Association of the Composite Dietary Antioxidant Index and Consumption Time with NAFLD: The U.S. National Health and Nutrition Examination Survey, 2017–2020
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Assessment of Dietary Intake
2.3. Composite Dietary Antioxidant Index Calculation
2.4. Definition of NAFLD
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. The Association between Composite Dietary Antioxidant Index and NAFLD
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62 (Suppl. S1), S47–S64. [Google Scholar] [CrossRef] [PubMed]
- Fazel, Y.; Koenig, A.B.; Sayiner, M.; Goodman, Z.D.; Younossi, Z.M. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism 2016, 65, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Rives, C.; Fougerat, A.; Ellero-Simatos, S.; Loiseau, N.; Guillou, H.; Gamet-Payrastre, L.; Wahli, W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020, 10, 1702. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Gonzalez, A.; Huerta-Salgado, C.; Orozco-Aguilar, J.; Aguirre, F.; Tacchi, F.; Simon, F.; Cabello-Verrugio, C. Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions during Nonalcoholic Fatty Liver Disease (NAFLD). Oxid. Med. Cell Longev. 2020, 2020, 1617805. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Takaki, A.; Kawai, D.; Yamamoto, K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int. J. Mol. Sci. 2013, 14, 20704–20728. [Google Scholar] [CrossRef]
- Zuo, J.; Zhang, Z.; Luo, M.; Zhou, L.; Nice, E.C.; Zhang, W.; Wang, C.; Huang, C. Redox signaling at the crossroads of human health and disease. MedComm 2022, 3, e127. [Google Scholar] [CrossRef]
- Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef]
- Madan, K.; Bhardwaj, P.; Thareja, S.; Gupta, S.D.; Saraya, A. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J. Clin. Gastroenterol. 2006, 40, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.O.; Grattagliano, I.; Portincasa, P.; Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr. 2006, 136, 3022–3026. [Google Scholar] [CrossRef] [PubMed]
- Curcio, A.; Romano, A.; Cuozzo, S.; Di Nicola, A.; Grassi, O.; Schiaroli, D.; Nocera, G.F.; Pironti, M. Silymarin in Combination with Vitamin C, Vitamin E, Coenzyme Q10 and Selenomethionine to Improve Liver Enzymes and Blood Lipid Profile in NAFLD Patients. Medicina 2020, 56, 544. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M. Dietary Antioxidants and Chronic Diseases. Antioxidants 2023, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shen, H.; Chen, M.; Shao, J. Clinical Relevance of Vitamins and Carotenoids With Liver Steatosis and Fibrosis Detected by Transient Elastography in Adults. Front. Nutr. 2021, 8, 760985. [Google Scholar] [CrossRef]
- Niu, X.; Liu, J.; Liu, K. Association of nonalcoholic fatty liver disease and liver fibrosis detected by transient elastography with serum retinol in American adults. Front. Nutr. 2023, 10, 1094161. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, Y. Associations between dietary flavonoid intake with hepatic steatosis and fibrosis quantified by VCTE: Evidence from NHANES and FNDDS. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1179–1189. [Google Scholar] [CrossRef]
- Peng, H.; Wang, M.; Pan, L.; Cao, Z.; Yao, Z.; Chen, Q.; Li, Y.; Wang, Y.; Lv, W. Associations of serum multivitamin levels with the risk of non-alcoholic fatty liver disease: A population-based cross-sectional study in U.S. adults. Front. Nutr. 2022, 9, 962705. [Google Scholar] [CrossRef]
- Petiz, L.L.; Girardi, C.S.; Bortolin, R.C.; Kunzler, A.; Gasparotto, J.; Rabelo, T.K.; Matté, C.; Moreira, J.C.; Gelain, D.P. Vitamin A Oral Supplementation Induces Oxidative Stress and Suppresses IL-10 and HSP70 in Skeletal Muscle of Trained Rats. Nutrients 2017, 9, 353. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, X.; Tan, Q.; Du, S.; Shi, D. Meal timing of dietary total antioxidant capacity and its association with all-cause, CVD and cancer mortality: The US national health and nutrition examination survey, 1999–2018. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 83. [Google Scholar] [CrossRef]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Si, J.; Liu, Y.; Kang, L.; Xu, B. Association between composite dietary antioxidant index and hypertension: Insights from NHANES. Clin. Exp. Hypertens. 2023, 45, 2233712. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, Y.; Cao, R.; Wu, X.; Huang, T.; Peng, W. Non-linear association between composite dietary antioxidant index and depression. Front. Public Health 2022, 10, 988727. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, Z. Association of the Composite dietary antioxidant index with all-cause and cardiovascular mortality: A prospective cohort study. Front. Cardiovasc. Med. 2022, 9, 993930. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.; Sassone-Corsi, P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161, 84–92. [Google Scholar] [CrossRef]
- Marjot, T.; Tomlinson, J.W.; Hodson, L.; Ray, D.W. Timing of energy intake and the therapeutic potential of intermittent fasting and time-restricted eating in NAFLD. Gut 2023, 72, 1607–1619. [Google Scholar] [CrossRef]
- Stokkan, K.A.; Yamazaki, S.; Tei, H.; Sakaki, Y.; Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 2001, 291, 490–493. [Google Scholar] [CrossRef]
- Damiola, F.; Le Minh, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14, 2950–2961. [Google Scholar] [CrossRef]
- Han, T.; Gao, J.; Wang, L.; Li, C.; Qi, L.; Sun, C.; Li, Y. The Association of Energy and Macronutrient Intake at Dinner Versus Breakfast With Disease-Specific and All-Cause Mortality Among People With Diabetes: The US National Health and Nutrition Examination Survey, 2003–2014. Diabetes Care 2020, 43, 1442–1448. [Google Scholar] [CrossRef]
- St-Onge, M.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circ. Off. J. Am. Heart Assoc. 2017, 135, E96–E121. [Google Scholar] [CrossRef]
- Xu, X.; Wei, W.; Xu, J.; Huang, J.; Li, L.; Han, T.; Qi, J.; Sun, C.; Li, Y.; Jiang, W. The association of minerals intake in three meals with cancer and all-cause mortality: The US National Health and Nutrition Examination Survey, 2003–2014. BMC Cancer 2021, 21, 912. [Google Scholar] [CrossRef] [PubMed]
- Kessler, K.; Pivovarova-Ramich, O. Meal Timing, Aging, and Metabolic Health. Int. J. Mol. Sci. 2019, 20, 1911. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. S4), 1220S–1228S; discussion 1229S–1231S. [Google Scholar]
- Xu, Q.; Qian, X.; Sun, F.; Liu, H.; Dou, Z.; Zhang, J. Independent and joint associations of dietary antioxidant intake with risk of post-stroke depression and all-cause mortality. J. Affect. Disord. 2023, 322, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Hruskova, J.; Jakubik, J.; Kunzova, S.; Sochor, O.; Barchitta, M.; Agodi, A.; Bauerova, H.; Medina-Inojosa, J.R.; Vinciguerra, M. Dietary antioxidant intake decreases carotid intima media thickness in women but not in men: A cross-sectional assessment in the Kardiovize study. Free Radic. Biol. Med. 2019, 131, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Chen, L.; Deng, M.G.; Liang, Y.; Liu, F.; Nie, J.Q. Dietary choline intake and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2017–2018. Eur. J. Clin. Nutr. 2023, 77, 1160–1166. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, T.; Wan, Z.; Lu, Q.; Zhang, X.; Qiu, Z.; Li, L.; Zhu, K.; Liu, L.; Pan, A.; et al. Associations of Serum Folate and Vitamin B12 Levels With Cardiovascular Disease Mortality Among Patients With Type 2 Diabetes. JAMA Netw. Open 2022, 5, e2146124. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Fatahi, S.; Sayyari, A.; Olang, B.; Shidfar, F. Associations between dietary total antioxidant capacity and odds of non-alcoholic fatty liver disease (NAFLD) in adults: A case-control study. J. Nutr. Sci. 2020, 9, e48. [Google Scholar] [CrossRef]
- de Oliveira, D.G.; de Faria Ghetti, F.; Moreira, A.; Hermsdorff, H.; de Oliveira, J.M.; de Castro Ferreira, L. Association between dietary total antioxidant capacity and hepatocellular ballooning in nonalcoholic steatohepatitis: A cross-sectional study. Eur. J. Nutr. 2019, 58, 2263–2270. [Google Scholar] [CrossRef]
- McCarthy, E.M.; Rinella, M.E. The Role of Diet and Nutrient Composition in Nonalcoholic Fatty Liver Disease. J. Acad. Nutr. Diet. 2012, 112, 401–409. [Google Scholar] [CrossRef]
- Paola, D.; Claudia, L.; Patrizia, R.; Luca, V. Nutritional therapy for nonalcoholic fatty liver disease. J. Nutr. Biochem. 2016, 29, 1–11. [Google Scholar]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Salomone, F.; Webb, M.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Dietary vitamin E and C intake is inversely associated with the severity of nonalcoholic fatty liver disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2019, 51, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Sael, C.; Pablo, M. Antioxidants in liver health. World J. Gastrointest. Pharmacol. Ther. 2015, 6, 59–72. [Google Scholar] [CrossRef]
- Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress–Implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Baybutt, R.C.; Molteni, A. Dietary beta-carotene protects lung and liver parenchyma of rats treated with monocrotaline. Toxicology 1999, 137, 69–80. [Google Scholar] [CrossRef]
- Werman, M.J.; Ben-Amotz, A.; Mokady, S. Availability and antiperoxidative effects of beta-carotene from Dunaliella bardawil in alcohol-drinking rats. J. Nutr. Biochem. 1999, 10, 449–454. [Google Scholar] [CrossRef]
- Qiu, X.; Gao, D.H.; Xiang, X.; Xiong, Y.-F.; Zhu, T.-S.; Liu, L.-G.; Sun, X.-F.; Hao, L.-P. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats. World J. Gastroenterol. 2015, 21, 8061–8072. [Google Scholar] [CrossRef]
- Kobori, M.; Ni, Y.; Takahashi, Y.; Watanabe, N.; Sugiura, M.; Ogawa, K.; Nagashimada, M.; Kaneko, S.; Naito, S.; Ota, T. β-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice. PLoS ONE 2014, 9, e98294. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Wu, P.; Chu, Y.; Gui, S.; Zheng, Y.; Chen, X. Dietary Selenium Alleviated Mouse Liver Oxidative Stress and NAFLD Induced by Obesity by Regulating the KEAP1/NRF2 Pathway. Antioxidants 2022, 11, 349. [Google Scholar] [CrossRef]
- Zhen, Y.; Xi, Z.; Hu, L.; Chen, Y.; Ge, L.; Wei, W.; Loor, J.J.; Yang, Q.; Wang, M. Impacts of Circadian Gene Period2 Knockout on Intestinal Metabolism and Hepatic Antioxidant and Inflammation State in Mice. Oxid. Med. Cell Longev. 2022, 2022, 7896371. [Google Scholar] [CrossRef]
- Lananna, B.V.; Musiek, E.S. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol. Dis. 2020, 139, 104832. [Google Scholar] [CrossRef] [PubMed]
- Sennels, H.P.; Jørgensen, H.L.; Fahrenkrug, J. Diurnal changes of biochemical metabolic markers in healthy young males—The Bispebjerg study of diurnal variations. Scand. J. Clin. Lab. Investig. 2015, 75, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Navigatore-Fonzo, L.S.; Delgado, S.M.; Gimenez, M.S.; Anzulovich, A.C. Daily rhythms of catalase and glutathione peroxidase expression and activity are endogenously driven in the hippocampus and are modified by a vitamin A-free diet. Nutr. Neurosci. 2014, 17, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Ponce, I.T.; Rezza, I.G.; Delgado, S.M.; Navigatore, L.S.; Bonomi, M.R.; Golini, R.L.; Gimenez, M.S.; Anzulovich, A.C. Daily oscillation of glutathione redox cycle is dampened in the nutritional vitamin A deficiency. Biol. Rhythm. Res. 2012, 43, 351–372. [Google Scholar] [CrossRef]
- Shi, Z.; Riley, M.; Taylor, A.; Noakes, M. Meal-specific food patterns and the incidence of hyperglycemia in a Chinese adult population. Br. J. Nutr. 2017, 118, 53–59. [Google Scholar] [CrossRef]
- Virudachalam, S.; Long, J.A.; Harhay, M.O.; Polsky, D.E.; Feudtner, C. Prevalence and patterns of cooking dinner at home in the USA: National Health and Nutrition Examination Survey (NHANES) 2007–2008. Public Health Nutr. 2014, 17, 1022–1030. [Google Scholar] [CrossRef]
Quartile 1 (N = 1643) | Quartile 2 (N = 1648) | Quartile 3 (N = 1637) | Quartile 4 (N = 1642) | p-Value | |
---|---|---|---|---|---|
Age, years | 46.55 (45.12, 47.97) | 45.47 (43.76, 47.18) | 47.44 (46.44, 48.44) | 48.71 (47.26, 50.16) | 0.001 |
Male, % | 37.98 (34.40, 41.55) | 44.36 (39.87, 48.85) | 44.83 (41.70, 47.96) | 62.16 (59.31, 65.01) | <0.001 |
Race/ethnicity, % | <0.001 | ||||
Non-Hispanic White | 57.01 (52.35, 61.67) | 64.43 (60.24, 68.62) | 69.58 (64.95, 74.22) | 66.98 (62.99, 70.96) | |
Non-Hispanic Black | 15.35 (12.67, 18.02) | 11.21 (8.45, 13.97) | 9.67 (7.13, 12.21) | 9.04 (6.75, 11.32) | |
Mexican American | 8.25 (6.10, 10.40) | 8.59 (6.27, 10.91) | 6.76 (4.91, 8.61) | 6.50 (4.78, 8.23) | |
Other races | 19.40 (16.55, 22.25) | 15.77 (13.21, 18.32) | 13.99 (11.29, 16.70) | 17.48 (14.46, 20.50) | |
Smoking status, % | 0.05 | ||||
Non-smoker | 80.98 (77.25, 84.70) | 84.57 (82.26, 86.87) | 84.87 (81.84, 87.89) | 85.68 (83.18, 88.17) | |
Current smoker | 19.02 (15.30, 22.75) | 15.43 (13.13, 17.74) | 15.13 (12.11, 18.16) | 14.32 (11.83, 16.82) | |
Poverty to income ratio, % | <0.001 | ||||
<1.3 | 21.97 (19.24, 24.70) | 18.89 (16.37, 21.41) | 15.03 (13.05, 17.02) | 14.59 (11.86, 17.32) | |
1.3–3.49 | 36.76 (32.99, 40.53) | 31.52 (27.83, 35.22) | 32.11 (27.22, 36.99) | 33.15 (28.33, 37.97) | |
≥3.5 | 41.27 (36.73, 45.80) | 49.59 (45.47, 53.70) | 52.86 (47.32, 58.39) | 52.26 (47.55, 56.97) | |
Alcohol status, % | 0.1 | ||||
None | 10.66 (8.82, 12.51) | 8.55 (6.43, 10.67) | 6.40 (4.70, 8.09) | 6.30 (3.76, 8.84) | |
Low to moderate | 64.92 (60.79, 69.06) | 68.01 (63.07, 72.96) | 70.70 (66.58, 74.82) | 72.39 (68.95, 75.83) | |
Heavy | 24.41 (20.49, 28.34) | 23.44 (19.65, 27.23) | 22.90 (18.87, 26.94) | 21.31 (18.02, 24.61) | |
Educational level, % | 0.002 | ||||
Less than high school | 10.33 (8.37, 12.30) | 8.36 (6.41, 10.32) | 7.04 (5.71, 8.38) | 5.57 (4.13, 7.01) | |
High school or equivalent | 31.89 (27.25, 36.53) | 26.75 (22.94, 30.55) | 22.36 (19.39, 25.33) | 25.76 (22.01, 29.50) | |
College or more | 57.78 (52.87, 62.68) | 64.89 (60.10, 69.68) | 70.60 (67.21, 73.98) | 68.67 (63.98, 73.36) | |
Marital status, % | <0.001 | ||||
Never married | 23.94 (20.81, 27.08) | 20.75 (16.65, 24.86) | 14.56 (11.95, 17.17) | 17.92 (14.48, 21.35) | |
Widowed/divorced/separated | 18.97 (16.08, 21.85) | 21.97 (20.02, 23.92) | 15.26 (13.38, 17.13) | 14.76 (12.14, 17.38) | |
Married/cohabiting | 57.09 (53.27, 60.91) | 57.28 (52.99, 61.57) | 70.19 (67.19, 73.18) | 67.32 (62.67, 71.98) | |
Physical activity, % | 0.05 | ||||
Inactive | 53.69 (50.67, 56.71) | 52.18 (47.69, 56.67) | 45.71 (42.59, 48.83) | 50.14 (45.35, 54.94) | |
Active | 46.31 (43.29, 49.33) | 47.82 (43.33, 52.31) | 54.29 (51.17, 57.41) | 49.86 (45.06, 54.65) | |
NAFLD, % | 20.02 (16.86, 23.19) | 16.13 (12.73, 19.53) | 13.51 (11.11, 15.92) | 12.87 (10.40, 15.34) | 0.01 |
Diabetes, % | 14.03 (11.03, 17.03) | 13.63 (11.22, 16.05) | 12.48 (10.51, 14.44) | 14.12 (11.13, 17.10) | 0.80 |
Body mass index, kg/m2 | 29.73 (29.10, 30.36) | 30.08 (29.51, 30.66) | 29.80 (29.38, 30.22) | 29.58 (28.79, 30.37) | 0.74 |
Total energy intake, kcal/day | 1621.53 (1575.03, 1668.04) | 2028.04 (1987.09, 2069.00) | 2297.45 (2235.81, 2359.10) | 2634.30 (2532.38, 2736.23) | <0.001 |
Waist circumference, cm | 99.68 (98.30, 101.07) | 101.03 (99.45, 102.61) | 100.44 (99.23, 101.64) | 101.39 (99.30, 103.47) | 0.43 |
SBP, mmHg | 121.62 (120.10, 123.15) | 120.27 (118.85, 121.70) | 121.14 (119.97, 122.31) | 120.92 (119.81, 122.03) | 0.57 |
DBP, mmHg | 74.75 (73.89, 75.62) | 74.30 (73.35, 75.24) | 73.59 (72.77, 74.41) | 73.84 (73.08, 74.60) | 0.12 |
CDAI | −2.71 (−2.90, −2.52) | −1.15 (−1.36, −0.94) | 0.35 (0.15, 0.55) | 3.61 (3.34, 3.88) | <0.001 |
Vitamin A, µ g | 413.71 (381.52, 445.89) | 536.67 (498.58, 574.76) | 637.38 (600.80, 673.96) | 926.18 (858.48, 993.89) | <0.001 |
Vitamin C, mg | 44.78 (41.05, 48.52) | 56.39 (52.33, 60.45) | 80.13 (75.17, 85.10) | 111.21 (103.95, 118.46) | <0.001 |
Vitamin E, mg | 6.35 (6.01, 6.69) | 7.97 (7.58, 8.36) | 9.93 (9.46, 10.39) | 12.95 (12.27, 13.63) | <0.001 |
Zinc, mg | 7.76 (7.39, 8.13) | 10.14 (9.61, 10.67) | 11.36 (11.03, 11.69) | 14.28 (13.74, 14.82) | <0.001 |
Selenium, µ g | 82.36 (79.50, 85.21) | 107.69 (104.80, 110.57) | 116.03 (112.74, 119.31) | 149.63 (143.99, 155.27) | <0.001 |
Carotenoid, µ g | 5853.50 (5065.27, 6641.72) | 7109.78 (6436.59, 7782.98) | 9246.94 (8679.75, 9814.13) | 16,057.86 (14,440.98, 17,674.74) | <0.001 |
Dietary supplements use, % | 48.27 (44.01, 52.52) | 49.56 (45.30, 53.82) | 62.87 (58.51, 67.23) | 64.20 (60.15, 68.24) | 0.001 |
Case/n | Model 1 | Model2 | Model 3 | |
---|---|---|---|---|
Total CDAI | ||||
Q1 | 353/1643 | Ref | Ref | Ref |
Q2 | 332/1642 | 0.88 (0.72, 1.08) | 0.87 (0.71, 1.07) | 0.93 (0.74, 1.16) |
Q3 | 255/1644 | 0.57 (0.41, 0.77) ** | 0.58 (0.43, 0.80) ** | 0.65 (0.45, 0.93) * |
Q4 | 217/1641 | 0.53 (0.41, 0.69) *** | 0.53 (0.40, 0.69) *** | 0.52 (0.38, 0.71) ** |
Pfor trend | <0.001 | |||
Breakfast CDAI | ||||
Q1 | 276/1643 | Ref | Ref | Ref |
Q2 | 316/1643 | 1.34 (1.04, 1.72) | 1.15 (0.87, 1.52) | 1.30 (0.96, 1.77) |
Q3 | 295/1643 | 1.29 (1.04, 1.58) | 1.06 (0.86, 1.32) | 1.17 (0.90, 1.51) |
Q4 | 266/1641 | 0.92 (0.70, 1.21) | 0.82 (0.63, 1.05) | 0.88 (0.64, 1.20) |
Pfor trend | 0.180 | |||
Lunch CDAI | ||||
Q1 | 323/1643 | Ref | Ref | Ref |
Q2 | 306/1642 | 0.85 (0.66, 1.09) | 0.85 (0.68, 1.06) | 1.01 (0.80, 1.28) |
Q3 | 299/1643 | 0.81 (0.59, 1.10) | 0.86 (0.63, 1.17) | 1.10 (0.78, 1.57) |
Q4 | 225/1642 | 0.60 (0.45, 0.81) * | 0.67 (0.49, 0.91) * | 0.82 (0.57, 1.18) |
Pfor trend | 0.291 | |||
Dinner CDAI | ||||
Q1 | 329/1644 | Ref | Ref | Ref |
Q2 | 297/1641 | 0.77 (0.53, 1.11) | 0.82 (0.57, 1.18) | 0.77 (0.53, 1.12) |
Q3 | 295/1642 | 0.62 (0.46, 0.84) * | 0.63 (0.45, 0.87) * | 0.61 (0.43, 0.89) * |
Q4 | 232/1643 | 0.59 (0.44, 0.79) ** | 0.59 (0.45, 0.79) ** | 0.54 (0.40, 0.73) ** |
Pfor trend | <0.001 | |||
Δ CDAI | ||||
Q1 | 299/1643 | Ref | Ref | Ref |
Q2 | 286/1644 | 1.11 (0.85, 1.45) | 1.08 (0.82, 1.44) | 1.05 (0.76, 1.44) |
Q3 | 324/1640 | 0.93 (0.75, 1.15) | 0.98 (0.78, 1.23) | 0.88 (0.70, 1.10) |
Q4 | 244/1643 | 0.85 (0.67, 1.09) | 0.89 (0.71, 1.10) | 0.83 (0.66, 1.05) |
Pfor trend | 0.045 |
Subgroups | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | Pfor interaction |
---|---|---|---|---|---|
Age | 0.078 | ||||
20–59 years | Ref | 1.05 (0.75, 1.48) | 0.74 (0.46, 1.18) | 0.56 (0.35, 0.92) * | |
≥60 years | Ref | 0.64 (0.37, 1.09) | 0.49 (0.27, 0.86) * | 0.47 (0.25, 0.87) * | |
Sex | 0.422 | ||||
Female | Ref | 1.14 (0.74, 1.75) | 0.66 (0.38, 1.17) | 0.53 (0.31, 0.90) * | |
Male | Ref | 0.65 (0.45, 0.93) * | 0.38 (0.21, 0.66) * | 0.44 (0.24, 0.78) * | |
Race/ethnicity | 0.367 | ||||
Non-Hispanic White | Ref | 0.73 (0.51, 1.03) | 0.55 (0.33, 0.93) * | 0.49 (0.30, 0.80) * | |
Other races | Ref | 0.99 (0.66, 1.48) | 0.81 (0.58, 1.15) | 0.50 (0.32, 0.78) * | |
Education level | 0.002 | ||||
Less than high school | Ref | 0.56 (0.27, 1.16) | 0.19 (0.08, 0.49) * | 0.41 (0.14, 1.21) | |
High school or above | Ref | 0.91 (0.72, 1.16) | 0.68 (0.45, 1.05) | 0.51 (0.36, 0.72) * | |
Poverty to income ratio | 0.798 | ||||
<2.5 | Ref | 1.32 (0.86, 2.03) | 0.78 (0.48, 1.27) | 0.85 (0.57, 1.29) | |
≥2.5 | Ref | 0.91 (0.64, 1.29) | 0.34 (0.21, 0.58) * | 0.35 (0.20, 0.61) * | |
Smoking status | 0.314 | ||||
No | Ref | 0.84 (0.67, 1.05) | 0.54 (0.36, 0.83) * | 0.37 (0.23, 0.60) * | |
Yes | Ref | 2.27 (1.03, 5.01) * | 1.94 (0.97, 3.88) | 1.00 (0.42, 2.41) | |
Obesity status | 0.836 | ||||
Obesity | Ref | 1.31 (0.84, 2.04) | 0.68 (0.43, 1.08) | 0.83 (0.55, 1.26) | |
Non-obesity | Ref | 0.69 (0.37, 1.27) | 0.41 (0.26, 0.67) * | 0.27 (0.13, 0.57) ** |
Subgroups | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | Pfor interaction |
---|---|---|---|---|---|
Age | 0.397 | ||||
20–59 years | Ref | 0.92 (0.61, 1.41) | 0.69 (0.42, 1.12) | 0.61 (0.42, 0.88) * | |
≥60 years | Ref | 0.62 (0.35, 1.09) | 0.67 (0.33, 1.33) | 0.42 (0.23, 0.78) * | |
Sex | 0.619 | ||||
Female | Ref | 0.83 (0.46, 1.50) | 0.65 (0.42, 1.01) | 0.55 (0.32, 0.94) * | |
Male | Ref | 0.86 (0.52, 1.43) | 0.62 (0.38, 1.00) | 0.72 (0.51, 1.03) | |
Race/ethnicity | 0.032 | ||||
Non-Hispanic White | Ref | 0.87 (0.49, 1.56) | 0.63 (0.38, 1.06) | 0.68 (0.44, 1.07) | |
Other races | Ref | 0.89 (0.65, 1.21) | 0.94 (0.69, 1.27) | 0.47 (0.29, 0.75) * | |
Education level | 0.051 | ||||
Less than high school | Ref | 0.73 (0.40, 1.31) | 0.66 (0.26, 1.69) | 1.18 (0.56, 2.45) | |
High school or above | Ref | 0.78 (0.52, 1.18) | 0.63 (0.43, 0.90) * | 0.52 (0.38, 0.71) * | |
Poverty to income ratio | 0.908 | ||||
<2.5 | Ref | 0.71 (0.47, 1.07) | 0.68 (0.42, 1.11) | 0.68 (0.48, 0.97) * | |
≥2.5 | Ref | 0.85 (0.49, 1.48) | 0.60 (0.40, 0.91) * | 0.59 (0.41, 0.84) * | |
Smoking status | 0.182 | ||||
No | Ref | 0.82 (0.53, 1.27) | 0.62 (0.42, 0.92) * | 0.52 (0.36, 0.75) * | |
Yes | Ref | 0.58 (0.28, 1.16) | 0.66 (0.32, 1.36) | 0.72 (0.29, 1.78) | |
Obesity status | 0.268 | ||||
Obesity | Ref | 1.08 (0.63, 1.85) | 0.81 (0.46, 1.45) | 0.75 (0.46, 1.23) | |
Non-obesity | Ref | 0.47 (0.31, 0.71) * | 0.42 (0.26, 0.69) * | 0.34 (0.21, 0.57) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Xu, Y.; Zhang, N.; Liang, X.; Zhang, H.; Liang, H. Association of the Composite Dietary Antioxidant Index and Consumption Time with NAFLD: The U.S. National Health and Nutrition Examination Survey, 2017–2020. Nutrients 2024, 16, 3556. https://doi.org/10.3390/nu16203556
Zhang K, Xu Y, Zhang N, Liang X, Zhang H, Liang H. Association of the Composite Dietary Antioxidant Index and Consumption Time with NAFLD: The U.S. National Health and Nutrition Examination Survey, 2017–2020. Nutrients. 2024; 16(20):3556. https://doi.org/10.3390/nu16203556
Chicago/Turabian StyleZhang, Kening, Yan Xu, Nan Zhang, Xi Liang, Huaqi Zhang, and Hui Liang. 2024. "Association of the Composite Dietary Antioxidant Index and Consumption Time with NAFLD: The U.S. National Health and Nutrition Examination Survey, 2017–2020" Nutrients 16, no. 20: 3556. https://doi.org/10.3390/nu16203556
APA StyleZhang, K., Xu, Y., Zhang, N., Liang, X., Zhang, H., & Liang, H. (2024). Association of the Composite Dietary Antioxidant Index and Consumption Time with NAFLD: The U.S. National Health and Nutrition Examination Survey, 2017–2020. Nutrients, 16(20), 3556. https://doi.org/10.3390/nu16203556