Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Recruitment of Study Participants
2.2. Time-Restricted Eating Protocol
2.3. Control Group Protocol
2.4. Body Weight, Body Composition, Diet Adherence, and Physical Activity
2.5. Measurement of Circulating Factors
2.6. Sub-Analysis Comparing Participants with Lower-Weight Loss vs. Higher-Weight Loss
2.7. Statistical Analysis
2.8. Mediation Analysis
3. Results
3.1. Baseline Characteristics
3.2. Anthropometric Changes after 8 Weeks of Time-Restricted Eating Intervention
3.3. Changes in Plasma IGF1 and IGF-Binding Proteins after 8 Weeks of Time-Restricted Eating Intervention
3.4. Changes in Glucoregulatory Indicators after 8 Weeks of Time-Restricted Eating Intervention
3.5. Changes in Plasma Adipokines after 8 Weeks of Time-Restricted Eating Intervention
3.6. Markers of Inflammation and Oxidative Stress (TRE vs. Control)
3.7. Mediators of the Effects of TRE on Circulating Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fanti, M.; Mishra, A.; Longo, V.D.; Brandhorst, S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr. Obes. Rep. 2021, 10, 70–80. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, G.; Mirisola, M.G.; Longo, V.D. Intermittent and Periodic Fasting, Hormones, and Cancer Prevention. Cancers 2021, 13, 4587. [Google Scholar] [CrossRef] [PubMed]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Wiseman, E.; Pavlou, V.; Lin, S.; Oliveira, M.L.; Varady, K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020, 32, 366–378.e363. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men with Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Jamshed, H.; Steger, F.L.; Bryan, D.R.; Richman, J.S.; Warriner, A.H.; Hanick, C.J.; Martin, C.K.; Salvy, S.J.; Peterson, C.M. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults with Obesity: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef]
- Jones, R.; Pabla, P.; Mallinson, J.; Nixon, A.; Taylor, T.; Bennett, A.; Tsintzas, K. Two weeks of early time-restricted feeding (eTRF) improves skeletal muscle insulin and anabolic sensitivity in healthy men. Am. J. Clin. Nutr. 2020, 112, 1015–1028. [Google Scholar] [CrossRef]
- Kalam, F.; Akasheh, R.T.; Cienfuegos, S.; Ankireddy, A.; Gabel, K.; Ezpeleta, M.; Lin, S.; Tamatam, C.M.; Reddy, S.P.; Spring, B.; et al. Effect of time-restricted eating on sex hormone levels in premenopausal and postmenopausal females. Obesity 2023, 31 (Suppl. 1), 57–62. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Tinsley, G.; Pacelli, F.Q.; Marcolin, G.; Bianco, A.; Paoli, A. Twelve Months of Time-restricted Eating and Resistance Training Improves Inflammatory Markers and Cardiometabolic Risk Factors. Med. Sci. Sports Exerc. 2021, 53, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xing, C.; Zhang, J.; Zhao, H.; Shi, W.; He, B. Eight-hour time-restricted feeding improves endocrine and metabolic profiles in women with anovulatory polycystic ovary syndrome. J. Transl. Med. 2021, 19, 148. [Google Scholar] [CrossRef]
- Fontana, L.; Villareal, D.T.; Das, S.K.; Smith, S.R.; Meydani, S.N.; Pittas, A.G.; Klein, S.; Bhapkar, M.; Rochon, J.; Ravussin, E.; et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: A randomized clinical trial. Aging Cell 2016, 15, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2011, 35, 714–727. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project. Version 2.5. Jamovi. 2024. Available online: https://www.jamovi.org (accessed on 10 October 2024).
- Dogan, S.; Johannsen, A.C.; Grande, J.P.; Cleary, M.P. Effects of intermittent and chronic calorie restriction on mammalian target of rapamycin (mTOR) and IGF-I signaling pathways in mammary fat pad tissues and mammary tumors. Nutr. Cancer 2011, 63, 389–401. [Google Scholar] [CrossRef]
- Li, L.; Fu, Y.-C.; Xu, J.-J.; Chen, X.-C.; Lin, X.-H.; Luo, L.-L. Caloric restriction promotes the reproductive capacity of female rats via modulating the level of insulin-like growth factor-1 (IGF-1). Gen. Comp. Endocrinol. 2011, 174, 232–237. [Google Scholar] [CrossRef]
- Linkov, F.; Maxwell, G.L.; Felix, A.S.; Lin, Y.; Lenzner, D.; Bovbjerg, D.H.; Lokshin, A.; Hennon, M.; Jakicic, J.M.; Goodpaster, B.H.; et al. Longitudinal evaluation of cancer-associated biomarkers before and after weight loss in RENEW study participants: Implications for cancer risk reduction. Gynecol. Oncol. 2012, 125, 114–119. [Google Scholar] [CrossRef]
- Thissen, J.P.; Ketelslegers, J.M.; Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 1994, 15, 80–101. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Longo, G.; Grigoletto, D.; Bianco, A.; Ferraris, C.; Guglielmetti, M.; Veneto, A.; Tagliabue, A.; Marcolin, G.; et al. Time-restricted eating effects on performance, immune function, and body composition in elite cyclists: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2020, 17, 1. [Google Scholar] [CrossRef]
- Burris, J.; Shikany, J.M.; Rietkerk, W.; Woolf, K. A Low Glycemic Index and Glycemic Load Diet Decreases Insulin-like Growth Factor-1 among Adults with Moderate and Severe Acne: A Short-Duration, 2-Week Randomized Controlled Trial. J. Acad. Nutr. Diet. 2018, 118, 1874–1885. [Google Scholar] [CrossRef]
- Musey, V.C.; Goldstein, S.; Farmer, P.K.; Moore, P.B.; Phillips, L.S. Differential regulation of IGF-1 and IGF-binding protein-1 by dietary composition in humans. Am. J. Med. Sci. 1993, 305, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Frystyk, J.; Jeyaratnaganthan, N.; Espelund, U.; Flyvbjerg, A.; Clifton, P.M.; Noakes, M. Moderate energy restriction-induced weight loss affects circulating IGF levels independent of dietary composition. Eur. J. Endocrinol. 2010, 162, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Brismar, K.; Hilding, A.; Ansurudeen, I.; Flyvbjerg, A.; Frystyk, J.; Ostenson, C.G. Adiponectin, IGFBP-1 and -2 are independent predictors in forecasting prediabetes and type 2 diabetes. Front. Endocrinol. 2022, 13, 1092307. [Google Scholar] [CrossRef] [PubMed]
- Al-Regaiey, K.; Alshubrami, S.; Al-Beeshi, I.; Alnasser, T.; Alwabel, A.; Al-Beladi, H.; Al-Tujjar, O.; Alnasser, A.; Alfadda, A.A.; Iqbal, M. Effects of gastric sleeve surgery on the serum levels of GH, IGF-1 and IGF-binding protein 2 in healthy obese patients. BMC Gastroenterol. 2020, 20, 199. [Google Scholar] [CrossRef]
- Faramia, J.; Hao, Z.; Mumphrey, M.B.; Townsend, R.L.; Miard, S.; Carreau, A.M.; Nadeau, M.; Frisch, F.; Baraboi, E.D.; Grenier-Larouche, T.; et al. IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Rep. Med. 2021, 2, 100248. [Google Scholar] [CrossRef] [PubMed]
- Ranke, M.B. Insulin-like growth factor binding-protein-3 (IGFBP-3). Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Akasheh, R.T.; Kroeger, C.M.; Trepanowski, J.F.; Gabel, K.; Hoddy, K.K.; Kalam, F.; Cienfuegos, S.; Varady, K.A. Weight loss efficacy of alternate day fasting vs. daily calorie restriction in subjects with subclinical hypothyroidism: A secondary analysis. Appl. Physiol. Nutr. Metab. 2020, 45, 340–343. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of Intermittent Fasting Diet on Glucose and Lipid Metabolism and Insulin Resistance in Patients with Impaired Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2022, 2022, 6999907. [Google Scholar] [CrossRef]
- Janssen, J.A. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int. J. Mol. Sci. 2021, 22, 7797. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M. Effect of Various Types of Intermittent Fasting (IF) on Weight Loss and Improvement of Diabetic Parameters in Human. Curr. Nutr. Rep. 2021, 10, 146–154. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS. Phys. Rev. Lett. 2020, 125, 261801. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.P.; Racette, S.B.; Villareal, D.T.; Fontana, L.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Holloszy, J.O. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: A randomized controlled trial. Am. J. Clin. Nutr. 2006, 84, 1033–1042. [Google Scholar] [CrossRef]
- Kraus, W.E.; Bhapkar, M.; Huffman, K.M.; Pieper, C.F.; Krupa Das, S.; Redman, L.M.; Villareal, D.T.; Rochon, J.; Roberts, S.B.; Ravussin, E.; et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): Exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 673–683. [Google Scholar] [CrossRef]
- Mandal, S.; Simmons, N.; Awan, S.; Chamari, K.; Ahmed, I. Intermittent fasting: Eating by the clock for health and exercise performance. BMJ Open Sport Exerc. Med. 2022, 8, e001206. [Google Scholar] [CrossRef]
- Turner, L.; Charrouf, R.; Martínez-Vizcaíno, V.; Hutchison, A.; Heilbronn, L.K.; Fernández-Rodríguez, R. The effects of time-restricted eating vs. habitual diet on inflammatory cytokines and adipokines in the general adult population: A systematic review with meta-analysis. Am. J. Clin. Nutr. 2024, 119, 206–220. [Google Scholar] [CrossRef]
Variables | TRE (n = 35) | Control (n = 14) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Change | Baseline | Week 8 | Change | Group | Time | Group × Time | |
Age (years) | 47.2 (1.8) | 44.9 (2.5) | -- | -- | -- | ||||
Sex (female/male) | 32/3 | 12/2 | -- | -- | -- | ||||
Race or ethnic group | |||||||||
White | 4 | 2 | -- | -- | -- | ||||
Black | 24 | 6 | -- | -- | -- | ||||
Asian | 3 | 2 | -- | -- | -- | ||||
Hispanic | 3 | 4 | -- | -- | -- | ||||
Other | 1 | 0 | -- | -- | -- | ||||
Body composition | (n = 27–35) | (n = 11–14) | |||||||
Body weight (kg) | 102 (2.9) | 98.4 (2.9) | −3.6 (0.3) *** | 92.1 (4.6) | 92.2 (5) | 0.2 (0.5) | 0.164 | <0.001 | <0.001 |
Fat mass (kg) | 48.1 (2.2) | 45.9 (2.1) | −2.2 (0.3) *** | 41.5 (3.4) | 40.8 (3.3) | −0.6 (0.5) | 0.151 | <0.001 | 0.006 |
Lean mass (kg) | 51.7 (1.7) | 50.3 (1.7) * | −1.4 (0.2) *** | 46.6 (2.7) | 46.4 (2.7) | −0.3 (0.4) | 0.167 | <0.001 | 0.017 |
Visceral fat mass (kg) | 1.36 (0.10) | 1.20 (0.09) | −0.16 (0.04) *** | 1.11 (0.17) | 1.07 (0.14) | −0.04 (0.07) | 0.306 | 0.019 | 0.127 |
Height (cm) | 165 (0.01) | -- | -- | 160 (0.02) | -- | -- | 0.076 | -- | -- |
BMI (kg/m2) | 37.4 (0.9) | 36.1 (0.9) * | −1.3 (0.2) *** | 35.9 (1.4) | 35.7 (1.4) | −0.2 (0.3) | 0.589 | <0.001 | <0.001 |
Waist circumference (cm) | 97.8 (1.8) | 91.0 (1.73) | −6.8 (0.4) *** | 93.7 (2.9) | 91.0 (2.7) | −2.7 (0.6) *** | 0.688 | <0.001 | <0.001 |
Adherence and activity | (n = 32–35) | (n = 13–14) | |||||||
Adherence (days/week) | -- | 6.25 (0.10) | -- | -- | 0.0 | -- | -- | -- | -- |
Physical activity (steps/d) | 7520 (507) | 7288 (531) | −232 (383) | 9477 (795) # | 9836 (834) # | 359 (600) | 0.016 | 0.859 | 0.412 |
Circulating Biomarkers | TRE (n = 35) | Control (n = 14) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Change | Baseline | Week 8 | Change | Group | Time | Group × Time | |
Growth factors | (n = 19–29) | (n = 9) | |||||||
IGF-1 | 153 (12.5) | 158 (12.1) | 5.03 (7.07) | 194 (18.7) | 184 (18.0) | −9.39 (10.54) | 0.125 | 0.737 | 0.267 |
IGFBP1 (ng/mL) | 2.93 (0.60) | 2.79 (0.33) | −0.14 (0.48) | 2.90 (0.87) | 1.74 (0.48) | −1.16 (0.70) | 0.472 | 0.139 | 0.243 |
IGFBP2 (ng/mL) | 190 (29.9) | 226 (26.5) | 36.0 (22.7) | 261 (43.5) | 200 (38.4) | −61.3 (33.0) | 0.620 | 0.534 | 0.022 |
IGFBP3 (ng/mL) | 4341 (467) | 4313 (456) | −27.7 (356) | 4375 (696) | 3709 (680) | −665.2 (531) | 0.712 | 0.288 | 0.328 |
IGF1/IGFBP3 (molar ratio) | 0.147 (0.020) | 0.152 (0.018) | 0.005 (0.016) | 0.207 (0.030) | 0.225 (0.027) # | 0.018 (0.024) | 0.042 | 0.435 | 0.660 |
Glucoregulatory factors | (n = 23) | (n = 8) | |||||||
Insulin (μU/mL) | 14.65 (1.66) | 12.41 (1.46) | −2.24 (0.98) * | 9.84 (2.82) | 14.59 (2.47) | 4.75 (1.66) ** | 0.656 | 0.202 | 0.001 |
Fasting blood glucose (mg/dL) | 93.3 (2.26) | 89.5 (2.62) | −3.78 (2.12) | 93.6 (3.83) | 97.2 (4.44) | 3.63 (3.60) | 0.356 | 0.970 | 0.087 |
HOMA-IR | 3.44 (0.42) | 2.79 (0.38) | −0.648 (0.29) * | 2.26 (0.72) | 3.63 (0.65) | 1.363 (0.49) * | 0.819 | 0.221 | 0.001 |
HbA1C (%) | 5.89 (0.11) | 5.66 (0.11) | −0.23 (0.05) *** | 5.88 (0.18) | 5.66 (0.18) | −0.21 (0.08) ** | 0.980 | <0.001 | 0.879 |
Adipokines | (n = 20) | (n = 9) | |||||||
Leptin (ng/mL) | 61.9 (7.2) | 52.3 (5.4) | −9.6 (6.2) | 40.5 (10.7) | 51.3 (8.0) | 10.8 (9.3) | 0.264 | 0.916 | 0.079 |
HMW adiponectin (ng/mL) | 3836 (547) | 3996 (511) | 160.6 (164) | 3908 (815) | 4259 (761) | 351.3 (245) | 0.859 | 0.094 | 0.523 |
Inflammation/oxidative stress | (n = 17, 25, 25, 24) | (n = 9, 10, 10, 10) | |||||||
hsCRP (mg/L) | 5.51 (0.79) | 6.68 (1.67) | 1.17 (1.29) | 2.74 (1.09) | 5.63 (2.29) | 2.88 (1.77) | 0.332 | 0.077 | 0.442 |
8-isoprostane (pg/mL) | 33.9 (2.86) | 21.9 (2.82) | −12.00 (2.74) *** | 32.6 (4.52) | 35.3 (4.47) | 2.70 (4.34) * | 0.204 | 0.079 | 0.007 |
Interleukin-6 | 3.96 (0.92) | 5.21 (0.91) | 1.25 (0.97) | 4.5 (1.45) | 5.01 (1.44) | 0.51 (1.53) | 0.906 | 0.337 | 0.684 |
TNF | 11.7 (1.78) | 11.0 (1.99) | −0.746 (1.63) | 11.9 (2.76) | 12.1 (3.08) | 0.21 (2.53) | 0.848 | 0.860 | 0.753 |
Circulating Biomarkers | Lower Weight Loss, ≤3.5% (n = 29) | Higher Weight Loss, >3.5% (n = 20) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Change | Baseline | Week 8 | Change | Group | Time | Group × Time | |
Body weight (kg) | 97.5 (3.3) | 96.6 (3.2) | −1.0 (0.3) ** | 101.5 (4.0) | 96.7 (3.8) | −4.8 (0.4) *** | 0.670 | <0.001 | <0.001 |
Fat mass (Kg) | 44.8 (2.4) | 43.7 (2.4) | −1.0 (0.3) ** | 48.3 (3.0) | 45.5. (2.9) | −2.8 (0.4) *** | 0.495 | <0.001 | <0.001 |
Growth factors | (n = 19) | (n = 10) | |||||||
IGF-1 (ng/mL) | 168 (13.6) | 169 (12.7) | 0.76 (7.42) | 162 (18.8) | 162 (17.5) | 0.21 (10.23) | 0.776 | 0.939 | 0.966 |
IGFBP1 (ng/mL) | 3.88 (0.91) | 3.02 (0.43) | −0.86 (0.65) | 2.71 (1.25) | 2.01 (0.59) | −0.70 (0.90) | 0.323 | 0.166 | 0.887 |
IGFBP2 (ng/mL) | 250 (29.4) | 220 (27.3) | −29.9 (23.2) | 146 (39.4) # | 213 (36.7) | 67.1 (31.1) * | 0.209 | 0.346 | 0.019 |
IGFBP3 (ng/mL) | 4241 (478) | 4134 (472) | −106.3 (370) | 4562 (659) | 4110 (651) | −452.1 (511) | 0.844 | 0.384 | 0.588 |
IGF1/IGFBP3 (molar ratio) | 0.172 (0.021) | 0.176 (0.02) | 0.004 (0.017) | 0.154 (0.029) | 0.173 (0.028) | 0.019 (0.023) | 0.751 | 0.426 | 0.594 |
Glucoregulatory factors | (n = 20) | (n = 11) | |||||||
Insulin (μU/mL) | 14.0 (1.84) | 14.6 (1.5) | 0.585 (1.22) | 12.4 (2.48) | 10.1 (2.02) | −2.3 (1.65) | 0.253 | 0.410 | 0.170 |
Fasting blood glucose (mg/dL) | 93.2 (2.42) | 93.8 (2.82) | 0.600 (2.27) | 93.6 (3.27) | 87.3 (3.81) | −6.364 (3.06) * | 0.451 | 0.141 | 0.078 |
HOMA-IR | 3.31 (0.47) | 3.44 (0.40) | 0.135 (0.362) | 2.83 (0.63) | 2.22 (0.53) | −0.609 (0.489) | 0.208 | 0.442 | 0.231 |
HbA1C (%) | 5.93 (0.11) | 5.72 (0.11) | −0.21 (0.05) *** | 5.80 (0.15) | 5.55 (0.15) | −0.25 (0.07) *** | 0.431 | <0.001 | 0.664 |
Adipokines | (n = 19) | (n = 10) | |||||||
Leptin (ng/mL) | 47.0 (7.2) | 51.5 (5.5) | 4.5 (6.3) | 71.0 (9.9) | 52.9 (7.6) | −18.1 (8.7) * | 0.194 | 0.216 | 0.044 |
HMW adiponectin (ng/mL) | 4091 (556) | 4391 (515) | 299.8 (168) | 3415 (766) | 3483 (709) | 67.8 (231) | 0.387 | 0.209 | 0.424 |
Inflammation/oxidative stress | (n = 17–21) | (n = 10–14) | |||||||
hsCRP (mg/L) | 4.28 (2.76) | 6.59 (4.45) | 2.31 (1.98) | 10.78 (3.60) | 14.80 (5.81) | 4.02 (2.58) | 0.221 | 0.062 | 0.601 |
8-isoprostane (pg/mL) | 33.2 (3.12) | 29.5 (3.2) | −3.71 (3.15) | 34.0 (3.82) | 20.1 (3.92) | −13.93 (3.86) ** | 0.323 | 0.001 | 0.048 |
Interleukin-6 | 3.46 (0.99) | 5.33 (0.99) | 1.876 (1.03) | 5.09 (1.21) | 4.88 (1.21) | −0.214 (1.26) | 0.661 | 0.316 | 0.209 |
TNF | 10.8 (1.88) | 10.3 (2.11) | −0.49 (1.75) | 13.3 (2.4) | 12.9 (2.68) | 0.423 (2.22) | 0.395 | 0.749 | 0.981 |
Circulating Biomarkers | Mediation Models | Indirect Effect | Direct Effect | Total Effect | % Mediation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate (SE) | β | Z | p-Value | Estimate (SE) | β | Z | p-Value | Estimate (SE) | β | Z | p-Value | |||
IGFBP2 | TRE → Weight Loss % → ∆IGFBP2 | −10.3 (46.76) | −0.046 | −0.220 | 0.826 | −87.02 (60.57) | −0.385 | −1.437 | 0.151 | −97.32 (39.27) | −0.431 | −2.478 | 0.013 | 10.6% |
Insulin | TRE → Weight Loss % → ∆Insulin | 1.06 (1.84) | 0.087 | 0.589 | 0.556 | 5.91 (2.60) | 0.473 | 2.270 | 0.023 | 6.99 (1.89) | 0.560 | 3.701 | <0.001 | 15.2% |
TRE → ∆Insulin → Weight Loss % | 0.25 (0.43) | 0.051 | 0.585 | 0.558 | 3.22 (0.76) | 0.653 | 4.267 | <0.001 | 3.60 (0.58) | 0.671 | 6.270 | <0.001 | 6.9% | |
HOMA-IR | TRE → Weight Loss % → ∆HOMA-IR | 0.24 (0.55) | 0.067 | 0.446 | 0.655 | 1.77 (0.78) | 0.481 | 2.279 | 0.023 | 2.01 (0.56) | 0.547 | 2.279 | <0.001 | 11.9% |
TRE → ∆HOMA-IR → Weight Loss % | 0.18 (0.41) | 0.037 | 0.444 | 0.657 | 3.29 (0.75) | 0.667 | 4.389 | <0.001 | 3.60 (0.57) | 0.671 | 6.270 | <0.001 | 5.0% | |
8-isoprostane | TRE → Weight Loss % → ∆8-isoprostane | 3.21 (3.59) | 0.097 | 0.894 | 0.371 | 11.49 (6.05) | 0.349 | 1.900 | 0.057 | 14.70 (5.06) | 0.446 | 2.906 | 0.004 | 21.8% |
Leptin | TRE → ∆FM% → ∆Leptin | 742 (4453) | 0.018 | 0.167 | 0.868 | 10,432 (9243) | 0.253 | 1.129 | 0.259 | 20,471 (11,004) | 0.332 | 1.860 | 0.063 | 3.6% |
Adiponectin | TRE → ∆FM% → ∆Adiponectin | 99.45 (158.1) | 0.071 | 0.629 | 0.529 | 74.52 (319.7) | 0.053 | 0.233 | 0.816 | 190.7 (289.6) | 0.124 | 0.659 | 0.510 | 52.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akasheh, R.T.; Ankireddy, A.; Gabel, K.; Ezpeleta, M.; Lin, S.; Tamatam, C.M.; Reddy, S.P.; Spring, B.; Cheng, T.-Y.D.; Fontana, L.; et al. Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial. Nutrients 2024, 16, 3476. https://doi.org/10.3390/nu16203476
Akasheh RT, Ankireddy A, Gabel K, Ezpeleta M, Lin S, Tamatam CM, Reddy SP, Spring B, Cheng T-YD, Fontana L, et al. Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial. Nutrients. 2024; 16(20):3476. https://doi.org/10.3390/nu16203476
Chicago/Turabian StyleAkasheh, Rand Talal, Aparna Ankireddy, Kelsey Gabel, Mark Ezpeleta, Shuhao Lin, Chandra Mohan Tamatam, Sekhar P. Reddy, Bonnie Spring, Ting-Yuan David Cheng, Luigi Fontana, and et al. 2024. "Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial" Nutrients 16, no. 20: 3476. https://doi.org/10.3390/nu16203476
APA StyleAkasheh, R. T., Ankireddy, A., Gabel, K., Ezpeleta, M., Lin, S., Tamatam, C. M., Reddy, S. P., Spring, B., Cheng, T. -Y. D., Fontana, L., Khan, S. A., Varady, K. A., Cienfuegos, S., & Kalam, F. (2024). Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial. Nutrients, 16(20), 3476. https://doi.org/10.3390/nu16203476