The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System
Abstract
:1. Introduction
2. A Brief History of Selenium Research
3. Environmental Biodistribution and Nutrikinetics of Selenium
3.1. From the Soil to the Plant
3.2. From the Water and Sediments to Plants and Algae
3.3. From the Plant and Algae to the Body
3.4. From the Body to the Environment
4. Selenium’s Relevance to Human Health
4.1. Selenium Requirements
4.2. Se Deficiency and Risk of Disease
4.3. Excess Consumption of Se and Risk of Toxicity
5. The Impact of Se on the Immune System
5.1. Antioxidant Activity
5.2. Innate Immune Response
5.3. Adaptive Immune Response
5.4. Gut Microbiota
5.5. Disease Resistance
5.5.1. Viral Infections
5.5.2. Bacterial Infections
5.5.3. Fungal Infections
5.5.4. Autoimmune Disorders
5.5.5. Cancer
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Ramady, H.; Abdalla, N.; Alshaal, T.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Sztrik, A.; Fári, M.; El-Marsafawy, S.; Shams, M.S. Selenium in Soils under Climate Change, Implication for Human Health. Environ. Chem. Lett. 2015, 13, 1–19. [Google Scholar] [CrossRef]
- Combs, G.F. Selenium in Global Food Systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef] [PubMed]
- Tieu, S.; Charchoglyan, A.; Wagter-Lesperance, L.; Karimi, K.; Bridle, B.W.; Karrow, N.A.; Mallard, B.A. Immunoceuticals: Harnessing Their Immunomodulatory Potential to Promote Health and Wellness. Nutrients 2022, 14, 4075. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium Bioavailability: Current Knowledge and Future Research Requirements. Am. J. Clin. Nutr. 2010, 91, 1484S–1491S. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Ravn-Haren, G. Absorption, Distribution, Metabolism and Excretion (ADME) of Oral Selenium from Organic and Inorganic Sources: A Review. J. Trace Elem. Med. Biol. 2021, 67, 126801. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.; Hoffmann, P. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef]
- Trofast, J. Undersökning Af En Ny Mineral-Kropp, Funnen i de Orenare Sorterna Af Det Vid Fahlun Tillverkade Svaflet. Chem. Int.–Newsmag. IUPAC 2011, 33, 16–19. [Google Scholar] [CrossRef]
- Terry, E.N.; Diamond, A.M. Selenium. In Present Knowledge in Nutrition; Erdman, J.W., Macdonald, I.A., Zeisel, S.H., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 568–585. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Berry, M.J.; Gladyshev, V.N. (Eds.) Selenium: Its Molecular Biology and Role in Human Health; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Davidson, W.B. Selenium Poisoning. Comp. Med. Vet. Sci. 1940, 4, 19–25. [Google Scholar]
- Tully, W.C.; Franke, K.W. A New Toxicant Occurring Naturally in Certain Samples of Plant Foodstuffs. Poult. Sci. 1935, 14, 280–284. [Google Scholar] [CrossRef]
- Raisbeck, M.F.; Dahl, E.R.; Sanchez, D.A.; Belden, E.L.; O’Toole, D. Naturally Occurring Selenosis in Wyoming. J. Vet. Diagn. Investig. 1993, 5, 84–87. [Google Scholar] [CrossRef]
- Ghosh, C.R.P. A Case of Rodent Ulcer Cured by Injections of Selenium. Indian Med. Gaz. 1927, 62, 568. [Google Scholar]
- Watson-Williams, E. A preliminary note on the treatment of inoperable carcinoma with selenium. BMJ 1919, 2, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Watson-Williams, E. Epithelioma of Tonsil; Treatment by Selenium and Radium. Proc. R. Soc. Med. 1929, 22, 1266–1267. [Google Scholar] [CrossRef] [PubMed]
- Pinsent, J. The Need for Selenite and Molybdate in the Formation of Formic Dehydrogenase by Members of the Coli-Aerogenes Group of Bacteria. Biochem. J. 1954, 57, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.; Foltz, C. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 1957, 79, 3292–3293. [Google Scholar] [CrossRef]
- Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione Peroxidase: A Selenoenzyme. FEBS Lett. 1973, 32, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Norton, R.; Huang, Z.; Fay, J.; Hoffmann, F.; Hoffmann, P. Selenoprotein K Interacts with ASAP2 in Macrophages to Promote Phagocytosis (P4151). J. Immunol. 2013, 190 (Suppl. S1), 112.9. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and Selenoproteins: It’s Role in Regulation of Inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Trippe, R.C.; Pilon-Smits, E.A.H. Selenium Transport and Metabolism in Plants: Phytoremediation and Biofortification Implications. J. Hazard. Mater. 2021, 404, 124178. [Google Scholar] [CrossRef]
- Panel on Dietary Antioxidants and Related Compounds; Subcommittee on Upper Reference Levels of Nutrients; Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Food and Nutrition Board; Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000; p. 9810. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. Rice 2022, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Ertani, A.; Parrasia, S.; Vecchia, F.D. Selenium Accumulation and Metabolism in Algae. Aquat. Toxicol. 2017, 189, 1–8. [Google Scholar] [CrossRef]
- Mechora, Š.; Stibilj, V.; Germ, M. The Uptake and Distribution of Selenium in Three Aquatic Plants Grown in Se(IV) Solution. Aquat. Toxicol. 2013, 128–129, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ponton, D.E.; Graves, S.D.; Fortin, C.; Janz, D.; Amyot, M.; Schiavon, M. Selenium Interactions with Algae: Chemical Processes at Biological Uptake Sites, Bioaccumulation, and Intracellular Metabolism. Plants 2020, 9, 528. [Google Scholar] [CrossRef]
- Minich, W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochemistry 2022, 87, S168–S177. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium Biochemistry and Its Role for Human Health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.Y.; Alfulaij, N.; Berry, M.J.; Seale, L.A. From Selenium Absorption to Selenoprotein Degradation. Biol. Trace Elem. Res. 2019, 192, 26–37. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023, 28, 8125. [Google Scholar] [CrossRef]
- Kazi Tani, L.S.; Dennouni-Medjati, N.; Toubhans, B.; Charlet, L. Selenium Deficiency—From Soil to Thyroid Cancer. Appl. Sci. 2020, 10, 5368. [Google Scholar] [CrossRef]
- Maroney, M.J.; Hondal, R.J. Selenium versus Sulfur: Reversibility of Chemical Reactions and Resistance to Permanent Oxidation in Proteins and Nucleic Acids. Free Radic. Biol. Med. 2018, 127, 228–237. [Google Scholar] [CrossRef]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Muñoz, D.; Robles, M.C.; Maynar-Mariño, M. Influence of a High-Temperature Programme on Serum, Urinary and Sweat Levels of Selenium and Zinc. J. Therm. Biol. 2020, 88, 102492. [Google Scholar] [CrossRef] [PubMed]
- Fairweather-Tait, S.J.; Filippini, T.; Vinceti, M. Selenium Status and Immunity. Proc. Nutr. Soc. 2023, 82, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-Q.; Zhu, L.-Z.; Liu, S.-J.; Gu, L.-Z.; Qian, P.-C.; Huang, J.-H.; Lu, M.-D. Human Selenium Requirements in China. In Selenium in Biology and Medicine; Van Nostrand Reinhold: New York, NY, USA, 1987; pp. 589–607. [Google Scholar]
- Duffield, A.J.; Thomson, C.D.; Hill, K.E.; Williams, S. An Estimation of Selenium Requirements for New Zealanders. Am. J. Clin. Nutr. 1999, 70, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F., Jr. Biomarkers of Selenium Status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Hill, K.E.; Byrne, D.W.; Xu, J.; Burk, R.F. Effectiveness of Selenium Supplements in a Low-Selenium Area of China. Am. J. Clin. Nutr. 2005, 81, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Symposium on ‘Geographical and Geological Influences on Nutrition’ Factors Controlling the Distribution of Selenium in the Environment and Their Impact on Health and Nutrition: Conference on ‘Over- and Undernutrition: Challenges and Approaches’. Proc. Nutr. Soc. 2010, 69, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Stoffaneller, R.; Morse, N. A Review of Dietary Selenium Intake and Selenium Status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar] [CrossRef]
- Kim, J.; Chung, H.S.; Choi, M.-K.; Roh, Y.K.; Yoo, H.J.; Park, J.H.; Kim, D.S.; Yu, J.M.; Moon, S. Association between Serum Selenium Level and the Presence of Diabetes Mellitus: A Meta-Analysis of Observational Studies. Diabetes Metab. J. 2019, 43, 447. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The Role of Selenium in Type-2 Diabetes Mellitus and Its Metabolic Comorbidities. Redox Biol. 2022, 50, 102236. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Toxicity of Repeated Oral Intake of Organic Selenium, Inorganic Selenium, and Selenium Nanoparticles: A Review. J. Trace Elem. Med. Biol. 2023, 79, 127235. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium Intake, Status, and Health: A Complex Relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Khetarpal, P. Genetic Determinants of Selenium Availability, Selenium-Response, and Risk of Polycystic Ovary Syndrome. Biol. Trace Elem. Res. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Zwolak, I. The Role of Selenium in Arsenic and Cadmium Toxicity: An Updated Review of Scientific Literature. Biol. Trace Elem. Res. 2020, 193, 44–63. [Google Scholar] [CrossRef] [PubMed]
- Tinggi, U.; Perkins, A.V. Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022, 14, 5308. [Google Scholar] [CrossRef] [PubMed]
- Guillin, O.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11, 2101. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef]
- Zhang, Y.; Roh, Y.J.; Han, S.-J.; Park, I.; Lee, H.M.; Ok, Y.S.; Lee, B.C.; Lee, S.-R. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants 2020, 9, 383. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Chen, S.; Jia, X.; Jiang, X.; Che, L.; Lin, Y.; Li, J.; Feng, B.; Fang, Z.; et al. Organic Selenium Increased Gilts Antioxidant Capacity, Immune Function, and Changed Intestinal Microbiota. Front. Microbiol. 2021, 12, 723190. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, C.; Liu, C.; Teng, X.; Li, S. Selenium Deficiency Mainly Influences Antioxidant Selenoproteins Expression in Broiler Immune Organs. Biol. Trace Elem. Res. 2016, 172, 209–221. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Ai, Y.; Yin, X.; Wang, L.; Wang, M.; Zhang, B.; Lian, Z.; Wu, K.; Guo, Y.; et al. Microbiome and Ileum Transcriptome Revealed the Boosting Effects of Selenium Yeast on Egg Production in Aged Laying Hens. Anim. Nutr. 2022, 10, 124–136. [Google Scholar] [CrossRef]
- Ghaniem, S.; Nassef, E.; Zaineldin, A.I.; Bakr, A.; Hegazi, S. A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-Selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol. Trace Elem. Res. 2022, 200, 5226–5241. [Google Scholar] [CrossRef]
- Khaled, A.A.; Shabaan, A.M.; Hammad, S.M.; Hafez, E.E.; Saleh, A.A. Exploring the Impact of Nano-Se and Nano-Clay Feed Supplements on Interleukin Genes, Immunity and Growth Rate in European Sea Bass (Dicentrarchus Labrax). Sci. Rep. 2024, 14, 2631. [Google Scholar] [CrossRef] [PubMed]
- Romiti, G.F.; Corica, B.; Raparelli, V.; Basili, S.; Cangemi, R. The Interplay between Antioxidants and the Immune System: A Promising Field, Still Looking for Answers. Nutrients 2020, 12, 1550. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C. Adances in Immunology: Innate Immunity. N. Engl. J. Med. 2000, 343, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Rose, A.H.; Hoffmann, P.R. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2012, 16, 705–743. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Yang, Q.; Dong, Y.; Hou, Y.; Liu, G. Selenium Metabolism and Regulation of Immune Cells in Immune-associated Diseases. J. Cell Physiol. 2022, 237, 3449–3464. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and Selenium Co-Supplementation, and the Effects on Clinical, Metabolic and Genetic Status in Alzheimer’s Disease: A Randomized, Double-Blind, Controlled Trial. Clin. Nutr. 2019, 38, 2569–2575. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, Inflammation and Innate Immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Grebenciucova, E.; VanHaerents, S. Interleukin 6: At the Interface of Human Health and Disease. Front. Immunol. 2023, 14, 1255533. [Google Scholar] [CrossRef]
- Ullrich, K.A.-M.; Schulze, L.L.; Paap, E.-M.; Müller, T.M.; Neurath, M.F.; Zundler, S. Immunology of IL-12: An Update on Functional Activities and Implications for Disease. EXCLI J. 2020, 19, 1563. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, B.; Houghton, M.J.; Ganio, K.; McDevitt, C.A.; Bennett, D.; Dunn, A.; Raju, S.; Schroeder, A.; Hill, R.A.; Cardoso, B.R. Maternal Selenium Dietary Supplementation Alters Sociability and Reinforcement Learning Deficits Induced by in Utero Exposure to Maternal Immune Activation in Mice. Brain Behav. Immun. 2024, 116, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Wautier, J.-L.; Wautier, M.-P. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int. J. Mol. Sci. 2023, 24, 9647. [Google Scholar] [CrossRef] [PubMed]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Samsudin, A.A. Influence of Bacterial Organic Selenium on Blood Parameters, Immune Response, Selenium Retention and Intestinal Morphology of Broiler Chickens. BMC Vet. Res. 2020, 16, 365. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Taha-Abdelaziz, K.; Alkie, T.N.; Bekele-Yitbarek, A.; Barjesteh, N.; Laursen, A.; Smith, T.K.; Shojadoost, J.; Sharif, S. Supplemental Dietary Selenium Enhances Immune Responses Conferred by a Vaccine against Low Pathogenicity Avian Influenza Virus. Vet. Immunol. Immunopathol. 2020, 227, 110089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.; Yu, Z.; Chen, Z.; Yang, J.; Yin, Y.; Xu, S. Supplementation with Organic Yeast-Derived Selenium Provides Immune Protection against Experimental Necrotic Enteritis in Broiler Chickens. Microb. Pathog. 2024, 192, 106691. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, J.; Pascual, V.; O’Garra, A. From IL-2 to IL-37: The Expanding Spectrum of Anti-Inflammatory Cytokines. Nat. Immunol. 2012, 13, 925–931. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Ferreira, R.L.U.; Sena-Evangelista, K.C.M.; De Azevedo, E.P.; Pinheiro, F.I.; Cobucci, R.N.; Pedrosa, L.F.C. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front. Nutr. 2021, 8, 685317. [Google Scholar] [CrossRef]
- Sumner, S.E.; Markley, R.L.; Kirimanjeswara, G.S. Role of Selenoproteins in Bacterial Pathogenesis. Biol. Trace Elem. Res. 2019, 192, 69–82. [Google Scholar] [CrossRef]
- Zhai, Q.; Cen, S.; Li, P.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Effects of Dietary Selenium Supplementation on Intestinal Barrier and Immune Responses Associated with Its Modulation of Gut Microbiota. Environ. Sci. Technol. Lett. 2018, 5, 724–730. [Google Scholar] [CrossRef]
- Pellegrino, A.; Coppola, G.; Santopaolo, F.; Gasbarrini, A.; Ponziani, F.R. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023, 15, 1815. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Sheng, L.; Li, H. Akkermansia Muciniphila: Is It the Holy Grail for Ameliorating Metabolic Diseases? Gut Microbes 2021, 13, 1984104. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New Evidences on the Altered Gut Microbiota in Autism Spectrum Disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, D.M.; Riehle, K.; Mistretta, T.; Diaz, M.; Mandal, D.; Raza, S.; Weidler, E.M.; Qin, X.; Coarfa, C.; Milosavljevic, A.; et al. Gastrointestinal Microbiome Signatures of Pediatric Patients With Irritable Bowel Syndrome. Gastroenterology 2011, 141, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Triantos, C.; Maroulis, I.; Gogos, C. The Role of the Gut Barrier Function in Health and Disease. Gastroenterol. Res. 2018, 11, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–12. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert. Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Guevara Agudelo, F.A.; Leblanc, N.; Bourdeau-Julien, I.; St-Arnaud, G.; Lacroix, S.; Martin, C.; Flamand, N.; Veilleux, A.; Di Marzo, V.; Raymond, F. Impact of Selenium on the Intestinal Microbiome-ECBome Axis in the Context of Diet-Related Metabolic Health in Mice. Front. Immunol. 2022, 13, 1028412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiang, H.; Sun, G.; Yang, Y.; Chen, C.; Li, T. Effect of Dietary Selenium Intake on Gut Microbiota in Older Population in Enshi Region. Genes Environ. 2021, 43, 56. [Google Scholar] [CrossRef]
- Kelly Souza Silveira, B.; Mayumi Usuda Prado Rocha, D.; Stampini Duarte Martino, H.; Grancieri, M.; Juste Contin Gomes, M.; Cuquetto Mantovani, H.; Bressan, J.; Hermana Miranda Hermsdorff, H. Daily Cashew and Brazil Nut Consumption Modifies Intestinal Health in Overweight Women on Energy-Restricted Intervention: A Randomized Controlled Trial (Brazilian Nuts Study). J. Nutr. 2024, 154, 962–977. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, Z.; Li, J.; Gao, S.; Fan, Y.; Wang, K. Hypermethylation of the Glutathione Peroxidase 4 Gene Promoter Is Associated with the Occurrence of Immune Tolerance Phase in Chronic Hepatitis B. Virol. J. 2024, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Roldán-Bretón, N.R.; Capuchino-Suárez, A.G.; Mejía-León, M.E.; Olvera-Sandoval, C.; Lima-Sánchez, D.N. Selenium Serum Levels in Patients with SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. J. Nutr. Sci. 2023, 12, e86. [Google Scholar] [CrossRef] [PubMed]
- Fakhrolmobasheri, M.; Mazaheri-Tehrani, S.; Kieliszek, M.; Zeinalian, M.; Abbasi, M.; Karimi, F.; Mozafari, A.M. COVID-19 and Selenium Deficiency: A Systematic Review. Biol. Trace Elem. Res. 2022, 200, 3945–3956. [Google Scholar] [CrossRef] [PubMed]
- Muzembo, B.A.; Mbendi, N.C.; Ngatu, N.R.; Suzuki, T.; Wada, K.; Ikeda, S. Serum Selenium Levels in Tuberculosis Patients: A Systematic Review and Meta-Analysis. J. Trace Elem. Med. Biol. 2018, 50, 257–262. [Google Scholar] [CrossRef]
- Ribeiro, R.C.B.; De Marins, D.B.; Di Leo, I.; Da Silva Gomes, L.; De Moraes, M.G.; Abbadi, B.L.; Villela, A.D.; Da Silva, W.F.; Da Silva, L.C.R.P.; Machado, P.; et al. Anti-Tubercular Profile of New Selenium-Menadione Conjugates against Mycobacterium Tuberculosis H37Rv (ATCC 27294) Strain and Multidrug-Resistant Clinical Isolates. Eur. J. Med. Chem. 2021, 209, 112859. [Google Scholar] [CrossRef] [PubMed]
- Estevez, H.; Palacios, A.; Gil, D.; Anguita, J.; Vallet-Regi, M.; González, B.; Prados-Rosales, R.; Luque-Garcia, J.L. Antimycobacterial Effect of Selenium Nanoparticles on Mycobacterium Tuberculosis. Front. Microbiol. 2020, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Ifijen, I.H.; Atoe, B.; Ekun, R.O.; Ighodaro, A.; Odiachi, I.J. Treatments of Mycobacterium Tuberculosis and Toxoplasma Gondii with Selenium Nanoparticles. BioNanoSci. 2023, 13, 249–277. [Google Scholar] [CrossRef] [PubMed]
- Webster, T.J. Selenium Nanoparticles Inhibit Staphylococcus Aureus Growth. IJN 2011, 6, 1553–1558. [Google Scholar] [CrossRef]
- Han, H.-W.; Patel, K.D.; Kwak, J.-H.; Jun, S.-K.; Jang, T.-S.; Lee, S.-H.; Knowles, J.C.; Kim, H.-W.; Lee, H.-H.; Lee, J.-H. Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules 2021, 11, 1028. [Google Scholar] [CrossRef]
- Zang, H.; Qian, S.; Li, J.; Zhou, Y.; Zhu, Q.; Cui, L.; Meng, X.; Zhu, G.; Wang, H. The Effect of Selenium on the Autophagy of Macrophage Infected by Staphylococcus Aureus. Int. Immunopharmacol. 2020, 83, 106406. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Jiang, D.; Yu, Y.; Deng, Y.; Chen, T.; Xu, L. Surface Chemistry Engineered Selenium Nanoparticles as Bactericidal and Immuno-Modulating Dual-Functional Agents for Combating Methicillin-Resistant Staphylococcus Aureus Infection. Drug Resist. Updates 2024, 76, 101102. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wu, Q.; Liu, B. The Impact of Selenium Administration on Severe Sepsis or Septic Shock: A Meta-Analysis of Randomized Controlled Trials. Afr. Health Sci. 2021, 21, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, X.; Gong, Y.; Yuan, G.; Cen, J.; Lie, Q.; Hou, Y.; Ye, G.; Liu, S.; Liu, J. Porous Selenium Nanozymes Targeted Scavenging ROS Synchronize Therapy Local Inflammation and Sepsis Injury. Appl. Mater. Today 2021, 22, 100929. [Google Scholar] [CrossRef]
- Serov, D.A.; Khabatova, V.V.; Vodeneev, V.; Li, R.; Gudkov, S.V. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. Materials 2023, 16, 5363. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Taha, T.F.; Najjar, A.A.; Zabermawi, N.M.; Nader, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Salama, A. Selenium Nanoparticles from Lactobacillus Paracasei HM1 Capable of Antagonizing Animal Pathogenic Fungi as a New Source from Human Breast Milk. Saudi J. Biol. Sci. 2021, 28, 6782–6794. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.N.; Naqvi, S.M.A.; Raza, A.; Jaiswal, A.; Singh, A.K.; Dixit, M.; Barnwal, A.; Gambhir, S.; Ahmad, A. Mycosynthesis of Highly Fluorescent Selenium Nanoparticles from Fusarium Oxysporum, Their Antifungal Activity against Black Fungus Aspergillus Niger, and in-Vivo Biodistribution Studies. 3 Biotech. 2022, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Safaei, M.; Mozaffari, H.R.; Moradpoor, H.; Imani, M.M.; Sharifi, R.; Golshah, A. Optimization of Green Synthesis of Selenium Nanoparticles and Evaluation of Their Antifungal Activity against Oral Candida Albicans Infection. Adv. Mater. Sci. Eng. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Bafghi, M.H.; Darroudi, M.; Zargar, M.; Zarrinfar, H.; Nazari, R. Biosynthesis of Selenium Nanoparticles by Aspergillus flavus and Candida albicans for Antifungal Applications. Micro Nano Lett. 2021, 16, 656–669. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Liang, S.-S.; Ren, J.-J.; Wang, Z.-Y.; Deng, X.-X.; Liu, W.-D.; Yan, Y.-L.; Song, G.-H.; Li, X.-X. The Effects of Selenium Supplementation in the Treatment of Autoimmune Thyroiditis: An Overview of Systematic Reviews. Nutrients 2023, 15, 3194. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Feng, W.; Chen, H.; Shi, H.; Jiang, L.; Zheng, X.; Liu, X.; Zhang, W.; Ge, Y.; Liu, Y.; et al. Effect of Selenium on Thyroid Autoimmunity and Regulatory T Cells in Patients with Hashimoto’s Thyroiditis: A Prospective Randomized-controlled Trial. Clin. Transl. Sci. 2021, 14, 1390–1402. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-Q.; Qiu, G.-Y.; Yang, Z.-B.; Tan, Z.-X.; Quan, X.-Q. Clinical Efficacy of Selenium Supplementation in Patients with Hashimoto Thyroiditis: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e33791. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.W.; Kim, K.; Park, S.K.; Ju, D.L.; Park, Y.J.; Shin, C.H.; Jun, J.K.; Chung, J.-K.; Song, Y.J.; Lee, Y.A.; et al. Selenium Levels and Their Association with Thyroid Autoimmunity and Severe Preeclampsia in Pregnancy: Insights from a Prospective Ideal Breast Milk Cohort Study. Eur. Thyroid. J. 2024, 13, e240007. [Google Scholar] [CrossRef] [PubMed]
- Jarmakiewicz-Czaja, S.; Ferenc, K.; Sokal-Dembowska, A.; Filip, R. Nutritional Support: The Use of Antioxidants in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 4390. [Google Scholar] [CrossRef] [PubMed]
- Khazdouz, M.; Daryani, N.E.; Cheraghpour, M.; Alborzi, F.; Hasani, M.; Ghavami, S.B.; Shidfar, F. The Effect of Selenium Supplementation on Disease Activity and Immune-Inflammatory Biomarkers in Patients with Mild-to-Moderate Ulcerative Colitis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Eur. J. Nutr. 2023, 62, 3125–3134. [Google Scholar] [CrossRef] [PubMed]
- Noviello, D.; Mager, R.; Roda, G.; Borroni, R.G.; Fiorino, G.; Vetrano, S. The IL23-IL17 Immune Axis in the Treatment of Ulcerative Colitis: Successes, Defeats, and Ongoing Challenges. Front. Immunol. 2021, 12, 611256. [Google Scholar] [CrossRef] [PubMed]
- Alavinejad, P. Comparison of Serum Selenium Concentration with Ulcerative Colitis Flare up: A Case Control Study. Glob. Gastroenterol. 2024, in press. [CrossRef]
- Chen, G.; Yang, F.; Fan, S.; Jin, H.; Liao, K.; Li, X.; Liu, G.-B.; Liang, J.; Zhang, J.; Xu, J.-F.; et al. Immunomodulatory Roles of Selenium Nanoparticles: Novel Arts for Potential Immunotherapy Strategy Development. Front. Immunol. 2022, 13, 956181. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, K.; Keerthana, C.K.; Mohan, M.; Arivalagan, J.; Christyraj, J.R.S.S.; Firer, M.A.; Choudry, M.H.A.; Anto, R.J.; Lee, Y.J. The Emerging Role of Selenium Metabolic Pathways in Cancer: New Therapeutic Targets for Cancer. J. Cell. Biochem. 2022, 123, 532–542. [Google Scholar] [CrossRef]
- Razaghi, A.; Poorebrahim, M.; Sarhan, D.; Björnstedt, M. Selenium Stimulates the Antitumour Immunity: Insights to Future Research. Eur. J. Cancer 2021, 155, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, Z.; Zhang, S.; Xiang, J.; Lan, H.; Bao, Y. Anti-Hepatoma Immunotherapy of Pholiota Adiposa Polysaccharide-Coated Selenium Nanoparticles by Reversing M2-like Tumor-Associated Macrophage Polarization. Int. J. Biol. Macromol. 2024, 277, 133667. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, Y.; Wang, P.; Kan, W.; Wang, M.; Li, H.; Wang, X.; Yuan, P.; Ma, Y.; Zhang, J.; et al. Biosynthetic MnSe Nanobomb with Low Mn Content Activates the CGAS-STING Pathway and Induces Immunogenic Cell Death to Enhance Antitumour Immunity. Acta Biomater. 2024, 184, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Yao, P.; Zhang, W.; Zhang, Y.; Xin, N.; Wei, H.; Zhang, T.; Zhao, C. Selenium Nanoparticles: Enhanced Nutrition and Beyond. Crit. Rev. Food Sci. Nutr. 2023, 63, 12360–12371. [Google Scholar] [CrossRef] [PubMed]
- Varlamova, E.G.; Goltyaev, M.V.; Mal’tseva, V.N.; Turovsky, E.A.; Sarimov, R.M.; Simakin, A.V.; Gudkov, S.V. Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines. Int. J. Mol. Sci. 2021, 22, 7798. [Google Scholar] [CrossRef]
- Lance, P.; Alberts, D.S.; Thompson, P.A.; Fales, L.; Wang, F.; San Jose, J.; Jacobs, E.T.; Goodman, P.J.; Darke, A.K.; Yee, M.; et al. Colorectal Adenomas in Participants of the SELECT Randomized Trial of Selenium and Vitamin E for Prostate Cancer Prevention. Cancer Prev. Res. 2017, 10, 45–54. [Google Scholar] [CrossRef]
Infants | |||
Age | EARs (µg/Day) | RDAs (µg/Day) | ULs (µg/Day) |
0–6 months | No data | 15 | 45 |
7–12 months | No data | 20 | 60 |
Children | |||
Age | EAR (µg/day) | RDA (µg/day) | UL (µg/day) |
1–3 years | 17 | 20 | 90 |
4–8 years | 23 | 30 | 150 |
Men | |||
Age | EAR (µg/day) | RDA (µg/day) | UL (µg/day) |
9–13 years | 35 | 40 | 280 |
14–>70 years | 45 | 55 | 400 |
Women | |||
Age | EAR (µg/day) | RDA (µg/day) | UL (µg/day) |
9–13 years | 35 | 40 | 280 |
14–>70 years | 45 | 55 | 400 |
Pregnant Women | |||
Age | EAR (µg/day) | RDA (µg/day) | UL (µg/day) |
<18–50 years | 49 | 60 | 400 |
Lactating Women | |||
Age | EAR (µg/day) | RDA (µg/day) | UL (µg/day) |
<18–50 years | 59 | 70 | 400 |
Selenium Interventions | Potential Benefits | Conditions Targeted |
---|---|---|
Dietary Selenium |
|
|
Supranutritional Oral Supplementation of Selenium |
Inflammatory Conditions:
Bacterial Infections: Viral Infections:
Microbiome Resilience: Autoimmune Disorders: | |
Selenium-Based Nanotechnologies |
|
Bacterial, Fungal, and Protozoan Infections: Cancer: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadler, R.A.; Mallard, B.A.; Shandilya, U.K.; Hachemi, M.A.; Karrow, N.A. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients 2024, 16, 3324. https://doi.org/10.3390/nu16193324
Sadler RA, Mallard BA, Shandilya UK, Hachemi MA, Karrow NA. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients. 2024; 16(19):3324. https://doi.org/10.3390/nu16193324
Chicago/Turabian StyleSadler, Rebecka A., Bonnie A. Mallard, Umesh K. Shandilya, Mohammed A. Hachemi, and Niel A. Karrow. 2024. "The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System" Nutrients 16, no. 19: 3324. https://doi.org/10.3390/nu16193324
APA StyleSadler, R. A., Mallard, B. A., Shandilya, U. K., Hachemi, M. A., & Karrow, N. A. (2024). The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients, 16(19), 3324. https://doi.org/10.3390/nu16193324