Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orange
2.2. Participants
2.3. Study Design
2.4. Anthropometrics and Dietary Assessment
2.5. Blood Analyses
2.6. Liver Fibroscan®
2.7. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Orange Supplementation Does Not Affect Body Composition or Key Cardiometabolic Markers
3.3. Orange Supplementation Reduces Liver Steatosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lippolis, T.; Cofano, M.; Caponio, G.R.; De Nunzio, V.; Notarnicola, M. Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int. J. Mol. Sci. 2023, 24, 3813. [Google Scholar] [CrossRef] [PubMed]
- Assini, J.M.; Mulvihill, E.E.; Huff, M.W. Citrus Flavonoids and Lipid Metabolism. Curr. Opin. Lipidol. 2013, 24, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Caponio, G.R.; Cofano, M.; Lippolis, T.; Gigante, I.; De Nunzio, V.; Difonzo, G.; Noviello, M.; Tarricone, L.; Gambacorta, G.; Giannelli, G.; et al. Anti-Proliferative and Pro-Apoptotic Effects of Digested Aglianico Grape Pomace Extract in Human Colorectal Cancer Cells. Molecules 2022, 27, 6791. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.; La Fauci, L.; Cervellati, R.; Guerra, M.C.; Speroni, E.; Costa, S.; Galvano, G.; De Lorenzo, A.; Bacchelli, V.; Fogliano, V.; et al. Antioxidant Activity of Pasteurized and Sterilized Commercial Red Orange Juices. Mol. Nutr. Food Res. 2005, 49, 1129–1135. [Google Scholar] [CrossRef]
- Grande, F.; Occhiuzzi, M.A.; Perri, M.R.; Ioele, G.; Rizzuti, B.; Statti, G.; Garofalo, A. Polyphenols from Citrus Tacle® Extract Endowed with HMGCR Inhibitory Activity: An Antihypercholesterolemia Natural Remedy. Molecules 2021, 26, 5718. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic Inflammation in Fat Plays a Crucial Role in the Development of Obesity-Related Insulin Resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Subramanian, S.; Goodspeed, L.; Wang, S.; Kim, J.; Zeng, L.; Ioannou, G.N.; Haigh, W.G.; Yeh, M.M.; Kowdley, K.V.; O’Brien, K.D.; et al. Dietary Cholesterol Exacerbates Hepatic Steatosis and Inflammation in Obese LDL Receptor-Deficient Mice. J. Lipid Res. 2011, 52, 1626–1635. [Google Scholar] [CrossRef]
- Subramanian, S.; Han, C.Y.; Chiba, T.; McMillen, T.S.; Wang, S.A.; Haw, A.; Kirk, E.A.; O’Brien, K.D.; Chait, A. Dietary Cholesterol Worsens Adipose Tissue Macrophage Accumulation and Atherosclerosis in Obese LDL Receptor–Deficient Mice. Arter. Thromb. Vasc. Biol. 2008, 28, 685–691. [Google Scholar] [CrossRef]
- McNeill, K.; Fontana, L.; Ritter, J.; Russel-Jones, D.; Chowienczyk, P. Inhibitory Effects of Low-Density Lipoprotein on Endothelium-Dependent Relaxation Are Exaggerated in Men with NIDDM. Diabetic. Med. 1998, 15, S3–S4. [Google Scholar]
- Dos Santos, K.G.; Yoshinaga, M.Y.; Glezer, I.; de Britto Chaves-Filho, A.; de Santana, A.A.; Kovacs, C.; Magnoni, C.D.; Lajolo, F.M.; Miyamoto, S.; Aymoto Hassimotto, N.M. Orange Juice Intake by Obese and Insulin-Resistant Subjects Lowers Specific Plasma Triglycerides: A Randomized Clinical Trial. Clin. Nutr. ESPEN 2022, 51, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Salamone, F. Moro Orange Juice Prevents Fatty Liver in Mice. World J. Gastroenterol. 2012, 18, 3862. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Di Giacomo, C.; Acquaviva, R.; Cosenza, J.; Carota, G.; Galvano, F. Blond and Blood Juice Supplementation in High Fat Diet Fed Mice: Effect on Antioxidant Status and DDAH/ADMA Pathway. RSC Adv. 2019, 9, 11406–11412. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E.; Yilmaz, Y. Epidemiology, Natural History, and Diagnosis of Metabolic Dysfunction-Associated Fatty Liver Disease: A Comparative Review with Nonalcoholic Fatty Liver Disease. Ther. Adv. Endocrinol. Metab. 2022, 13, 204201882211396. [Google Scholar] [CrossRef] [PubMed]
- Day, C.P.; James, O.F.W. Steatohepatitis: A Tale of Two “Hits”? Gastroenterology 1998, 114, 842–845. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.M.; et al. A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Boccatonda, A.; Andreetto, L.; D’Ardes, D.; Cocco, G.; Rossi, I.; Vicari, S.; Schiavone, C.; Cipollone, F.; Guagnano, M.T. From NAFLD to MAFLD: Definition, Pathophysiological Basis and Cardiovascular Implications. Biomedicines 2023, 11, 883. [Google Scholar] [CrossRef]
- Smeriglio, A.; Cornara, L.; Denaro, M.; Barreca, D.; Burlando, B.; Xiao, J.; Trombetta, D. Antioxidant and Cytoprotective Activities of an Ancient Mediterranean Citrus (Citrus Lumia Risso) Albedo Extract: Microscopic Observations and Polyphenol Characterization. Food Chem. 2019, 279, 347–355. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378e5. [Google Scholar] [CrossRef]
- Kraus, W.; Bhapkar, M.; Huffman, K.M.; Pieper, C.F.; Das, S.K.; Redman, L.M.; Villareal, D.T.; Rochon, J.; Roberts, S.B.; Ravussin, E.; et al. 2 Years of Calorie Restriction and Cardiometabolic Risk (CALERIE): Exploratory Outcomes of a Multicentre, Phase 2, Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2019, 7, 673–683. [Google Scholar] [CrossRef]
- Green, C.L.; Lamming, D.W.; Fontana, L. Molecular Mechanisms of Dietary Restriction Promoting Health and Longevity. Nat. Rev. Cell Biol. 2022, 23, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Petrov Iliev, I.; Pisanu, G.; Perna, A.; et al. Renal and Systemic Effects of Calorie Restriction in Patients with Type 2 Diabetes with Abdominal Obesity: A Randomized Controlled Trial. Diabetes 2017, 66, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Cook, W.S.; Qi, C.; Yeldandi, A.V.; Reddy, J.K.; Rao, M.S. Defect in Peroxisome Proliferator-Activated Receptor α-Inducible Fatty Acid Oxidation Determines the Severity of Hepatic Steatosis in Response to Fasting. J. Biol. Chem. 2000, 275, 28918–28928. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.S.; Kim, J.H.; Jo, N.Y.; Choi, K.M.; Baik, S.H.; Park, J.; Kim, J.S.; Byun, K.S.; Bak, Y.; Lee, C.H.; et al. PPAR Agonists Treatment Is Effective in a Nonalcoholic Fatty Liver Disease Animal Model by Modulating Fatty-acid Metabolic Enzymes. J. Gastroenterol. Hepatol. 2008, 23, 102–109. [Google Scholar] [CrossRef]
- Kay, H.Y.; Kim, W.D.; Hwang, S.J.; Choi, H.-S.; Gilroy, R.K.; Wan, Y.-J.Y.; Kim, S.G. Nrf2 Inhibits LXRα-Dependent Hepatic Lipogenesis by Competing with FXR for Acetylase Binding. Antioxid. Redox Signal 2011, 15, 2135–2146. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, Y.M.; Yang, Y.M.; Kim, T.H.; Hwang, S.J.; Lee, J.R.; Kim, S.C.; Kim, S.G. Inhibition of SREBP-1c-Mediated Hepatic Steatosis and Oxidative Stress by Sauchinone, an AMPK-Activating Lignan in Saururus Chinensis. Free Radic. Biol. Med. 2010, 48, 567–578. [Google Scholar] [CrossRef]
- Titta, L.; Trinei, M.; Stendardo, M.; Berniakovich, I.; Petroni, K.; Tonelli, C.; Riso, P.; Porrini, M.; Minucci, S.; Pelicci, P.G.; et al. Blood Orange Juice Inhibits Fat Accumulation in Mice. Int. J. Obes. 2010, 34, 578–588. [Google Scholar] [CrossRef]
- FFujimori, A.S.; Ribeiro, A.P.; Pereira, A.G.; Dias-Audibert, F.L.; Tonon, C.R.; Dos Santos, P.P.; Dantas, D.; Zanati, S.G.; Catharino, R.R.; Zornoff, L.A.; et al. Effects of Pera Orange Juice and Moro Orange Juice in Healthy Rats: A Metabolomic Approach. Metabolites 2023, 13, 902. [Google Scholar] [CrossRef]
- Pan, M.; Yang, G.; Li, S.; Li, M.; Tsai, M.; Wu, J.; Badmaev, V.; Ho, C.; Lai, C. Combination of Citrus Polymethoxyflavones, Green Tea Polyphenols, and Lychee Extracts Suppresses Obesity and Hepatic Steatosis in High-fat Diet Induced Obese Mice. Mol. Nutr. Food Res. 2017, 61, 1601104. [Google Scholar] [CrossRef]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary Cyanidin 3-O-β-D-Glucoside-Rich Purple Corn Color Prevents Obesity and Ameliorates Hyperglycemia in Mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef]
- Tangestani, H.; Jamshidi, A.; Farhadi, A.; Ghalandari, H.; Dehghani, P.; Moghaddas, N.; Safaei, Z.; Emamat, H. The Effects of Pomegranate (Punica granatum) on Nonalcoholic Fatty Liver Disease: A Systematic Review of in Vivo Interventional Studies. Phytother. Res. 2024, 38, 4189–4201. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Terrón, G.; Martínez, R.; Morcuende, D.; Caballero, V.; Estévez, M. Pomegranate Supplementation Alleviates Dyslipidemia and the Onset of Non-Alcoholic Fatty Liver Disease in Wistar Rats by Shifting Microbiota and Producing Urolithin-like Microbial Metabolites. Food Funct. 2024, 15, 7348–7363. [Google Scholar] [CrossRef] [PubMed]
- Jinato, T.; Chayanupatkul, M.; Dissayabutra, T.; Chutaputti, A.; Tangkijvanich, P.; Chuaypen, N. Litchi-Derived Polyphenol Alleviates Liver Steatosis and Gut Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Double-Blinded, Placebo-Controlled Study. Nutrients 2022, 14, 2921. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, X.; Yang, H.; Wu, P.; Wang, S.; Cao, D.; Guo, X.; Xu, Z.; Gao, J.; Zhang, W.; et al. Effects of Oral Vitamin C Supplementation on Liver Health and Associated Parameters in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Nutr. 2021, 8, 5609. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, J.; Shin, S.S.; Yoon, M. Ascorbic Acid Inhibits Visceral Obesity and Nonalcoholic Fatty Liver Disease by Activating Peroxisome Proliferator-Activated Receptor α in High-Fat-Diet-Fed C57BL/6J Mice. Int. J. Obes. 2019, 43, 1620–1630. [Google Scholar] [CrossRef]
- Kalyesubula, M.; Mopuri, R.; Asiku, J.; Rosov, A.; Yosefi, S.; Edery, N.; Bocobza, S.; Moallem, U.; Dvir, H. High-Dose Vitamin B1 Therapy Prevents the Development of Experimental Fatty Liver Driven by Overnutrition. Dis. Model. Mech. 2021, 14, dmm048355. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, X.; Wan, M.; Dong, W.; Gao, W.; Yao, Z.; Guo, C. Effects of Riboflavin Deficiency and High Dietary Fat on Hepatic Lipid Accumulation: A Synergetic Action in the Development of Non-Alcoholic Fatty Liver Disease. Nutr. Metab. 2024, 21, 1. [Google Scholar] [CrossRef]
- Pathak, M.P.; Pathak, K.; Saikia, R.; Gogoi, U.; Patowary, P.; Chattopadhyay, P.; Das, A. Therapeutic Potential of Bioactive Phytoconstituents Found in Fruits in the Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Heliyon 2023, 9, e15347. [Google Scholar] [CrossRef]
- Beygi, M.; Ahi, S.; Zolghadri, S.; Stanek, A. Management of Metabolic-Associated Fatty Liver Disease/Metabolic Dysfunction-Associated Steatotic Liver Disease: From Medication Therapy to Nutritional Interventions. Nutrients 2024, 16, 2220. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, L.; Ruan, Z.; Han, P.; Yu, Y. The Regulatory Effects of Citrus Peel Powder on Liver Metabolites and Gut Flora in Mice with Non-Alcoholic Fatty Liver Disease (NAFLD). Foods 2021, 10, 3022. [Google Scholar] [CrossRef]
- Song, H.; Shen, X.; Chu, Q.; Zheng, X. Pomegranate Fruit Pulp Polyphenols Reduce Diet-induced Obesity with Modulation of Gut Microbiota in Mice. J. Sci. Food Agric. 2022, 102, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; De Cássia Freitas, K.; De Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [PubMed]
- Tsitsou, S.; Cholongitas, E.; Bali, T.; Neonaki, A.; Poulia, K.-A.; Papakonstantinou, E. Effects of Time-Restricted Hypocaloric Mediterranean Diet in Patients with Non-Alcoholic Fatty Liver Disease: Preliminary Data from the CHRONO-NAFLD Project. Proceedings 2024, 91, 359. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Gao, W.; Guo, Z.; Wang, K.; Liu, S.; Duan, Z.; Chen, Y. Naringin Improves Lipid Metabolism in a Tissue-Engineered Liver Model of NAFLD and the Underlying Mechanisms. Life Sci. 2021, 277, 119487. [Google Scholar] [CrossRef]
- Wang, Q.; Ou, Y.; Hu, G.; Wen, C.; Yue, S.; Chen, C.; Xu, L.; Xie, J.; Dai, H.; Xiao, H.; et al. Naringenin Attenuates Non-alcoholic Fatty Liver Disease by Down-regulating the NLRP3/NF-κB Pathway in Mice. Br. J. Pharmacol. 2020, 177, 1806–1821. [Google Scholar] [CrossRef]
Physicochemical Properties of Navelina Orange | |
---|---|
Fruit weight (g) | 192.85 ± 25.59 |
Equatorial diameter (mm) | 74.83 ± 2.14 |
Fruit height (mm) | 75.83 ± 3.43 |
pH | 3.46 ± 0.17 |
TA (g citric acid/L) | 8.92 ± 1.14 |
TSS (° Brix) | 9.75 ± 0.57 |
Maturity index (TSS/TAA) | 11.09 ± 1.70 |
Polyphenols and total antioxidant activity of Navelina orange | |
Total phenolic content (mg/kg flesh tissue) | 1061.1 ± 136.8 |
Total phenolic content (mg/L juice) | 134.0 ± 12.00 |
Hesperidin mg/L juice | 505.7 ± 51.60 |
DPPH (mM TE/L juice) | 7.90 ± 0.20 |
DPPH (mM TE/kg FW) | 63.20 ± 3.70 |
ORAC (mM TE/kg FW) | 155.40 ± 12.10 |
Parameters 1 | Control (n = 31) | Treatment (n = 31) | p 2 |
---|---|---|---|
Age (yrs) | 50.06 ± 9.77 | 51.77 ± 10.31 | 0.45 |
Gender (M) (%) | 21 (67.74) | 24 (77.42) | 0.39 3 |
Anthropometric parameters | |||
Weight (kg) | 91.95 ± 11.42 | 91.98 ± 9.96 | 0.99 |
BMI (kg/m2) | 32.31 ± 4.14 | 32.07 ± 4.25 | 0.97 |
Neck circumference (cm) | 42.36 ± 11.17 | 39.61 ± 8.05 | 0.91 |
Waist circumference (cm) | 108.60 ± 12.83 | 108.32 ± 12.72 | 0.53 |
Hip circumference (cm) | 112.88 ± 10.02 | 109.77 ± 23.88 | 0.76 |
Whole body phA° | 6.43 ± 0.66 | 6.11 ± 1.76 | 0.99 |
FFM (kg) | 62.45 ± 9.50 | 58.40 ± 17.89 | 0.81 |
FM (kg) | 30.49 ± 10.34 | 29.59 ± 15.94 | 0.44 |
Biochemical parameters | |||
Total cholesterol (mg/dL) | 183.26 ± 42.88 | 202.29 ± 40.25 | 0.05 |
HDL cholesterol (mg%) | 51.44 ± 10.43 | 47.10 ± 13.15 | 0.05 |
LDL cholesterol (mg/dL) | 119.18 ± 39.86 | 132.11 ± 37.64 | 0.16 |
Triglycerides (mg/dL) | 121.45 ± 70.41 | 132.10 ± 53.32 | 0.14 |
Fasting glucose (mg/GI) | 94.71 ± 9.45 | 101.00 ± 21.62 | 0.27 |
Fasting insulin (µUI/mL) | 15.24 ± 7.03 | 16.08 ± 8.55 | 0.58 |
HOMA-IR | 3.58 ± 2.13 | 4.10 ± 2.50 | 0.39 |
AST (U/L) | 23.48 ± 7.83 | 23.42 ± 9.93 | 0.70 |
ALT (U/L) | 30.35 ± 15.74 | 36.68 ± 23.74 | 0.20 |
GGT (U/L) | 29.71 ± 10.78 | 40.48 ± 23.01 | 0.05 |
Alkaline phosphatase (U/L) | 69.77 ± 21.00 | 67.64 ± 19.99 | 0.76 |
CRP (mg/dL) | 0.29 ± 0.23 | 0.34 ± 0.43 | 0.52 |
Ferritin (ng/mL) | 191.35 ± 95.77 | 241.05 ± 170.98 | 0.48 |
Parameters 1 | Group | Between-Group 2 | |
---|---|---|---|
Control | Treatment | ||
Weight (kg) | |||
Baseline | 91.95 ± 11.42 | 91.98 ± 9.96 | |
28 Days | 91.03 ± 11.47 | 91.26 ± 9.53 | |
Change | −0.010 ± 0.017 | −0.007 ± 0.021 | 0.43 |
Within-Group 3 | 0.30 | 0.26 | |
BMI (kg/m2) | |||
Baseline | 32.31 ± 4.14 | 32.07 ± 4.25 | |
28 Days | 31.93 ± 4.35 | 31.95 ± 4.28 | |
Change | −0.012 ± 0.019 | −0.003 ± 0.030 | 0.17 |
Within-Group 3 | 0.42 | 0.57 | |
Neck Circumference (cm) | |||
Baseline | 42.36 ± 11.17 | 39.61 ± 8.05 | |
28 Days | 39.78 ± 3.54 | 39.27 ± 8.04 | |
Change | −0.035 ± 0.110 | −0.044 ± 0.182 | 0.19 |
Within-Group 3 | 0.07 | 0.15 | |
Waist circumference (cm) | |||
Baseline | 108.60 ± 12.83 | 108.32 ± 12.72 | |
28 Days | 107.57 ± 12.51 | 107.32 ± 12.13 | |
Change | −0.009 ± 0.015 | −0.009 ± 0.018 | 0.91 |
Within-Group 3 | 0.45 | 0.05 | |
Hip circumference (cm) | |||
Baseline | 112.88 ± 10.02 | 109.77 ± 23.88 | |
28 Days | 112.19 ± 9.85 | 111.86 ± 11.30 | |
Change | −0.006 ± 0.014 | −0.010 ± 0.023 | 0.68 |
Within-Group 3 | 0.04 | 0.04 | |
Whole Body phA° | |||
Baseline | 6.43 ± 0.66 | 6.11 ± 1.76 | |
28 Days | 6.48 ± 0.75 | 6.32 ± 1.39 | |
Change | 0.009 ± 0.060 | 0.004 ± 0.069 | 0.56 |
Within-Group 3 | 0.56 | 0.85 | |
FFM (kg) | |||
Baseline | 62.45 ± 9.50 | 58.40 ± 17.89 | |
28 Days | 62.38 ± 10.08 | 61.19 ± 15.53 | |
Change | −0.002 ± 0.042 | 0.013 ± 0.053 | 0.49 |
Within-Group 3 | 0.14 | 0.58 | |
FM (kg) | |||
Baseline | 30.49 ± 10.34 | 29.59 ± 15.94 | |
28 Days | 29.37 ± 10.80 | 28.99 ± 13.36 | |
Change | −0.041 ± 0.116 | −0.032 ± 0.097 | 0.97 |
Within-Group 3 | 0.14 | 0.14 |
Parameters 1 | Group | Between-Group 2 | |
---|---|---|---|
Control | Treatment | ||
Total Cholesterol (mg/dL) | |||
Baseline | 183.26 ± 42.88 | 202.29 ± 40.25 | |
28 Days | 186.03 ± 35.94 | 193.39 ± 40.83 | |
Change | 0.033 ± 0.134 | −0.033 ± 0.145 | 0.07 |
Within-Group 3 | 0.85 | 0.28 | |
LDL Cholesterol (mg/dL) | |||
Baseline | 119.18 ± 39.86 | 132.11 ± 37.64 | |
28 Days | 121.22 ± 39.23 | 130.94 ± 35.58 | |
Change | 0.046 ± 0.217 | 0.012 ± 0.160 | 0.69 |
Within-Group 3 | 0.10 | 0.47 | |
HDL Cholesterol (mg/dL) | |||
Baseline | 51.44 ± 10.43 | 47.10 ± 13.15 | |
28 Days | 51.80 ± 11.94 | 47.53 ± 10.74 | |
Change | 0.007 ± 0.101 | 0.034 ± 0.173 | 0.92 |
Within-Group 3 | 0.20 | 0.72 | |
Triglycerides (mg/dL) | |||
Baseline | 121.45 ± 70.41 | 132.10 ± 53.32 | |
28 Days | 112.29 ± 70.34 | 123.06 ± 53.55 | |
Change | −0.056 ± 0.257 | −0.032 ± 0.267 | 0.66 |
Within-Group 3 | 0.14 | 0.72 | |
Fasting Glucose (mg/dL) | |||
Baseline | 94.71 ± 9.45 | 101.00 ± 21.62 | |
28 Days | 95.71 ± 9.22 | 99.59 ± 26.83 | |
Change | 0.012 ± 0.057 | −0.018 ± 0.074 | 0.09 |
Within-Group 3 | 0.18 | 0.72 | |
Fasting Insulin (µUI/mL) | |||
Baseline | 15.24 ± 7.03 | 16.08 ± 8.55 | |
28 Days | 15.53 ± 8.21 | 16.42 ± 9.06 | |
Change | 0.036 ± 0.317 | 0.067 ± 0.294 | 0.58 |
Within-Group 3 | 0.71 | 0.36 | |
HOMA-IR | |||
Baseline | 3.58 ± 2.13 | 4.10 ± 2.50 | |
28 Days | 3.63 ± 2.22 | 4.19 ± 2.94 | |
Change | 0.055 ± 0.322 | 0.058 ± 0.337 | 0.94 |
Within-Group 3 | 0.99 | 0.99 | |
AST (U/L) | |||
Baseline | 23.48 ± 7.83 | 23.42 ± 9.93 | |
28 Days | 22.90 ± 7.45 | 24.29 ± 7.29 | |
Change | −0.010 ± 0.141 | 0.088 ± 0.241 | 0.11 |
Within-Group 3 | 0.99 | 0.05 | |
ALT (U/L) | |||
Baseline | 30.35 ± 15.74 | 36.68 ± 23.74 | |
28 Days | 29.93 ± 15.16 | 34.93 ± 18.50 | |
Change | −0.001 ± 0.138 | 0.008 ± 0.317 | 0.45 |
Within-Group 3 | 0.42 | 0.28 | |
GGT (U/L) | |||
Baseline | 29.71 ± 10.78 | 40.48 ± 23.01 | |
28 Days | 28.29 ± 10.31 | 34.22 ± 21.68 | |
Change | −0.041 ± 0.113 | −0.160 ± 0.206 | 0.005 |
Within-Group 3 | 0.12 | 0.0001 | |
Alkaline Phosphatase (U/L) | |||
Baseline | 69.77 ± 21.00 | 67.64 ± 19.99 | |
28 Days | 71.58 ± 21.42 | 68.74 ± 19.88 | |
Change | 0.029 ± 0.067 | 0.019 ± 0.069 | 0.66 |
Within-Group 3 | 0.56 | 0.58 | |
hsCRP (mg/dL) | |||
Baseline | 0.29 ± 0.23 | 0.34 ± 0.43 | |
28 Days | 0.30 ± 0.31 | 0.30 ± 0.41 | |
Change | 0.201 ± 1.365 | 0.090 ± 0.740 | 0.79 |
Within-Group 3 | 0.03 | 0.58 | |
Ferritin (ng/mL) | |||
Baseline | 191.35 ± 95.77 | 241.05 ± 170.98 | |
28 Days | 188.07 ± 92.61 | 231.52 ± 163.94 | |
Change | −0.001 ± 0.155 | −0.046 ± 0.206 | 0.32 |
Within-Group 3 | 0.85 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notarnicola, M.; Tutino, V.; De Nunzio, V.; Cisternino, A.M.; Cofano, M.; Donghia, R.; Giannuzzi, V.; Zappimbulso, M.; Milella, R.A.; Giannelli, G.; et al. Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial. Nutrients 2024, 16, 3191. https://doi.org/10.3390/nu16183191
Notarnicola M, Tutino V, De Nunzio V, Cisternino AM, Cofano M, Donghia R, Giannuzzi V, Zappimbulso M, Milella RA, Giannelli G, et al. Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial. Nutrients. 2024; 16(18):3191. https://doi.org/10.3390/nu16183191
Chicago/Turabian StyleNotarnicola, Maria, Valeria Tutino, Valentina De Nunzio, Anna Maria Cisternino, Miriam Cofano, Rossella Donghia, Vito Giannuzzi, Marianna Zappimbulso, Rosa Anna Milella, Gianluigi Giannelli, and et al. 2024. "Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial" Nutrients 16, no. 18: 3191. https://doi.org/10.3390/nu16183191
APA StyleNotarnicola, M., Tutino, V., De Nunzio, V., Cisternino, A. M., Cofano, M., Donghia, R., Giannuzzi, V., Zappimbulso, M., Milella, R. A., Giannelli, G., & Fontana, L. (2024). Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial. Nutrients, 16(18), 3191. https://doi.org/10.3390/nu16183191