, 1.39 | 0.66 |
Fat, sugar, and sweets | |||
<0.001 | |||
African American vs. White | 1.15 | 1.02, 1.30 | 0.02 |
Asian vs. White | 1.37 | 1.16, 1.62 | 0.03 |
Hispanic vs. White | 1.25 | 1.02, 1.53 | 0.50 |
Asian vs. African American | 1.19 | 0.98, 1.44 | 0.07 |
Asian vs. Hispanic | 1.10 | 0.85, 1.41 | 0.47 |
African American vs. Hispanic | 0.92 | 0.74, 1.15 | 0.47 |
Processed meats | |||
<0.001 | |||
African American vs. White | 1.43 | 1.22, 1.67 | <0.001 |
Asian vs. White | 0.86 | 0.68, 1.09 | 0.22 |
Hispanic vs. White | 1.25 | 0.97, 1.63 | 0.09 |
Asian vs. African American | 0.60 | 0.46, 0.79 | <0.001 |
Asian vs. Hispanic | 0.68 | 0.49, 0.96 | 0.03 |
African American vs. Hispanic | 1.14 | 0.86, 1.51 | 0.36 |
Odds Ratio | 95% CI 1 | p-Value | |
---|---|---|---|
More Nutritionally Vulnerable | |||
0.02 | |||
African American vs. White | 1.35 | 1.11, 1.64 | 0.002 |
Asian vs. White | 0.97 | 0.73, 1.28 | 0.84 |
Hispanic vs. White | 0.92 | 0.64, 1.33 | 0.66 |
Asian vs. African American | 0.72 | 0.52, 0.99 | 0.04 |
Asian vs. Hispanic | 1.05 | 0.68, 1.60 | 0.81 |
African American vs. Hispanic | 1.46 | 0.99, 2.16 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroe-Lord, L.; Ardakani, A.; Jackson, P.; Asongwed, E.; Duan, X.; Schweitzer, A.; Jeffery, T.; Johnson-Largent, T.; Harrison, E. Dietary Shifts since COVID-19: A Study of Racial Differences. Nutrients 2024, 16, 3164. https://doi.org/10.3390/nu16183164
Monroe-Lord L, Ardakani A, Jackson P, Asongwed E, Duan X, Schweitzer A, Jeffery T, Johnson-Largent T, Harrison E. Dietary Shifts since COVID-19: A Study of Racial Differences. Nutrients. 2024; 16(18):3164. https://doi.org/10.3390/nu16183164
Chicago/Turabian StyleMonroe-Lord, Lillie, Azam Ardakani, Phronie Jackson, Elmira Asongwed, Xuejing Duan, Amy Schweitzer, Tia Jeffery, Tiffany Johnson-Largent, and Elgloria Harrison. 2024. "Dietary Shifts since COVID-19: A Study of Racial Differences" Nutrients 16, no. 18: 3164. https://doi.org/10.3390/nu16183164
APA StyleMonroe-Lord, L., Ardakani, A., Jackson, P., Asongwed, E., Duan, X., Schweitzer, A., Jeffery, T., Johnson-Largent, T., & Harrison, E. (2024). Dietary Shifts since COVID-19: A Study of Racial Differences. Nutrients, 16(18), 3164. https://doi.org/10.3390/nu16183164