Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Participants and Experimental Design
2.2. Ethical Aspects
2.3. Sample Size
2.4. Kombucha
2.4.1. Kombucha Production and Intervention
2.4.2. Kombucha Composition
2.5. Food Plan and Caloric Restriction
2.6. Assessments and Measurements
2.6.1. Anthropometry and Body Composition
2.6.2. Physical Activity and Food Consumption Questionnaires
2.6.3. Inflammation Markers
2.6.4. Saliva Collection and Microbiota Analysis
2.7. Statistical Analyses
3. Results
3.1. Participants
3.2. Anthropometric and Body Composition
3.3. Food Intake and Physical Activity
3.4. Inflammatory Markers
3.5. Salivary Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Phenolic Profile by UPLC-MSE
References
- World Health Organization (WHO). Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 18 February 2024).
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Federation, World Obesity Atlas 2023. Available online: https://data.worldobesity.org/publications/?cat=19 (accessed on 18 February 2024).
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A Systematic Literature Review on Obesity Understanding the Causes & Consequences of Obesity and Reviewing Various Machine Learning Approaches Used to Predict Obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Pepe, R.B.; Lottenberg, A.M.; Fujiwara, C.T.H.; Beyruti, M.; Cintra, D.E.; Machado, R.M.; Rodrigues, A.; Jensen, N.S.O.; Caldas, A.P.S.; Fernandes, A.E.; et al. Position Statement on Nutrition Therapy for Overweight and Obesity: Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO—2022). Diabetol. Metab. Syndr. 2023, 15, 124. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Russo, S.; Kwiatkowski, M.; Govorukhina, N.; Bischoff, R.; Melgert, B.N. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity the Importance of Metabolites. Front. Immunol. 2021, 12, 746151. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Olefsky, J. Chronic Tissue Inflammation and Metabolic Disease. Genes. Dev. 2021, 35, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Gasmi Benahmed, A.; Gasmi, A.; Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association between the Gut and Oral Microbiome with Obesity. Anaerobe 2021, 70, 102248. [Google Scholar] [CrossRef]
- Raju, S.C.; Lagström, S.; Ellonen, P.; de Vos, W.M.; Eriksson, J.G.; Weiderpass, E.; Rounge, T.B. Gender-Specific Associations Between Saliva Microbiota and Body Size. Front. Microbiol. 2019, 10, 767. [Google Scholar] [CrossRef]
- Bombin, A.; Yan, S.; Bombin, S.; Mosley, J.D.; Ferguson, J.F. Obesity Influences Composition of Salivary and Fecal Microbiota and Impacts the Interactions between Bacterial Taxa. Physiol. Rep. 2022, 10, e15254. [Google Scholar] [CrossRef]
- Wang, M.; Yan, L.Y.; Qiao, C.Y.; Zheng, C.C.; Niu, C.G.; Huang, Z.W.; Pan, Y.H. Ecological Shifts of Salivary Microbiota Associated with Metabolic-Associated Fatty Liver Disease. Front. Cell Infect. Microbiol. 2023, 13, 1131255. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Fermented Foods An Update on Evidence-Based Health Benefits and Future Perspectives. Food Res. Int. 2022, 156, 111133. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.A.D.C.; Vilela, D.L.d.S.; Fraiz, G.M.; Lopes, I.L.; Coelho, A.I.M.; Castro, L.C.V.; Martin, J.G.P. Effect of Kombucha Intake on the Gut Microbiota and Obesity-Related Comorbidities A Systematic Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3851–3866. [Google Scholar] [CrossRef] [PubMed]
- Bortolomedi, B.M.; Paglarini, C.S.; Brod, F.C.A. Bioactive Compounds in Kombucha: A Review of Substrate Effect and Fermentation Conditions. Food Chem. 2022, 385, 132719. [Google Scholar] [CrossRef] [PubMed]
- Esatbeyoglu, T.; Sarikaya Aydin, S.; Gültekin Subasi, B.; Erskine, E.; Gök, R.; Ibrahim, S.A.; Yilmaz, B.; Özogul, F.; Capanoglu, E. Additional Advances Related to the Health Benefits Associated with Kombucha Consumption. Crit. Rev. Food Sci. Nutr. 2022, 64, 6102–6119. [Google Scholar] [CrossRef] [PubMed]
- Isakov, V.A.; Pilipenko, V.I.; Vlasova, A.V.; Kochetkova, A.A. Evaluation of the efficacy of Kombucha-based drink enriched with inulin and vitamins for the management of constipation-predominant irritable bowel syndrome in females: A randomized pilot study. Curr. Dev. Nutr. 2023, 7, 102037. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Cohen, M.; Lau, K.; Brand-Miller, J.C. Glycemic Index and Insulin Index after a Standard Carbohydrate Meal Consumed with Live Kombucha A Randomised, Placebo-Controlled, Crossover Trial. Front. Nutr. 2023, 10, 1036717. [Google Scholar] [CrossRef]
- Mendelson, C.; Sparkes, S.; Merenstein, D.J.; Christensen, C.; Sharma, V.; Desale, S.; Auchtung, J.M.; Kok, C.R.; Hallen-Adams, H.E.; Hutkins, R. Kombucha Tea as an Anti-Hyperglycemic Agent in Humans with Diabetes A Randomized Controlled Pilot Investigation. Front. Nutr. 2023, 10, 1190248. [Google Scholar] [CrossRef]
- Fraiz, G.M.; Costa, M.A.C.; Cardoso, R.R.; Hébert, J.R.; Zhao, L.; Corich, V.; Giacomini, A.; Milagro, F.I.; Barros, F.A.R.; Bressan, J. Black Tea Kombucha Consumption Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity. Fermentation 2024, 10, 384. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Ann. Epidemiol. 2018, 30, 66–70. [Google Scholar] [CrossRef]
- Morales, D. Biological Activities of Kombucha Beverages the Need of Clinical Evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- WHO Expert Committee on Physical Status the Use of and Interpretation of Anthropometry Report of a WHO Expert Committee. 1995. Available online: https://www.who.int/publications/i/item/9241208546 (accessed on 1 October 2023).
- Kang, H. Sample Size Determination and Power Analysis Using the G*Power Software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hase, T.; Tokimitsu, I. A Green Tea Extract High in Catechins Reduces Body Fat and Cardiovascular Risks in Humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Brazil Ministry of Agriculture, Livestock and Supply. Normative Instruction No. 41, of 17 September 2019. In Official Federal Gazette; Section 1. 2019; pp. 13–15. Available online: https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=18/09/2019&jornal=515&pagina=13&totalArquivos=76 (accessed on 1 October 2023).
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Institute Of Medicine (IOM). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005; ISBN 978-0-309-08525-0. Available online: https://nap.nationalacademies.org/read/10490/chapter/1. (accessed on 1 October 2023).
- Instituto Brasileiro de Geografia e Estatísica (IBGE) Pesquisa de Orçamentos Familiares 2008–2009 Análise Do Consumo Alimentar Pessoal No Brasil. Available online: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2008_2009_análise_consumo/pofanalise_2008_2009.pdf 2011 (accessed on 1 October 2023).
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Yanovski, S.Z.; et al. AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation 2014, 129, S102–S138. Available online: https://www.ahajournals.org/doi/10.1161/01.cir.0000437739.71477.ee (accessed on 1 October 2023).
- World Health Organization (WHO). Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation. 2008. Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 1 October 2023).
- Ministério da Saúde, Brasil. Orientações Para a Coleta e Análise de Dados Antropométricos Em Serviços de Saúde: Norma Técnica Do Sistema de Vigilância Alimentar e Nutricional—SISVAN. 2011. Available online: https://portolivre.fiocruz.br/orientacoes-para-coleta-e-analise-de-dados-antropometricos-em-servicos-de-saude-norma-tecnica-do (accessed on 1 October 2023).
- Guerrero-Romero, F.; Rodrı́guez-Morán, M. Abdominal Volume Index. an Anthropometry-Based Index for Estimation of Obesity Is Strongly Related to Impaired Glucose Tolerance and Type 2 Diabetes Mellitus. Arch. Med. Res. 2003, 34, 428–432. [Google Scholar] [CrossRef]
- Valdez, R.; Seidell, J.C.; Ahn, Y.I.; Weiss, K.M. A New Index of Abdominal Adiposity as an Indicator of Risk for Cardiovascular Disease. A Cross-Population Study. Int. J. Obes. Relat. Metab. Disord. 1993, 17, 77–82. [Google Scholar] [PubMed]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between Body Roundness with Body Fat and Visceral Adipose Tissue Emerging from a New Geometrical Model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Kahn, H.S. The Lipid Accumulation Product Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk A Population-Based Comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef]
- Sandra, M.; Luis, C.O.; Glaucia, B.; Timóteo, A.; Matsudo, V.; Douglas, A.; Erinaldo, A. Questionário Internacional de Atividade Física (IPAQ) Estudo de Validade e Reprodutibilidade No Brasil. Rev. Bras. Ativ. Fís. Saúde 2012, 6, 5–18. [Google Scholar]
- Natacci, L.C.; Ferreira Júnior, M. The Three Factor Eating Questionnaire—R21 Tradução Para o Português e Aplicação Em Mulheres Brasileiras. Rev. Nutr. 2011, 24, 383–394. [Google Scholar] [CrossRef]
- Barufaldi, L.A.; de Abreu, G.A.; Veiga, G.V.d.; Sichieri, R.; Kuschnir, M.C.C.; Cunha, D.B.; Pereira, R.A.; Bloch, K.V. Programa Para Registro de Recordatório Alimentar de 24 Horas: Aplicação No Estudo de Riscos Cardiovasculares Em Adolescentes. Rev. Bras. Epidemiol. 2016, 19, 464–468. [Google Scholar] [CrossRef] [PubMed]
- University of São Paulo (USP); Food Research Center (FoRC); Brazilian Food Composition Table (TBCA); Brazilian Food Composition Table (TBCA); University of São Paulo (USP); Food Research Center (FoRC). Version 7.2. São Paulo. 2022. Available online: http://www.fcf.usp.br/tbca (accessed on 1 October 2023).
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2 High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Macklaim, J.M.; Linn, T.G.; Reid, G.; Gloor, G.B. ANOVA-Like Differential Expression (ALDEx) Analysis for Mixed Population RNA-Seq. PLoS ONE 2013, 8, e67019. [Google Scholar] [CrossRef]
- Park, Y.; Dodd, K.W.; Kipnis, V.; Thompson, F.E.; Potischman, N.; Schoeller, D.A.; Baer, D.J.; Midthune, D.; Troiano, R.P.; Bowles, H.; et al. Comparison of Self-Reported Dietary Intakes from the Automated Self-Administered 24-h Recall, 4-d Food Records, and Food-Frequency Questionnaires against Recovery Biomarkers. Am. J. Clin. Nutr. 2018, 107, 80–93. [Google Scholar] [CrossRef]
- Cardoso, R.R.; de Moreira, L.P.D.; de Campos Costa, M.A.; Toledo, R.C.L.; Grancieri, M.; Nascimento, T.P.d.; Ferreira, M.S.L.; da Matta, S.L.P.; Eller, M.R.; Duarte Martino, H.S.; et al. Kombuchas from Green and Black Teas Reduce Oxidative Stress, Liver Steatosis and Inflammation, and Improve Glucose Metabolism in Wistar Rats Fed a High-Fat High-Fructose Diet. Food Funct. 2021, 12, 10813–10827. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A Review on Health Benefits of Kombucha Nutritional Compounds and Metabolites. CYTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding Kombucha Tea Fermentation A Review. J. Food. Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H. Bin Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- De Noronha, M.C.; Cardoso, R.R.; dos Santos D’Almeida, C.T.; Vieira do Carmo, M.A.; Azevedo, L.; Maltarollo, V.G.; Júnior, J.I.R.; Eller, M.R.; Cameron, L.C.; Ferreira, M.S.L.; et al. Black Tea Kombucha: Physicochemical, Microbiological and Comprehensive Phenolic Profile Changes during Fermentation, and Antimalarial Activity. Food Chem. 2022, 384, 132515. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; Barros, F.A.R. de Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Bae, U.-J.; Park, J.; Park, I.W.; Chae, B.M.; Oh, M.-R.; Jung, S.-J.; Ryu, G.-S.; Chae, S.-W.; Park, B.-H. Epigallocatechin-3-Gallate-Rich Green Tea Extract Ameliorates Fatty Liver and Weight Gain in Mice Fed a High Fat Diet by Activating the Sirtuin 1 and AMP Activating Protein Kinase Pathway. Am. J. Chin. Med. 2018, 46, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Tan, X.; Wu, Q.; Zhao, H.; Chen, H.; Yu, X.; Wang, J.; Huang, X.; Huang, Y.; Wei, J.; et al. Lipid Accumulation Product Is a Valid Predictor of Hepatic Steatosis and Nonalcoholic Fatty Liver Disease. Biomark. Med. 2024, 18, 123–135. [Google Scholar] [CrossRef]
- Takhttavous, A.; Saberi-Karimian, M.; Hafezi, S.G.; Esmaily, H.; Hosseini, M.; Ferns, G.A.; Amirfakhrian, E.; Ghamsary, M.; Ghayour-Mobarhan, M.; Alinezhad-Namaghi, M. Predicting the 10-Year Incidence of Dyslipidemia Based on Novel Anthropometric Indices, Using Data Mining. Lipids Health Dis. 2024, 23, 33. [Google Scholar] [CrossRef]
- Salem, M.A.; Aborehab, N.M.; Abdelhafez, M.M.; Ismail, S.H.; Maurice, N.W.; Azzam, M.A.; Alseekh, S.; Fernie, A.R.; Salama, M.M.; Ezzat, S.M. Anti-Obesity Effect of a Tea Mixture Nano-Formulation on Rats Occurs via the Upregulation of AMP-Activated Protein Kinase/Sirtuin-1/Glucose Transporter Type 4 and Peroxisome Proliferator-Activated Receptor Gamma Pathways. Metabolites 2023, 13, 871. [Google Scholar] [CrossRef]
- Permatasari, H.K.; Nurkolis, F.; Gunawan, W.B.; Yusuf, V.M.; Yusuf, M.; Kusuma, R.J.; Sabrina, N.; Muharram, F.R.; Taslim, N.A.; Mayulu, N.; et al. Modulation of Gut Microbiota and Markers of Metabolic Syndrome in Mice on Cholesterol and Fat Enriched Diet by Butterfly Pea Flower Kombucha. Curr. Res. Food Sci. 2022, 5, 1251–1265. [Google Scholar] [CrossRef]
- Wang, P.; Feng, Z.; Sang, X.; Chen, W.; Zhang, X.; Xiao, J.; Chen, Y.; Chen, Q.; Yang, M.; Su, J. Kombucha Ameliorates LPS-Induced Sepsis in a Mouse Model. Food Funct. 2021, 12, 10263–10280. [Google Scholar] [CrossRef]
- Haghmorad, D.; Yazdanpanah, E.; Sadighimoghaddam, B.; Yousefi, B.; Sahafi, P.; Ghorbani, N.; Rashidy-Pour, A.; Kokhaei, P. Kombucha Ameliorates Experimental Autoimmune Encephalomyelitis through Activation of Treg and Th2 Cells. Acta. Neurol. Belg. 2021, 121, 1685–1692. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef] [PubMed]
- Wueest, S.; Konrad, D. The Controversial Role of IL-6 in Adipose Tissue on Obesity-Induced Dysregulation of Glucose Metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E607–E613. [Google Scholar] [CrossRef] [PubMed]
- Kistner, T.M.; Pedersen, B.K.; Lieberman, D.E. Interleukin 6 as an Energy Allocator in Muscle Tissue. Nat. Metab. 2022, 4, 170–179. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Khalafi, M.; Symonds, M.E.; Akbari, A. The Impact of Exercise Training versus Caloric Restriction on Inflammation Markers: A Systemic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 4226–4241. [Google Scholar] [CrossRef] [PubMed]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Health, Wellness, and Safety Aspects of the Consumption of Kombucha. J. Chem. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Vīna, I.; Linde, R.; Patetko, A.; Semjonovs, P. Glucuronic acid from fermented beverages Biochemical functions in humans and its role in health protection. IJRRAS 2013, 14, 217–230. [Google Scholar]
- Bhattacharya, S.; Chatterjee, S.; Manna, P.; Das, J.; Ghosh, J.; Gachhui, R.; Sil, P.C. Prophylactic Role of D-Saccharic acid-1,4-lactone in Tertiary Butyl Hydroperoxide Induced Cytotoxicity and Cell Death of Murine Hepatocytes via Mitochondria-dependent Pathways. J. Biochem. Mol. Toxicol 2011, 25, 341–354. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Gachhui, R.; Sil, P.C. Effect of Kombucha, a Fermented Black Tea in Attenuating Oxidative Stress Mediated Tissue Damage in Alloxan Induced Diabetic Rats. Food Chem. Toxicol. 2013, 60, 328–340. [Google Scholar] [CrossRef]
- Kato, T.; Yamazaki, K.; Nakajima, M.; Date, Y.; Kikuchi, J.; Hase, K.; Ohno, H.; Yamazaki, K. Oral Administration of Porphyromonas Gingivalis Alters the Gut Microbiome and Serum Metabolome. mSphere 2018, 3, e00460-18. [Google Scholar] [CrossRef]
- Peters, B.A.; McCullough, M.L.; Purdue, M.P.; Freedman, N.D.; Um, C.Y.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Association of Coffee and Tea Intake with the Oral Microbiome: Results from a Large Cross-Sectional Study. Cancer Epidemiol. Biomark. Prev. 2018, 27, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Schueller, K.; Riva, A.; Pfeiffer, S.; Berry, D.; Somoza, V. Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals. Front. Microbiol. 2017, 8, 416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, H.; Zhang, W.; Ni, L. Salivary Microbiota Shifts under Sustained Consumption of Oolong Tea in Healthy Adults. Nutrients 2020, 12, 966. [Google Scholar] [CrossRef] [PubMed]
- Meuric, V.; Le Gall-David, S.; Boyer, E.; Acuña-Amador, L.; Martin, B.; Fong, S.B.; Barloy-Hubler, F.; Bonnaure-Mallet, M. Signature of Microbial Dysbiosis in Periodontitis. Appl. Env. Microbiol. 2017, 83, e00462-17. [Google Scholar] [CrossRef]
- Agarwal, J.; Pandey, P.; Saxena, S.K.; Kumar, S. Comparative Analysis of Salivary Microbiota in Diabetic and Non-Diabetic Individuals of North India Using Metagenomics. J. Oral. Biol. Craniofac. Res. 2024, 14, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, T.; Zhu, P.; Sun, Z.; Li, S.; Li, F.; Zhang, Y.; Tan, K.; Lu, J.; Yuan, R.; et al. Quantitative Analysis of Salivary Oral Bacteria Associated with Severe Early Childhood Caries and Construction of Caries Assessment Model. Sci. Rep. 2020, 10, 6365. [Google Scholar] [CrossRef]
- Miller, E.H.; Annavajhala, M.K.; Chong, A.M.; Park, H.; Nobel, Y.R.; Soroush, A.; Blackett, J.W.; Krigel, A.; Phipps, M.M.; Freedberg, D.E.; et al. Oral Microbiome Alterations and SARS-CoV-2 Saliva Viral Load in Patients with COVID-19. Microbiol. Spectr. 2021, 9, e0005521. [Google Scholar] [CrossRef]
- Taylor, P.W.; Hamilton-Miller, J.M.T.; Stapleton, P.D. Antimicrobial Properties of Green Tea Catechins. Food Sci. Technol. Bull. 2005, 2, 71–81. [Google Scholar] [CrossRef]
- Vilela, M.M.; Salvador, S.L.; Teixeira, I.G.L.; Del Arco, M.C.G.; De Rossi, A. Efficacy of Green Tea and Its Extract, Epigallocatechin-3-Gallate, in the Reduction of Cariogenic Microbiota in Children A Randomized Clinical Trial. Arch. Oral Biol. 2020, 114, 104727. [Google Scholar] [CrossRef]
- Vyas, T.; Nagi, R.; Bhatia, A.; Bains, S. Therapeutic Effects of Green Tea as an Antioxidant on Oral Health A Review. J. Fam. Med. Prim. Care. 2021, 10, 3998. [Google Scholar] [CrossRef]
- Pamuk, F.; Kantarci, A. Inflammation as a Link between Periodontal Disease and Obesity. Periodontol. 2000 2022, 90, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Qadir, R.; Assafi, M.S. The Association between Body Mass Index and the Oral Firmicutes and Bacteroidetes Profiles of Healthy Individuals. Malays. Fam. Physician 2021, 16, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.M.; Quigley, K.M.; Wadden, T.A. Dietary Interventions for Obesity: Clinical and Mechanistic Findings. J. Clin. Investig. 2021, 131, e140065. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 340, c332. [Google Scholar] [CrossRef]
Components | Concentration |
---|---|
Sucrose, g/L | 22.24 |
Fructose, g/L | 12.57 |
Glucose, g/L | 11.49 |
Acetic acid, g/L | 3.43 |
Ethanol, g/L | 4.7 |
pH | 3.41 ± 0.09 |
Total acidity, w/v acetic acid | 0.20 ± 0.02 |
Lactic acid bacteria, CFU/mL | 1.98 × 107 |
Acetic acid bacteria, CFU/mL | 1.07 × 107 |
Yeast, CFU/mL | 1.57 × 107 |
Total phenolics (Folin–Ciocalteu), mg GAE/mL | 0.32 |
Antioxidant capacity (ABTS assay), μmol TE/mL | 3.24 |
Variables | CG (n = 29) | KG (n = 30) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | After 10 Weeks | Δ | * p-Value | Baseline | After 10 Weeks | Δ | * p-Value | # p-Value | Δ p-Value | |
Anthropometry | ||||||||||
Weight, kg | 91.47 (13.52) | 89.17 (12.48) | −2.29 (2.99) | <0.001 | 92.54 (13.42) | 89.52 (13.03) | −3.02 (2.09) | <0.001 | 0.760 | 0.282 |
BMI, kg/m2 | 32.34 (3.58) | 31.59 (3.79) | −0.76 (1.03) | <0.001 | 33.2 (3.7) | 32.0 (3.6) | −1.2 (0.75) | <0.001 | 0.403 | 0.167 |
WC, cm | 92.8 (8.6) | 90.2 (7.2) | −2.5 (3.2) | <0.001 | 97.2 (−10.4) | 94.3 (9.9) | −2.9 (2.7) | <0.001 | 0.078 | 0.584 |
HC, cm | 114.7 (8.3) | 112.8 (7.0) | −1.9 (4.36) | 0.024 | 115.4 (7.9) | 112.8 (7.88) | −2.6 (2.6) | <0.001 | 0.734 | 0.431 |
NC, cm | 37.7 (3.7) | 36.7 (3.2) | −1.0 (1.3) | <0.001 | 37.7 (3.8) | 37.0 (3.9) | −0.7 (0.8) | <0.001 | 0.991 | |
Waist-to-Height ratio | 0.55 (0.04) | 0.53 (0.03) | −0.02 (0.01) | <0.001 | 0.58 (0.05) | 0.56 (0.05) | −0.02 (0.01) | <0.001 | 0.015 | 0.317 |
Waist-to-Hip ratio | 0.81 (0.07) | 0.80 (0.07) | −0.01 (0.02) | 0.132 | 0.84 (0.07) | 0.83 (0.07) | −0.01 (0.03) | 0.263 | 0.120 | 0.811 |
Conicity-index | 1.15 (0.07) | 1.13 (0.06) | −0.02 (0.02) | 0.003 | 1.19 (0.07) | 1.18 (0.07) | −0.01 (0.03) | 0.006 | 0.025 | 0.975 |
ABSI | 0.074 (0.005) | 0.007 (0.001) | −0.067 (0.010) | <0.001. | 0.073 (0.004) | 0.006 (0.001) | −0.067 (0.004) | <0.001 | 0.648 | 0.654 |
AVI | 17.77 (3.02) | 16.81 (2.44) | −0.95 (1.24) | <0.001 | 19.43 (4.02) | 18.28 (3.63) | −1.53 (1.11) | <0.001 | 0.079 | 0.522 |
BRI | 4.41 (0.74) | 4.22 (0.74) | −0.25 (0.30) | <0.001 | 4.71 (0.74) | 4.62 (1.01) | −0.34 (0.31) | <0.001 | 0.139 | 0.251 |
LAP | 34.6 (23.7–68.5) | 33.2 (18.0–50.2) | −1.8 (−5.5–2.5) | 0.122 | 46.2 (32.5–73.5) | 38.0 (27.2–62.4) | −8.7 (−15.8–1.1) | <0.001 | 0.197 | 0.029 |
Body composition | ||||||||||
Trunk BF, kg | 20.3 (5.1) | 18.8 (4.9) | −1.5 (2.1) | 0.001 | 22.7 (4.5) | 21.0 (4.3) | −1.7 (1.5) | <0.001 | 0.069 | 0.677 |
Android BF, kg | 3.1 (0.9) | 2.8 (0.7) | −0.3 (0.4) | 0.001 | 3.5 (0.9) | 3.3 (0.9) | −0.2 (0.3) | 0.001 | 0.111 | 0.370 |
Gynoid BF, kg | 7.0 (6.1–8.5) | 6.5 (5.5–8.1) | −0.5 (−0.8–−0.1) | <0.001 | 7.3 (6.1–8.3) | 6.9 (5.8–8.0) | −0.4 (−0.6–−0.08) | <0.001 | 0.976 | 0.301 |
Total BF, kg | 37.0 (33.6–44.8) | 35.0 (31.0–40.7) | −2.0 (−3.4–0.9) | <0.001 | 39.2 (36.5–45.4) | 38.6 (34.0–43.3) | −2.3 (−4.0–−0.7 | <0.001 | 0.154 | 0.756 |
Trunk MM, kg | 23.14 (4.7) | 23.15 (4.6) | 0.01 (1.50) | 0.959 | 23.45 (4.99) | 23.12 (4.88) | −0.3 (1.1) | 0.151 | 0.755 | 0.360 |
Android MM, kg | 3.1 (2.6–3.9) | 3.3 (2.6–3.7) | 0.2 (0.3–0.2) | <0.001 | 3.2 (2.7–3.8) | 3.2 (2.6–4.0) | 0.02 (−0.1–0.2) | <0.001 | 0.994 | 0.432 |
Gynoid MM, kg | 7.1 (5.9–8.8) | 7.6 (5.6–8.5) | −0.1 (−0.5–0.2) | <0.001 | 6.8 (6.1–7.7) | 6.6 (5.9–8.8) | 0.06 (−0.4–0.4) | <0.001 | 0.773 | 0.276 |
Total MM, kg | 4.6 (3.9–5.7) | 4.9 (3.9–5.7) | −0.1 (−1.7–1.3) | <0.001 | 4.7 (3.9–5.6) | 4.4 (3.8–5.7) | −0.3 (−1.3–0.2) | <0.001 | 0.716 | 0.608 |
Trunk BF, % | 45.5 (6.6) | 43.6 (7.9) | −1.8 (3.5) | 0.009 | 48.1 (4.6) | 46.5 (4.9) | −1.6 (2.2) | 0.001 | 0.112 | 0.677 |
Android BF, % | 47.8 (6.1) | 45.2 (7.7) | −2.6 (4.2) | 0.003 | 50.8 (5.5) | 49.0 (5.8) | −1.8 (2.6) | 0.001 | 0.081 | 0.370 |
Gynoid BF, % | 49.0 (9.3) | 47.5 (9.9) | −1.5 (2.3) | 0.002 | 49.6 (7.0) | 48.4 (7.5) | −1.2 (2.0) | 0.003 | 0.879 | 0.587 |
Total BF, % | 45.0 (5.9) | 44.0 (6.1) | −1.0 (2.4) | <0.001 | 44.7 (5.9) | 43.5 (6.1) | −1.2 (1.5) | <0.001 | 0.344 | 0.762 |
Variables | CG (n = 29) | KG (n = 30) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | After 10 Weeks | Δ | * p-Value | Baseline | After 10 Weeks | Δ | * p-Value | # p-Value | Δ p-Value | |
Food intake | ||||||||||
Energy, kcal | 2171.8 (702.5) | 1536.9 (436.6) | −634.9 (701.6) | <0.001 | 1914.8 (568.7) | 1261.1 (374.1) | −653.5 (514.9) | <0.001 | 0.133 | 0.797 |
Carbohydrate, % | 47.3 (6.4) | 51.5 (24.1) | 4.3 (25.5) | 0.524 | 46.3 (7.2) | 56.9 (26.6) | 10.6 (26.6) | 0.178 | 0.756 | 0.422 |
Lipids, % | 35.8 (5.6) | 34.6 (12.4) | −1.2 (13.1) | 0.787 | 35.4 (6.2) | 35.9 (19.3) | −0.5 (21.8) | 0.453 | 0.856 | 0.705 |
Protein, % | 16.1 (2.5) | 18.5 (7.2) | 2.4 (7.8) | 0.191 | 16.8 (2.0) | 20.2 (10.0) | 3.3 (10.4) | 0.276 | 0.152 | 0.832 |
Fiber, g | 10.3 (1.9) | 11.9 (4.1) | 1.5 (4.7) | 0.145 | 10.9 (2.7) | 13.8 (5.8) | 2.9 (5.4) | 0.018 | 0.554 | 0.265 |
Physical activity | ||||||||||
Walking (METs/min/week) | 242.2 (266.5) | 212.1 (265.9) | −30.1 (93.6) | 0.108 | 148.5 (222.0) | 122.1 (256.9) | −26.4 (122.3) | 0.293 | 0.130 | 0.899 |
Moderate (METs/min/week) | 470.3 (416.2) | 499.3 (452.6) | 28.9 (148.1) | 0.288 | 490.5 (587.1) | 479.2 (554.9) | −11.3 (239.2) | 0.725 | 0.498 | 0.442 |
Vigorous (METs/min/week) | 804.1 (631.3) | 834.5 (806.2) | 30.3 (428.6) | 0.783 | 1072.0 (839.5) | 1058.7 (823.4) | −13.3 (251.9) | 0.866 | 0.195 | 0.634 |
Total (METs/min/week) | 1559.5 (911.5) | 1584.1 (1025.3) | 24.6 (446.9) | 0.769 | 1711.0 (1044.0) | 1659.9 (1076.2) | −51.1 (354.3) | 0.435 | 0.556 | 0.475 |
Effect | p Values | FDR | ↓/↑ | ||
---|---|---|---|---|---|
Species | Catonella morbi | −1.11978 | 4.3 × 10−5 | 0.006744 | ↓kombucha |
Schaalia odontolytica | −1.37204 | 0.000104 | 0.008858 | ↓kombucha | |
Lachnoanaerobaculum umeaense | −0.76314 | 0.000253 | 0.014964 | ↓kombucha | |
Eubacterium sulci | −0.46172 | 0.00097 | 0.042991 | ↓kombucha | |
Megasphaera micronuciformis | −0.65994 | 0.003349 | 0.09071 | ↓kombucha | |
Veillonella dispar | −0.52692 | 0.003554 | 0.092012 | ↓kombucha | |
Oribacterium sinus | −0.9763 | 0.003879 | 0.092454 | ↓kombucha | |
Prevotella pallens | −0.44781 | 0.005143 | 0.097005 | ↓kombucha | |
Lancefieldella parvula | −0.77349 | 0.006298 | 0.099679 | ↓kombucha | |
Lachnospiraceae catonella | −1.08107 | 7.97 × 10−5 | 0.005222 | ↓kombucha | |
Genus | Lachnoanaerobaculum | −0.82378 | 0.000132 | 0.006157 | ↓kombucha |
Schaalia | −0.97974 | 0.000592 | 0.017186 | ↓kombucha | |
Eubacterium | −0.50944 | 0.001291 | 0.028349 | ↓kombucha | |
Leptotrichia | −0.65952 | 0.002691 | 0.046652 | ↓kombucha | |
Oribacterium | −0.79468 | 0.004703 | 0.066296 | ↓kombucha | |
Megasphaera | −0.55551 | 0.006986 | 0.081696 | ↓kombucha | |
Veillonella | −0.91501 | 0.007617 | 0.084506 | ↓kombucha | |
Segatella | −0.57846 | 0.009331 | 0.093197 | ↓kombucha | |
Family | Actinomycetaceae | −1.17493 | 0.002409 | 0.066254 | ↓kombucha |
Eubacteriaceae | −0.61873 | 0.003868 | 0.07029 | ↓kombucha | |
Lachnospiraceae | −1.17577 | 0.004725 | 0.076341 | ↓kombucha | |
Class | Clostridia | −0.74368 | 0.001192 | 0.019575 | ↓kombucha |
Actinobacteria | −0.68961 | 0.010358 | 0.082534 | ↓kombucha | |
Phylum | Actinomycetota | −0.84915 | 0.009424 | 0.059404 | ↓kombucha |
Bacillota | −0.77054 | 0.013535 | 0.060373 | ↓kombucha | |
Fusobacteriota | −0.53552 | 0.016236 | 0.063708 | ↓kombucha | |
SR1 | 0.401023 | 0.007691 | 0.084599 | ↑kombucha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraiz, G.M.; Bonifácio, D.B.; Lacerda, U.V.; Cardoso, R.R.; Corich, V.; Giacomini, A.; Martino, H.S.D.; Echeverría, S.E.; Barros, F.A.R.d.; Milagro, F.I.; et al. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients 2024, 16, 3186. https://doi.org/10.3390/nu16183186
Fraiz GM, Bonifácio DB, Lacerda UV, Cardoso RR, Corich V, Giacomini A, Martino HSD, Echeverría SE, Barros FARd, Milagro FI, et al. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients. 2024; 16(18):3186. https://doi.org/10.3390/nu16183186
Chicago/Turabian StyleFraiz, Gabriela Macedo, Dandara Baia Bonifácio, Udielle Vermelho Lacerda, Rodrigo Rezende Cardoso, Viviana Corich, Alessio Giacomini, Hércia Stampini Duarte Martino, Sergio Esteban Echeverría, Frederico Augusto Ribeiro de Barros, Fermín I. Milagro, and et al. 2024. "Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial" Nutrients 16, no. 18: 3186. https://doi.org/10.3390/nu16183186
APA StyleFraiz, G. M., Bonifácio, D. B., Lacerda, U. V., Cardoso, R. R., Corich, V., Giacomini, A., Martino, H. S. D., Echeverría, S. E., Barros, F. A. R. d., Milagro, F. I., & Bressan, J. (2024). Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients, 16(18), 3186. https://doi.org/10.3390/nu16183186