Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design Overview
2.3. Study Product
2.4. Outcomes
2.5. Instruments
2.5.1. Daily Diary Entries
2.5.2. Bristol Stool Scale
2.5.3. Short Form-36
2.5.4. Reasons Individuals Stop Eating Questionnaire
2.6. Statistical Analysis
3. Results
3.1. Digestive Health Outcomes
3.2. GI Primer Supplement Improves Self-Reported Vitality/Energy Levels and General Health
3.3. Participant Attitudes towards Food and Eating Changed after Daily Use of GI Primer Supplement
4. Discussion
4.1. Proposed Mechanisms Underlying Changes in Digestive Outcomes
4.2. Proposed Mechanisms Underlying Changes in Energy/Vitality
4.3. Proposed Mechanisms Underlying Changes in Reasons for Satiety
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Thirst | Stomach Cramps | Rumbling/Stomach Noise | Nausea | Indigestion | Gas/Flatulence | Bloating | Constipation | Fluctuation in Energy Levels | Brain Fog/Difficulty Concentrating | Fatigue | Hunger | Acid Reflux | ||
Baseline | M | 0.9706 | 1.1324 | 1.3088 | 0.7206 | 1.25 | 1.5 | 1.5735 | 1.1765 | 1.7941 | 1.4118 | 1.5882 | 1.0147 | 0.9706 |
SD | 0.6458 | 0.7899 | 0.6966 | 0.7091 | 0.7799 | 0.6348 | 0.7394 | 0.7715 | 0.7834 | 0.9181 | 0.8679 | 0.7821 | 0.9615 | |
Day 1 | M | 0.9559 | 0.7353 | 0.9265 | 0.5882 | 0.9265 | 1.1176 | 1.1471 | 0.9265 | 1.1765 | 1.0147 | 1.2647 | 0.9706 | 0.5882 |
SD | 0.7004 | 0.8396 | 0.7593 | 0.8328 | 0.8863 | 0.8201 | 0.8854 | 0.9194 | 0.9611 | 0.8893 | 0.8572 | 0.7324 | 0.8679 | |
% Change | −1.5152 | −35.0649 | −29.2135 | −18.3673 | −25.8824 | −25.4902 | −27.1028 | −21.25 | −34.4262 | −28.125 | −20.3703 | −4.3478 | −39.3939 | |
Day 2 | M | 0.7941 | 0.6323 | 0.7647 | 0.3970 | 0.63235 | 1.05882 | 0.94118 | 0.70588 | 1.04412 | 0.83824 | 1.05882 | 0.80882 | 0.3823 |
SD | 0.7239 | 0.7708 | 0.7354 | 0.7558 | 0.80862 | 0.75077 | 0.86183 | 0.79286 | 0.92129 | 0.89126 | 0.97556 | 0.71774 | 0.6698 | |
% Change | −18.1818 | −44.1558 | −41.5730 | −44.8979 | −49.4117 | −29.4117 | −40.1869 | −40 | −41.8032 | −40.625 | −33.3333 | −20.2898 | −60.6060 | |
Day 3 | M | 0.8382 | 0.5735 | 0.75 | 0.3971 | 0.5882 | 1.0735 | 1.0441 | 0.5588 | 0.8529 | 0.7206 | 1.1029 | 0.6912 | 0.4265 |
SD | 0.8944 | 0.8165 | 0.8944 | 0.4082 | 0.4082 | 0.8944 | 0.9832 | 0.8165 | 0.8165 | 0.8367 | 0.8165 | 0.8165 | 0.5164 | |
% Change | −13.6364 | −49.3506 | −42.6966 | −44.8979 | −52.9411 | −28.4313 | −33.6448 | −52.5 | −52.4590 | −48.9583 | −30.5555 | −31.8840 | −56.0606 | |
Day 4 | M | 0.8088 | 0.4412 | 0.5882 | 0.3529 | 0.4853 | 1 | 0.9265 | 0.4412 | 0.8971 | 0.6324 | 0.8382 | 0.7059 | 0.3971 |
SD | 0.6966 | 0.608 | 0.6744 | 0.6173 | 0.68 | 0.7727 | 0.852 | 0.6776 | 0.8311 | 0.7899 | 0.7844 | 0.7543 | 0.7153 | |
% Change | −16.6666 | −61.0389 | −55.0561 | −51.0204 | −61.1764 | −33.3333 | −41.1214 | −62.5 | −50 | −55.2083 | −47.2222 | −30.4347 | −59.0909 | |
Day 5 | M | 0.6912 | 0.5294 | 0.6176 | 0.3088 | 0.4706 | 0.9706 | 0.8382 | 0.4118 | 0.8676 | 0.6765 | 0.8971 | 0.6912 | 0.3529 |
SD | 0.6049 | 0.7012 | 0.713 | 0.6291 | 0.6341 | 0.7324 | 0.8215 | 0.6519 | 0.8962 | 0.8715 | 0.8489 | 0.7966 | 0.5926 | |
% Change | −28.787 | −53.246 | −52.808 | −57.142 | −62.3529 | −35.2941 | −46.7289 | −65 | −51.6393 | −52.0833 | −43.5185 | −31.8840 | −63.6363 | |
Day 6 | M | 0.7059 | 0.5147 | 0.5 | 0.3676 | 0.4412 | 0.8382 | 0.7647 | 0.4706 | 0.8676 | 0.6029 | 0.8824 | 0.6618 | 0.3382 |
SD | 0.6924 | 0.7226 | 0.6579 | 0.6442 | 0.6776 | 0.6604 | 0.7354 | 0.6572 | 0.7899 | 0.7944 | 0.8381 | 0.7453 | 0.6374 | |
% Change | −27.2727 | −54.5454 | −61.7977 | −48.9795 | −64.7058 | −44.1176 | −51.4018 | −60 | −51.6393 | −57.2916 | −44.4444 | −34.7826 | −65.1515 | |
Day 7 | M | 0.7059 | 0.4559 | 0.4706 | 0.3382 | 0.4853 | 0.8676 | 0.75 | 0.3088 | 0.6912 | 0.5588 | 0.7353 | 0.5147 | 0.3382 |
SD | 0.6478 | 0.7004 | 0.6341 | 0.6374 | 0.68 | 0.7512 | 0.8173 | 0.6291 | 0.7776 | 0.7606 | 0.7845 | 0.68 | 0.5887 | |
% Change | −27.2727 | −59.7402 | −64.0449 | −53.0612 | −61.1764 | −42.1568 | −52.3364 | −73.75 | −61.4754 | −60.4166 | −53.7037 | −49.2753 | −65.1515 | |
Day 8 | M | 0.6765 | 0.3382 | 0.3971 | 0.25 | 0.3971 | 0.75 | 0.6765 | 0.4265 | 0.75 | 0.5588 | 0.8088 | 0.5588 | 0.3235 |
SD | 0.6566 | 0.6826 | 0.602 | 0.5 | 0.602 | 0.7202 | 0.7618 | 0.6979 | 0.7988 | 0.7606 | 0.7382 | 0.6776 | 0.5844 | |
% Change | −30.3030 | −70.1298 | −69.6629 | −65.3061 | −68.2352 | −50 | −57.0093 | −63.75 | −58.1967 | −60.4166 | −49.0740 | −44.9275 | −66.6666 | |
Day 9 | M | 0.6324 | 0.4706 | 0.4118 | 0.25 | 0.3529 | 0.6618 | 0.5882 | 0.4118 | 0.7059 | 0.4559 | 0.7941 | 0.6029 | 0.25 |
SD | 0.667 | 0.8006 | 0.6286 | 0.529 | 0.5926 | 0.7042 | 0.6962 | 0.6519 | 0.8115 | 0.7617 | 0.8735 | 0.7153 | 0.5 | |
% Change | −34.8484 | −58.4415 | −68.5393 | −65.3061 | −71.7647 | −55.8823 | −62.6168 | −65 | −60.6557 | −67.70833 | −50 | −40.5797 | −74.2424 | |
Day 10 | M | 0.6618 | 0.3676 | 0.3824 | 0.25 | 0.3382 | 0.7941 | 0.5 | 0.3676 | 0.6176 | 0.5147 | 0.7059 | 0.4853 | 0.25 |
SD | 0.6374 | 0.5961 | 0.6917 | 0.5565 | 0.5628 | 0.7641 | 0.6579 | 0.6206 | 0.8291 | 0.8374 | 0.882 | 0.68 | 0.5 | |
% Change | −31.8181 | −67.5324 | −70.7865 | −65.3061 | −72.9411 | −47.0588 | −68.224 | −68.75 | −65.5737 | −63.5416 | −55.5555 | −52.1739 | −74.2424 | |
Day 11 | M | 0.6324 | 0.3235 | 0.4412 | 0.3529 | 0.3382 | 0.7647 | 0.5588 | 0.3824 | 0.6324 | 0.4118 | 0.6471 | 0.5294 | 0.3088 |
SD | 0.689 | 0.6094 | 0.632 | 0.7074 | 0.6374 | 0.7354 | 0.7408 | 0.6471 | 0.8447 | 0.7578 | 0.8598 | 0.7222 | 0.5797 | |
% Change | −34.8484 | −71.4285 | −66.2921 | −51.0204 | −72.9411 | −49.0196 | −64.4859 | −67.5 | −64.7540 | −70.8333 | −59.2592 | −47.8260 | −68.1818 | |
Day 12 | M | 0.6176 | 0.3970 | 0.3970 | 0.25 | 0.2794 | 0.72058 | 0.6029 | 0.2647 | 0.6470 | 0.5147 | 0.6323 | 0.5 | 0.2205 |
SD | 0.7336 | 0.6722 | 0.6019 | 0.5827 | 0.5421 | 0.7500 | 0.775 | 0.5888 | 0.8060 | 0.7628 | 0.7899 | 0.6802 | 0.4839 | |
% Change | −36.3636 | −64.9350 | −69.6629 | −65.3061 | −77.6470 | −51.9607 | −61.6822 | −77.5 | −63.9344 | −63.5416 | −60.1851 | −50.7246 | −77.2727 | |
Day 13 | M | 0.6470 | 0.3382 | 0.3088 | 0.2352 | 0.2794 | 0.5735 | 0.5588 | 0.3823 | 0.5441 | 0.5 | 0.6470 | 0.5441 | 0.2352 |
SD | 0.6410 | 0.6135 | 0.6048 | 0.5495 | 0.5689 | 0.7189 | 0.6776 | 0.6917 | 0.8363 | 0.8011 | 0.7873 | 0.6563 | 0.5216 | |
% Change | −33.3333 | −70.1298 | −76.4044 | −67.3469 | −77.6470 | −61.7647 | −64.4859 | −67.5 | −69.6721 | −64.5833 | −59.2592 | −46.3768 | −75.7575 | |
Day 14 | M | 0.5588 | 0.2647 | 0.3823 | 0.2205 | 0.2352 | 0.6617 | 0.5735 | 0.3529 | 0.5147 | 0.3970 | 0.6470 | 0.4852 | 0.2352 |
SD | 0.6776 | 0.5888 | 0.5992 | 0.5138 | 0.5216 | 0.7453 | 0.6761 | 0.6859 | 0.7429 | 0.6496 | 0.7282 | 0.6346 | 0.6014 | |
% Change | −42.4242 | −76.6233 | −70.7865 | −69.3875 | −81.1764 | −55.8823 | −63.5514 | −70 | −71.3114 | −71.875 | −59.2592 | −52.1739 | −75.757 |
References
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Huguet, M.A.; Belloc, B.; Domínguez-Cajal, M. Small and Large Intestine (I): Malabsorption of Nutrients. Nutrients 2021, 13, 1254. [Google Scholar] [CrossRef] [PubMed]
- Bielik, V.; Kolisek, M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int. J. Mol. Sci. 2021, 22, 6803. [Google Scholar] [CrossRef] [PubMed]
- Régnier, M.; Van Hul, M.; Knauf, C.; Cani, P.D. Gut Microbiome, Endocrine Control of Gut Barrier Function and Metabolic Diseases. J. Endocrinol. 2021, 248, R67–R82. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Acheson, D.W.K.; Luccioli, S. Mucosal Immune Responses. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 387–404. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.-H.; Ko, Y.-F.; Hwang, T.-L.; Young, J.D.; Ojcius, D.M. Gut Barrier Disruption and Chronic Disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut Microbiota’s Effect on Mental Health: The Gut-Brain Axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef]
- Fassarella, M.; Blaak, E.E.; Penders, J.; Nauta, A.; Smidt, H.; Zoetendal, E.G. Gut Microbiome Stability and Resilience: Elucidating the Response to Perturbations in Order to Modulate Gut Health. Gut 2021, 70, 595–605. [Google Scholar] [CrossRef]
- Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The Resilience of the Intestinal Microbiota Influences Health and Disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.; Jung, K.; Kim, H.; Lee, S. Association between Fatigue, Pain, Digestive Problems, and Sleep Disturbances and Individuals’ Health-Related Quality of Life: A Nationwide Survey in South Korea. Health Qual. Life Outcomes 2020, 18, 159. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Liu, Y.; Wang, Y.; Fan, R.; Hu, X.; Zhang, F.; Yang, J.; Chen, J. The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Front. Immunol. 2022, 13, 871713. [Google Scholar] [CrossRef] [PubMed]
- Jacquier, E.F.; Van De Wouw, M.; Nekrasov, E.; Contractor, N.; Kassis, A.; Marcu, D. Local and Systemic Effects of Bioactive Food Ingredients: Is There a Role for Functional Foods to Prime the Gut for Resilience? Foods 2024, 13, 739. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, F.; Wang, F.; Cheng, J.; Zou, H.; Li, Y.; Du, J.; Kan, J. Biomarkers of Micronutrients and Phytonutrients and Their Application in Epidemiological Studies. Nutrients 2023, 15, 970. [Google Scholar] [CrossRef]
- Mirmohammadali, S.N.; Rosenkranz, S.K. Dietary Phytochemicals, Gut Microbiota Composition, and Health Outcomes in Human and Animal Models. Biosci. Microbiota Food Health 2023, 42, 152–171. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Scott, E.; De Paepe, K.; Van De Wiele, T. Postbiotics and Their Health Modulatory Biomolecules. Biomolecules 2022, 12, 1640. [Google Scholar] [CrossRef]
- Blake, M.R.; Raker, J.M.; Whelan, K. Validity and Reliability of the Bristol Stool Form Scale in Healthy Adults and Patients with Diarrhoea-predominant Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2016, 44, 693–703. [Google Scholar] [CrossRef]
- Brazier, J.E.; Harper, R.; Jones, N.M.; O’Cathain, A.; Thomas, K.J.; Usherwood, T.; Westlake, L. Validating the SF-36 Health Survey Questionnaire: New Outcome Measure for Primary Care. BMJ 1992, 305, 160–164. [Google Scholar] [CrossRef]
- Ware, E.W., Jr.; Snow, K.K.; Kasinski, M.; Gandek, B. SF-36 Health Survey: Manual and Interpretation Guide. Health Inst. 1993, 6, 1. [Google Scholar]
- Chawner, L.R.; Yu, S.; Cunningham, P.M.; Rolls, B.J.; Hetherington, M.M. Construct Validation of the Reasons Individuals Stop Eating Questionnaire (RISE-Q) and the Development of the RISE-Q-15. Appetite 2022, 170, 105898. [Google Scholar] [CrossRef] [PubMed]
- Ismail, L.C.; Osaili, T.M.; Salem, H.; Abdelrahim, M.; Gamaleldin, N.; Shalfawi, N.; Nasser, R.; Daour, T.A.; Mohamad, M.N.; Saleh, S.T.; et al. Reasons Individuals Stop Eating Questionnaire (RISE-Q) among Adults in the United Arab Emirates. PLoS ONE 2023, 18, e0293386. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Singh, V.; Schurman, J.V.; Colombo, J.M.; Friesen, C.A. The Relationship between Mucosal Inflammatory Cells, Specific Symptoms, and Psychological Functioning in Youth with Irritable Bowel Syndrome. Sci. Rep. 2020, 10, 11988. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Talley, N.J. Mucosal Inflammation as a Potential Etiological Factor in Irritable Bowel Syndrome: A Systematic Review. J. Gastroenterol. 2011, 46, 421–431. [Google Scholar] [CrossRef]
- Ganda Mall, J.-P.; Östlund-Lagerström, L.; Lindqvist, C.M.; Algilani, S.; Rasoal, D.; Repsilber, D.; Brummer, R.J.; Keita, Å.V.; Schoultz, I. Are Self-Reported Gastrointestinal Symptoms among Older Adults Associated with Increased Intestinal Permeability and Psychological Distress? BMC Geriatr. 2018, 18, 75. [Google Scholar] [CrossRef]
- Gjini, B.; Melchior, I.; Euler, P.; Kreysel, C.; Kalde, S.; Krummen, B.; Kiesslich, R.; Hemmerlein, B.; Frieling, T. Food Intolerance in Patients with Functional Abdominal Pain: Evaluation through Endoscopic Confocal Laser Endomicroscopy. Endosc. Int. Open 2023, 11, E67–E71. [Google Scholar] [CrossRef]
- Chang, J.; Leong, R.W.; Wasinger, V.C.; Ip, M.; Yang, M.; Phan, T.G. Impaired Intestinal Permeability Contributes to Ongoing Bowel Symptoms in Patients with Inflammatory Bowel Disease and Mucosal Healing. Gastroenterology 2017, 153, 723–731.e1. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Food Choice as a Key Management Strategy for Functional Gastrointestinal Symptoms. Am. J. Gastroenterol. 2012, 107, 657–666. [Google Scholar] [CrossRef]
- Zheng, X.; Chu, H.; Cong, Y.; Deng, Y.; Long, Y.; Zhu, Y.; Pohl, D.; Fried, M.; Dai, N.; Fox, M. Self-reported Lactose Intolerance in Clinic Patients with Functional Gastrointestinal Symptoms: Prevalence, Risk Factors, and Impact on Food Choices. Neurogastroenterol. Motil. 2015, 27, 1138–1146. [Google Scholar] [CrossRef]
- Wei, L.; Singh, R.; Ro, S.; Ghoshal, U.C. Gut Microbiota Dysbiosis in Functional Gastrointestinal Disorders: Underpinning the Symptoms and Pathophysiology. JGH Open 2021, 5, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Moayyedi, P.; Quigley, E.M.M.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.R.; Ford, A.C. The Effect of Fiber Supplementation on Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2014, 109, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.P.; Sugita, M.; Fukuzawa, Y.; Okubo, T. Impact of Partially Hydrolyzed Guar Gum (PHGG) on Constipation Prevention: A Systematic Review and Meta-Analysis. J. Funct. Foods 2017, 33, 52–66. [Google Scholar] [CrossRef]
- Ustundag, G.; Kuloglu, Z.; Kirbas, N.; Kansu, A. Can Partially Hydrolyzed Guar Gum Be an Alternative to Lactulose in Treatment of Childhood Constipation? Turk. J. Gastroenterol. 2010, 21, 360–364. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Muir, J.G.; Curtis, S.L.; Gibson, P.R. Dietary Fibre: A Roughage Guide. Intern. Med. J. 2003, 33, 291–296. [Google Scholar] [CrossRef]
- Shi, F.; Zhou, F.; Zheng, X.; Lv, J.; Yu, X.; Zhou, Y.; Li, Q. Effects of Dietary Fiber Compounds on Characteristic Human Flora and Metabolites Mediated by the Longevity Dietary Pattern Analyzed by In Vitro Fermentation. Nutrients 2022, 14, 5037. [Google Scholar] [CrossRef]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary Fiber Intervention on Gut Microbiota Composition in Healthy Adults: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef]
- Abe, A.; Morishima, S.; Kapoor, M.P.; Inoue, R.; Tsukahara, T.; Naito, Y.; Ozeki, M. Partially Hydrolyzed Guar Gum Is Associated with Improvement in Gut Health, Sleep, and Motivation among Healthy Subjects. J. Clin. Biochem. Nutr. 2023, 72, 189–197. [Google Scholar] [CrossRef]
- Edelman, M.; Wang, Q.; Ahnen, R.; Slavin, J. The Dose Response Effects of Partially Hydrolyzed Guar Gum on Gut Microbiome of Healthy Adults. Appl. Microbiol. 2024, 4, 720–730. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Pylkas, A.M.; Juneja, L.R.; Slavin, J.L. Comparison of Different Fibers for In Vitro Production of Short Chain Fatty Acids by Intestinal Microflora. J. Med. Food 2005, 8, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Meijer, K.; De Vos, P.; Priebe, M.G. Butyrate and Other Short-Chain Fatty Acids as Modulators of Immunity: What Relevance for Health? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef]
- Nakai, H.; Murosaki, S.; Yamamoto, Y.; Furutani, M.; Matsuoka, R.; Hirose, Y. Safety and Efficacy of Using Heat-Killed Lactobacillus plantarum L-137: High-Dose and Long-Term Use Effects on Immune-Related Safety and Intestinal Bacterial Flora. J. Immunotoxicol. 2021, 18, 127–135. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakai, H.; Ohara, T.; Kawasaki, K.; Murosaki, S.; Hirose, Y. Beneficial Effect of Heat-Killed Lactiplantibacillus plantarum L-137 on Intestinal Barrier Function of Rat Small Intestinal Epithelial Cells. Sci. Rep. 2024, 14, 12319. [Google Scholar] [CrossRef]
- Yoshitake, R.; Hirose, Y.; Murosaki, S.; Matsuzaki, G. Heat-Killed Lactobacillus plantarum L-137 Attenuates Obesity and Associated Metabolic Abnormalities in C57BL/6 J Mice on a High-Fat Diet. Biosci. Microbiota Food Health 2021, 40, 84–91. [Google Scholar] [CrossRef]
- Khonyoung, D.; Yamauchi, K. Effects of Heat-Killed Lactobacillus plantarum L-137 on Morphology of Intestinal Villi and Epithelial Cells in Broiler Chickens. J. Appl. Anim. Res. 2012, 40, 140–147. [Google Scholar] [CrossRef]
- Martorell, P.; Alvarez, B.; Llopis, S.; Navarro, V.; Ortiz, P.; Gonzalez, N.; Balaguer, F.; Rojas, A.; Chenoll, E.; Ramón, D.; et al. Heat-Treated Bifidobacterium longum CECT-7347: A Whole-Cell Postbiotic with Antioxidant, Anti-Inflammatory, and Gut-Barrier Protection Properties. Antioxidants 2021, 10, 536. [Google Scholar] [CrossRef]
- Srivastava, S.; Basak, U.; Naghibi, M.; Vijayakumar, V.; Parihar, R.; Patel, J.; Jadon, P.; Pandit, A.; Dargad, R.; Khanna, S.; et al. A Randomized Double-Blind, Placebo-Controlled Trial to Evaluate the Safety and Efficacy of Live Bifidobacterium longum CECT 7347 (ES1) and Heat-Treated Bifidobacterium longum CECT 7347 (HT-ES1) in Participants with Diarrhea-Predominant Irritable Bowel Syndrome. Gut Microbes 2024, 16, 2338322. [Google Scholar] [CrossRef]
- Maurer Sost, M.; Stevens, Y.; Salden, B.; Troost, F.; Masclee, A.; Venema, K. Citrus Extract High in Flavonoids Beneficially Alters Intestinal Metabolic Responses in Subjects with Features of Metabolic Syndrome. Foods 2023, 12, 3413. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.D.; Hawkes, J.; Graham, R.D.; Kitchen, J.L.; Symonds, E.L.; Davidson, G.P.; Butler, R.N. Zinc-Fortified Oral Rehydration Solution Improved Intestinal Permeability and Small Intestinal Mucosal Recovery. Clin. Pediatr. 2015, 54, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef] [PubMed]
- Skrovanek, S. Zinc and Gastrointestinal Disease. WJGP 2014, 5, 496. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds during Lactic Fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Effect of Fermentation on the Nutritional Quality of the Selected Vegetables and Legumes and Their Health Effects. Life 2023, 13, 655. [Google Scholar] [CrossRef]
- Rubió, L.; Motilva, M.-J.; Romero, M.-P. Recent Advances in Biologically Active Compounds in Herbs and Spices: A Review of the Most Effective Antioxidant and Anti-Inflammatory Active Principles. Crit. Rev. Food Sci. Nutr. 2013, 53, 943–953. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, D.; Wu, J.; Liu, J.; Zhou, Y.; Tan, Y.; Feng, W.; Peng, C. Interactions between Gut Microbiota and Polyphenols: A Mechanistic and Metabolomic Review. Phytomedicine 2023, 119, 154979. [Google Scholar] [CrossRef]
- Chiarioni, G.; Popa, S.L.; Ismaiel, A.; Pop, C.; Dumitrascu, D.I.; Brata, V.D.; Duse, T.A.; Incze, V.; Surdea-Blaga, T. The Effect of Polyphenols, Minerals, Fibers, and Fruits on Irritable Bowel Syndrome: A Systematic Review. Nutrients 2023, 15, 4070. [Google Scholar] [CrossRef]
- Roudsari, N.M.; Lashgari, N.-A.; Momtaz, S.; Farzaei, M.H.; Marques, A.M.; Abdolghaffari, A.H. Natural Polyphenols for the Prevention of Irritable Bowel Syndrome: Molecular Mechanisms and Targets; a Comprehensive Review. DARU J. Pharm. Sci. 2019, 27, 755–780. [Google Scholar] [CrossRef]
- Chiu, H.-F.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.-K. Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence. Molecules 2021, 26, 2090. [Google Scholar] [CrossRef] [PubMed]
- Anh, N.H.; Kim, S.J.; Long, N.P.; Min, J.E.; Yoon, Y.C.; Lee, E.G.; Kim, M.; Kim, T.J.; Yang, Y.Y.; Son, E.Y.; et al. Ginger on Human Health: A Comprehensive Systematic Review of 109 Randomized Controlled Trials. Nutrients 2020, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.L.; Heckler, C.E.; Roscoe, J.A.; Dakhil, S.R.; Kirshner, J.; Flynn, P.J.; Hickok, J.T.; Morrow, G.R. Ginger (Zingiber officinale) Reduces Acute Chemotherapy-Induced Nausea: A URCC CCOP Study of 576 Patients. Support Care Cancer 2012, 20, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, E.; Visser, J.; Koen, N.; Musekiwa, A. A Systematic Review and Meta-Analysis of the Effect and Safety of Ginger in the Treatment of Pregnancy-Associated Nausea and Vomiting. Nutr. J. 2014, 13, 20. [Google Scholar] [CrossRef]
- Glade, M.J.; Kendra, D.; Kaminski, M.V. Improvement in Protein Utilization in Nursing-Home Patients on Tube Feeding Supplemented with an Enzyme Product Derived from Aspergillus niger and Bromelain. Nutrition 2001, 17, 348–350. [Google Scholar] [CrossRef]
- Mak, W.S.; Jones, C.P.; McBride, K.E.; Fritz, E.A.P.; Hirsch, J.; German, J.B.; Siegel, J.B. Acid-Active Proteases to Optimize Dietary Protein Digestibility: A Step towards Sustainable Nutrition. Front. Nutr. 2024, 11, 1291685. [Google Scholar] [CrossRef]
- Rosado, J.L.; Solomons, N.W.; Lisker, R.; Bourges, H. Enzyme Replacement Therapy for Primary Adult Lactase Deficiency. Effective Reduction of Lactose Malabsorption and Milk Intolerance by Direct Addition of Beta-Galactosidase to Milk at Mealtime. Gastroenterology 1984, 87, 1072–1082. [Google Scholar] [CrossRef]
- Taylor, J.R.; Gardner, T.B.; Waljee, A.K.; Dimagno, M.J.; Schoenfeld, P.S. Systematic Review: Efficacy and Safety of Pancreatic Enzyme Supplements for Exocrine Pancreatic Insufficiency. Aliment. Pharmacol. Ther. 2010, 31, 57–72. [Google Scholar] [CrossRef]
- Waljee, A.K.; Dimagno, M.J.; Wu, B.U.; Schoenfeld, P.S.; Conwell, D.L. Systematic Review: Pancreatic Enzyme Treatment of Malabsorption Associated with Chronic Pancreatitis. Aliment. Pharmacol. Ther. 2009, 29, 235–246. [Google Scholar] [CrossRef]
- De La Iglesia-García, D.; Huang, W.; Szatmary, P.; Baston-Rey, I.; Gonzalez-Lopez, J.; Prada-Ramallal, G.; Mukherjee, R.; Nunes, Q.M.; Domínguez-Muñoz, J.E.; Sutton, R.; et al. Efficacy of Pancreatic Enzyme Replacement Therapy in Chronic Pancreatitis: Systematic Review and Meta-Analysis. Gut 2017, 66, 1354–1355. [Google Scholar] [CrossRef]
- Graham, D.Y.; Ketwaroo, G.A.; Money, M.E.; Opekun, A.R. Enzyme Therapy for Functional Bowel Disease-like Post-prandial Distress. J. Dig. Dis. 2018, 19, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Money, M.E.; Camilleri, M. Review: Management of Postprandial Diarrhea Syndrome. Am. J. Med. 2012, 125, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Muss, C.; Mosgoeller, W.; Endler, T. Papaya Preparation (Caricol®) in Digestive Disorders. Neuro Endocrinol. Lett. 2013, 34, 38–46. [Google Scholar] [PubMed]
- Yang, Y.; Kumrungsee, T.; Kato, N.; Fukuda, S.; Kuroda, M.; Yamaguchi, S. Supplemental Aspergillus Lipase and Protease Preparations Display Powerful Bifidogenic Effects and Modulate the Gut Microbiota Community of Rats. Fermentation 2021, 7, 294. [Google Scholar] [CrossRef]
- Yang, Y.; Kumrungsee, T.; Kato, N.; Fukuda, S.; Kuroda, M.; Yamaguchi, S. Aspergillus-Derived Cellulase Preparation Exhibits Prebiotic-like Effects on Gut Microbiota in Rats. Fermentation 2022, 8, 71. [Google Scholar] [CrossRef]
- European Food Saftey Authority. Scientific Opinion on Substantiation of Health Claims Related to Thiamine and Energy-Yielding Metabolism (ID 21, 24, 28), Cardiac Function (ID 20), Function of the Nervous System (ID 22, 27), Maintenance of Bone (ID 25), Maintenance of Teeth (ID 25), Maintenance of Hair (ID 25), Maintenance of Nails (ID 25), Maintenance of Skin (ID 25) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009, 7, 1222. [Google Scholar] [CrossRef]
- European Food Saftey Authority. Scientific Opinion on the Substantiation of Health Claims Related to Riboflavin (Vitamin B2) and Contribution to Normal Energy-Yielding Metabolism (ID 29, 35, 36, 42), Contribution to Normal Metabolism of Iron (ID 30, 37), Maintenance of Normal Skin and Mucous Membranes (ID 31, 33), Contribution to Normal Psychological Functions (ID 32), Maintenance of Normal Bone (ID 33), Maintenance of Normal Teeth (ID 33), Maintenance of Normal Hair (ID 33), Maintenance of Normal Nails (ID 33), Maintenance of Normal Vision (ID 39), Maintenance of Normal Red Blood Cells (ID 40), Reduction of Tiredness and Fatigue (ID 41), Protection of DNA, Proteins and Lipids from Oxidative Damage (ID 207), and Maintenance of the Normal Function of the Nervous System (ID 213) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1814. [Google Scholar] [CrossRef]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C Pharmacokinetics in Healthy Volunteers: Evidence for a Recommended Dietary Allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the Substantiation of Health Claims Related to Vitamin C and Reduction of Tiredness and Fatigue (ID 139, 2622), Contribution to Normal Psychological Functions (ID 140), Regeneration of the Reduced Form of Vitamin E (ID 202), Contribution to Normal Energy-Yielding Metabolism (ID 2334, 3196), Maintenance of the Normal Function of the Immune System (ID 4321) and Protection of DNA, Proteins and Lipids from Oxidative Damage (ID 3331) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1815. [Google Scholar] [CrossRef]
- Bager, P.; Hvas, C.L.; Hansen, M.M.; Ueland, P.; Dahlerup, J.F. B-Vitamins, Related Vitamers, and Metabolites in Patients with Quiescent Inflammatory Bowel Disease and Chronic Fatigue Treated with High Dose Oral Thiamine. Mol. Med. 2023, 29, 143. [Google Scholar] [CrossRef]
- Witte, K.K.A.; Nikitin, N.P.; Parker, A.C.; Von Haehling, S.; Volk, H.-D.; Anker, S.D.; Clark, A.L.; Cleland, J.G.F. The Effect of Micronutrient Supplementation on Quality-of-Life and Left Ventricular Function in Elderly Patients with Chronic Heart Failure. Eur. Heart J. 2005, 26, 2238–2244. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.; Hanger, H.; Elmslie, J.; George, P.; Sainsbury, R. The Response to Treatment of Subclinical Thiamine Deficiency in the Elderly. Am. J. Clin. Nutr. 1997, 66, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Smidt, L.J.; Cremin, F.M.; Grivetti, L.E.; Clifford, A.J. Influence of Thiamin Supplementation on the Health and General Well-Being of an Elderly Irish Population with Marginal Thiamin Deficiency. J. Gerontol. 1991, 46, M16–M22. [Google Scholar] [CrossRef] [PubMed]
- Fouad, S.; Ibrahim, G.E.; Hussein, A.M.S.; Ibrahim, F.A.; El Gendy, A. Physicochemical Properties of and Volatile Compounds in Riboflavin Fortified Cloudy Apple Juice; Study of Its Effect on Job Fatigue among Egyptian Construction Workers. Heliyon 2021, 7, e08246. [Google Scholar] [CrossRef]
- Shikh, E.V.; Lapidus, N.I.; Tyazhelnikov, A.A.; Karaulov, A.V.; Drozdov, V.N.; Trukhin, I.V. Effect of Vitamin-Mineral Complexes on Quality of Life of Patients with Arterial Hypertension. Electron. J. Gen. Med. 2018, 15, em41. [Google Scholar] [CrossRef]
- Huck, C.J.; Johnston, C.S.; Beezhold, B.L.; Swan, P.D. Vitamin C Status and Perception of Effort during Exercise in Obese Adults Adhering to a Calorie-Reduced Diet. Nutrition 2013, 29, 42–45. [Google Scholar] [CrossRef]
- Conner, T.; Fletcher, B.; Haszard, J.; Pullar, J.; Spencer, E.; Mainvil, L.; Vissers, M. KiwiC for Vitality: Results of a Placebo-Controlled Trial Testing the Effects of Kiwifruit or Vitamin C Tablets on Vitality in Adults with Low Vitamin C Levels. Nutrients 2020, 12, 2898. [Google Scholar] [CrossRef]
- Barnish, M.; Sheikh, M.; Scholey, A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients 2023, 15, 2154. [Google Scholar] [CrossRef]
- Azzolino, D.; Arosio, B.; Marzetti, E.; Calvani, R.; Cesari, M. Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People. Nutrients 2020, 12, 444. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Pen, J.J.; Chirumbolo, S.; Aaseth, J. Chronic Fatigue Syndrome (CFS): Suggestions for a Nutritional Treatment in the Therapeutic Approach. Biomed. Pharmacother. 2019, 109, 1000–1007. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Lee, S.-G.; Lee, J.-S.; Choi, Y.-J.; Son, C.-G. Comparative Characteristics of Fatigue in Irritable Bowel Syndrome and Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Psychosom. Res. 2024, 177, 111589. [Google Scholar] [CrossRef] [PubMed]
- Bek, S.; Teo, Y.N.; Tan, X.; Fan, K.H.R.; Siah, K.T.H. Association between Irritable Bowel Syndrome and Micronutrients: A Systematic Review. J. Gastroenterol. Hepatol. 2022, 37, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition Assessment of Patients with Inflammatory Bowel Disease. J. Parenter. Enter. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef]
- Grimstad, T.; Norheim, K.B.; Isaksen, K.; Leitao, K.; Hetta, A.K.; Carlsen, A.; Karlsen, L.N.; Skoie, I.M.; Gøransson, L.; Harboe, E.; et al. Fatigue in Newly Diagnosed Inflammatory Bowel Disease. ECCOJC 2015, 9, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Lucendo, A.J.; Rezende, L.C.D. Importance of Nutrition in Inflammatory Bowel Disease. WJG 2009, 15, 2081. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Salleh, S.N.; Fairus, A.A.H.; Zahary, M.N.; Bhaskar Raj, N.; Mhd Jalil, A.M. Unravelling the Effects of Soluble Dietary Fibre Supplementation on Energy Intake and Perceived Satiety in Healthy Adults: Evidence from Systematic Review and Meta-Analysis of Randomised-Controlled Trials. Foods 2019, 8, 15. [Google Scholar] [CrossRef]
- Wanders, A.J.; Mars, M.; Borgonjen-van Den Berg, K.J.; De Graaf, C.; Feskens, E.J.M. Satiety and Energy Intake after Single and Repeated Exposure to Gel-Forming Dietary Fiber: Post-Ingestive Effects. Int. J. Obes. 2014, 38, 794–800. [Google Scholar] [CrossRef]
- Lluch, A.; Hanet-Geisen, N.; Salah, S.; Salas-Salvadó, J.; L’Heureux-Bouron, D.; Halford, J.C.G. Short-Term Appetite-Reducing Effects of a Low-Fat Dairy Product Enriched with Protein and Fibre. Food Qual. Prefer. 2010, 21, 402–409. [Google Scholar] [CrossRef]
- Rao, T.P.; Hayakawa, M.; Minami, T.; Ishihara, N.; Kapoor, M.P.; Ohkubo, T.; Juneja, L.R.; Wakabayashi, K. Post-Meal Perceivable Satiety and Subsequent Energy Intake with Intake of Partially Hydrolysed Guar Gum. Br. J. Nutr. 2015, 113, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Fang, H.; Xu, W.; Yan, Y.; Xu, H.; Liu, Y.; Mo, M.; Zhang, H.; Zhao, Y. Dietary Fiber Intake and Risk of Type 2 Diabetes: A Dose–Response Analysis of Prospective Studies. Eur. J. Epidemiol. 2014, 29, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, E.; Westerterp-Plantenga, M.; Saris, W.; Melanson, K.; Goossens, I.; Geurten, P.; Brouns, F. The Effect of Guar Gum Addition to a Semisolid Meal on Appetite Related to Blood Glucose, in Dieting Men. Eur. J. Clin. Nutr. 2002, 56, 771–778. [Google Scholar] [CrossRef]
- Takano, A.; Kamiya, T.; Tomozawa, H.; Ueno, S.; Tsubata, M.; Ikeguchi, M.; Takagaki, K.; Okushima, A.; Miyata, Y.; Tamaru, S.; et al. Insoluble Fiber in Young Barley Leaf Suppresses the Increment of Postprandial Blood Glucose Level by Increasing the Digesta Viscosity. Evid. -Based Complement. Altern. Med. 2013, 2013, 137871. [Google Scholar] [CrossRef] [PubMed]
- Diakos, A.; Silva, M.L.; Brito, J.; Moncada, M.; De Mesquita, M.F.; Bernardo, M.A. The Effect of Ginger (Zingiber officinale Roscoe) Aqueous Extract on Postprandial Glycemia in Nondiabetic Adults: A Randomized Controlled Trial. Foods 2023, 12, 1037. [Google Scholar] [CrossRef]
- Flint, A.; Gregersen, N.T.; Gluud, L.L.; Møller, B.K.; Raben, A.; Tetens, I.; Verdich, C.; Astrup, A. Associations between Postprandial Insulin and Blood Glucose Responses, Appetite Sensations and Energy Intake in Normal Weight and Overweight Individuals: A Meta-Analysis of Test Meal Studies. Br. J. Nutr. 2007, 98, 17–25. [Google Scholar] [CrossRef]
- Cai, M.; Dou, B.; Pugh, J.E.; Lett, A.M.; Frost, G.S. The Impact of Starchy Food Structure on Postprandial Glycemic Response and Appetite: A Systematic Review with Meta-Analysis of Randomized Crossover Trials. Am. J. Clin. Nutr. 2021, 114, 472–487. [Google Scholar] [CrossRef]
- Sandberg, J.C.; Björck, I.M.E.; Nilsson, A.C. Effects of Whole Grain Rye, with and without Resistant Starch Type 2 Supplementation, on Glucose Tolerance, Gut Hormones, Inflammation and Appetite Regulation in an 11–14.5 Hour Perspective; a Randomized Controlled Study in Healthy Subjects. Nutr. J. 2017, 16, 25. [Google Scholar] [CrossRef]
- Kellow, N.J.; Coughlan, M.T.; Reid, C.M. Metabolic Benefits of Dietary Prebiotics in Human Subjects: A Systematic Review of Randomised Controlled Trials. Br. J. Nutr. 2014, 111, 1147–1161. [Google Scholar] [CrossRef]
- Guo, J.; Tan, L.; Kong, L. Impact of Dietary Intake of Resistant Starch on Obesity and Associated Metabolic Profiles in Human: A Systematic Review of the Literature. Crit. Rev. Food Sci. Nutr. 2021, 61, 889–905. [Google Scholar] [CrossRef]
- Sünram-Lea, S.I.; Owen, L. The Impact of Diet-Based Glycaemic Response and Glucose Regulation on Cognition: Evidence across the Lifespan. Proc. Nutr. Soc. 2017, 76, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Osadchiy, V.; Martin, C.R.; Mayer, E.A. The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019, 17, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021, 160, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Rani, K.; Datt, C. Molecular Link between Dietary Fibre, Gut Microbiota and Health. Mol. Biol. Rep. 2020, 47, 6229–6237. [Google Scholar] [CrossRef]
Baseline | Day 1 | Day 2 | Day 7 | Day 14 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M (SD) | M (SD) | % Change | p-Value | M (SD) | % Change | p-Value | M (SD) | % Change | p-Value | M (SD) | % Change | p-Value | |
Thirst | 0.971 (0.646) | 0.956 (0.700) | −1.52 | >0.9999 | 0.794(0.724) | −18.2 | >0.9999 | 0.706 (0.648) | −27.3 | 0.55 | 0.559 (−0.678) | −42.4 | 0.0093 |
Stomach cramps | 1.132 (0.790) | 0.735 (0.840) | −35.1 | 0.0675 | 0.632 (0.771) | −44.2 | 0.0049 | 0.456 (0.700) | −59.7 | <0.0001 | 0.2647 (0.589) | −76.6 | <0.0001 |
Rumbling or Stomach Noise | 1.309 (0.696) | 0.927 (0.759) | −29.2 | 0.1388 | 0.765 (0.735) | −41.6 | 0.0041 | 0.471 (0.634) | −64. | <0.0001 | 0.382 (0.599) | −70.8 | <0.0001 |
Nausea | 0.721 (0.709) | 0.588 (0.833) | −18.4 | >0.9999 | 0.397 (0.756) | −44.9 | 0.0617 | 0.338 (0.637) | −53.1 | 0.0274 | 0.221 (0.514) | −69.4 | 0.0004 |
Indigestion | 1.250 (0.780) | 0.927 (0.886) | −25.9 | 0.3151 | 0.632 (0.809) | −49.4 | 0.0001 | 0.485 (0.68) | −61.2 | <0.0001 | 0.235 (0.522) | −81.2 | <0.0001 |
Gas or Flatulence | 1.50 (0.635) | 1.118 (0.820) | −25.5 | 0.013 | 1.059 (0.751) | −29.4 | 0.0011 | 0.868 (0.751) | −42.2 | <0.0001 | 0.662 (0.745) | −55.9 | <0.0001 |
Bloating | 1.574 (0.740) | 1.147 (0.885) | −27.1 | 0.1173 | 0.941 (0.862) | −40.2 | 0.0014 | 0.75 (0.817) | −52.3 | <0.0001 | 0.574 (0.676) | −63.6 | <0.0001 |
Constipation | 1.1765 (0.772) | 0.927 (0.919) | −21.3 | 0.5373 | 0.706 (0.793) | −40.0 | 0.0332 | 0.309 (0.629) | −73.8 | <0.0001 | 0.353 (0.686) | −70.0 | <0.0001 |
Fluctuation in Energy Levels | 1.794 (0.783) | 1.177 (0.961) | −34.4 | 0.0018 | 1.044 (0.921) | −41.8 | <0.0001 | 0.691 (0.778) | −61.5 | <0.0001 | 0.515 (0.743) | −71.3 | <0.0001 |
Brain Fog/Difficulty Concentrating | 1.412 (0.918) | 1.015 (0.889) | −28.1 | 0.1824 | 0.838 (0.891) | −40.6 | 0.0039 | 0.559 (0.761) | −60.4 | <0.0001 | 0.397 (0.649) | −71.9 | <0.0001 |
Fatigue | 1.588 (0.868) | 1.265 (0.857) | −20.4 | 0.0187 | 1.059 (0.976) | −33.3 | <0.0001 | 0.735 (0.785) | −53.7 | <0.0001 | 0.647 (0.728) | −59.3 | <0.0001 |
Hunger | 1.015 (0.782) | 0.971 (0.732) | −4.3 | 0.9994 | 0.809 (0.718) | −20.3 | 0.2748 | 0.515 (0.68) | −49.3 | 0.0001 | 0.485 (0.635) | −52.2 | 0.0002 |
Acid Reflux | 0.971 (0.962) | 0.588 (0.868) | −39.4 | 0.646 | 0.3823 (0.6698) | −60.6 | 0.0065 | 0.338 (0.588) | −65.2 | 0.002 | 0.235 (0.601) | −75.8 | <0.0001 |
Baseline | Day 14 | ||
---|---|---|---|
BSS Grade | N (%) | N (%) | % Change Days 1–14 |
Grade 1 | 7 (10.3) | 3 (4.4) | −57.1 |
Grade 2 | 14 (20.6) | 11 (16.2) | −21.4 |
Grade 3 | 17 (25.0) | 20 (29.4) | 17.7 |
Grade 4 | 8 (11.8) | 19 (27.9) | 137.5 |
Grade 5 | 9 (13.2) | 9 (13.2) | 0 |
Grade 6 | 12 (17.6) | 4 (5.9) | −66.7 |
Grade 7 | 1 (1.5) | 1 (2.9) | 0 |
Normal (Grades 3, 4, 5) | 34 (50.0) | 48 (70.6) | 41.2 |
Hard stools (Grades 1, 2) | 21 (30.9) | 14 (20.6) | −33.3 |
Soft Stools (Grades 6, 7) | 13 (19.1) | 6 (8.8) | −53.9 |
Baseline | Day 14 | Paired t Test | |||
---|---|---|---|---|---|
Instrument | Score Range | M (SD) | M (SD) | % Change from Baseline | p-Value |
SF-36 | |||||
Vitality/Energy | 0–100 | 43.25 (15.90) | 60.72 (18.04) | 40.39 | <0.0001 |
General Health | 0–100 | 67.86 (15.49) | 73.32 (14.37) | 8.04 | 0.035 |
RISE-Q-15 | |||||
Decreased Food Appeal | 0–21 | 14.68 (3.65) | 8.43 (3.88) | −42.59 | <0.0001 |
Physical Satisfaction | 0–21 | 12.63 (2.61) | 14.13 (2.48) | 11.87 | 0.0003 |
Planned Amount | 0–21 | 13.24 (3.47) | 15.07 (3.1) | 13.89 | 0.0001 |
Self-Consciousness | 0–21 | 14.01 (3.53) | 9.35 (3.08) | −33.26 | <0.0001 |
Decreased Priority of Eating | 0–21 | 12.25 (2.06) | 15.82 (4.68) | 29.17 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekrasov, E.; Vita, A.A.; Bradley, R.; Contractor, N.; Gunaratne, N.M.; Kuehn, M.; Kitisin, R.; Patel, D.; Woods, E.; Zhou, B. Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement. Nutrients 2024, 16, 3173. https://doi.org/10.3390/nu16183173
Nekrasov E, Vita AA, Bradley R, Contractor N, Gunaratne NM, Kuehn M, Kitisin R, Patel D, Woods E, Zhou B. Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement. Nutrients. 2024; 16(18):3173. https://doi.org/10.3390/nu16183173
Chicago/Turabian StyleNekrasov, Elena, Alexandra Adorno Vita, Ryan Bradley, Nikhat Contractor, Nadeesha M. Gunaratne, Marissa Kuehn, Rick Kitisin, Deval Patel, Erin Woods, and Bo Zhou. 2024. "Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement" Nutrients 16, no. 18: 3173. https://doi.org/10.3390/nu16183173
APA StyleNekrasov, E., Vita, A. A., Bradley, R., Contractor, N., Gunaratne, N. M., Kuehn, M., Kitisin, R., Patel, D., Woods, E., & Zhou, B. (2024). Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement. Nutrients, 16(18), 3173. https://doi.org/10.3390/nu16183173