A Review on In Vivo Research Dehydration Models and Application of Rehydration Strategies
Abstract
:1. Introduction
2. Dehydration Models
2.1. Fluid-Restriction-Induced Dehydration Models
2.2. Exercise-Induced Dehydration Models
2.3. Thermal Dehydration Models
2.4. Chemical-Induced Dehydration Models
2.4.1. Saline Treatment
2.4.2. Isoproterenol Treatment
2.4.3. Polyethylene Glycol (PEG) Treatment
2.4.4. Angiotensin II (ANG II) Treatment
2.4.5. Furosemide Treatment
2.4.6. Captopril Treatment
3. Administration for Rehydration in In Vivo Dehydration Models
3.1. Oral Administration
3.2. Intestinal Perfusion
3.3. Intravenous (IV) Injection
3.4. Subcutaneous (SC) Injection
3.5. Intraperitoneal (IP) Injection
4. Application of Rehydration Strategies and Involved Mechanisms
4.1. Daily Rehydration Strategies
4.1.1. Drinking Plain Water
4.1.2. Drinking Beverages
Sports Drinks
Milk
Fruit Juice
4.1.3. Eating Food
4.2. Clinical Rehydration Strategies
4.2.1. Oral Rehydration Therapy (ORT)
Addition of Gum Arabic or Modified Tapioca Starch in ORS
4.2.2. Intravenous Rehydration Therapy (IVT)
4.2.3. Subcutaneous Fluid Therapy or Hypodermoclysis (HDC)
4.3. Strategies Targeting Populations
4.3.1. Athletes
4.3.2. Elderly Patients
4.3.3. Pediatric Patients
4.4. The Mechanisms by Which Certain Nutrients Enhance Rehydration
4.4.1. Sodium and Potassium Ions
4.4.2. Carbohydrates and Proteins
5. Conclusions
6. Future Perspectives
Funding
Conflicts of Interest
References
- Collins, M.; Claros, E. Recognizing the face of dehydration. Nursing 2011, 41, 26–31; quiz 31–32. [Google Scholar] [CrossRef] [PubMed]
- Hickson, J.F.; Wolinsky, I. Nutrition in Exercise and Sport. In The Medicine & Science in Sports & Exercise; CRC Press: Boca Raton, FL, USA, 1991; Volume 23, p. 145. [Google Scholar]
- Lacey, J.; Corbett, J.; Forni, L.; Hooper, L.; Hughes, F.; Minto, G.; Moss, C.; Price, S.; Whyte, G.; Woodcock, T.; et al. A multidisciplinary consensus on dehydration: Definitions, diagnostic methods and clinical implications. Ann. Med. 2019, 51, 232–251. [Google Scholar] [CrossRef]
- Zhang, N.; Morin, C.; Guelinckx, I.; Moreno, L.A.; Kavouras, S.A.; Gandy, J.; Martinez, H.; Salas-Salvadó, J.; Ma, G. Fluid intake in urban China: Results of the 2016 Liq.In 7 national cross-sectional surveys. Eur. J. Nutr. 2018, 57, 77–88. [Google Scholar] [CrossRef]
- Malisova, O.; Athanasatou, A.; Pepa, A.; Husemann, M.; Domnik, K.; Braun, H.; Mora-Rodriguez, R.; Ortega, J.F.; Fernandez-Elias, V.E.; Kapsokefalou, M. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS). Nutrients 2016, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Price, K.A. Prevalence of Dehydration among School-Aged Children in Eastern Province, Zambia and Sikasso, Mali with an Analysis of Hydration and Cognition Measures. Master’s Thesis, Rollins School of Public Health, Atlanta, GA, USA, 2014. [Google Scholar]
- Stookey, J.D.; Pieper, C.F.; Cohen, H.J. Is the prevalence of dehydration among community-dwelling older adults really low? Informing current debate over the fluid recommendation for adults aged 70+years. Public Health Nutr. 2005, 8, 1275–1285. [Google Scholar] [CrossRef]
- Mentes, J.C.; Wakefield, B.; Culp, K. Use of a urine color chart to monitor hydration status in nursing home residents. Biol. Res. Nurs. 2006, 7, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Adan, A. Cognitive performance and dehydration. J. Am. Coll. Nutr. 2012, 31, 71–78. [Google Scholar] [CrossRef]
- Benton, D.; Young, H.A. Do small differences in hydration status affect mood and mental performance? Nutr. Rev. 2015, 73 (Suppl. 2), 83–96. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, A.C.; Reimers, K.J.; Buyckx, M.E. Hydration: Issues for the 21st Century. Nutr. Rev. 2003, 61, 261–271. [Google Scholar] [CrossRef]
- Xiao, L.; Miwa, N. Hydrogen-Rich Water Prevents Dehydration-Induced Cellular Oxidative Stress and Cell Death in Human Skin Keratinocytes. Hydrogen 2022, 3, 62–71. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Sun, Y.; Wu, N. Effects of different dehydration methods on the preservation of aortic and renal glycocalyx structures in mice. Heliyon 2023, 9, e15197. [Google Scholar] [CrossRef]
- Oleson, S.; Cox, A.; Liu, Z.; Sivasankar, M.P.; Lu, K.-H. In Vivo Magnetic Resonance Imaging of the Rat Vocal Folds After Systemic Dehydration and Rehydration. J. Speech Lang. Hear. Res. 2020, 63, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Rowland, N.E. Food or Fluid Restriction in Common Laboratory Animals: Balancing Welfare Considerations with Scientific Inquiry. Comp. Med. 2007, 57, 149–160. [Google Scholar] [PubMed]
- Bekkevold, C.M.; Robertson, K.L.; Reinhard, M.K.; Battles, A.H.; Rowland, N.E. Dehydration Parameters and Standards for Laboratory Mice. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 233–239. [Google Scholar]
- Evans, G.O.; Flynn, R.M.; Smith, D.E.C. Changes in differential leucocyte counts in male Beagle dogs during water deprivation tests. Comp. Haematol. Int. 1991, 1, 169–171. [Google Scholar] [CrossRef]
- van Vonderen, I.K.; Wolfswinkel, J.; Oosterlaken-Dijksterhuis, M.A.; Rijnberk, A.; Kooistra, H.S. Pulsatile secretion pattern of vasopressin under basal conditions, after water deprivation, and during osmotic stimulation in dogs. Domest. Anim. Endocrinol. 2004, 27, 1–12. [Google Scholar] [CrossRef]
- Reinhart, J.M.; Yancey, M.R.; Pohlman, L.M.; Schermerhorn, T. Evaluation of mean corpuscular volume difference as a marker for serum hypertonicity during water deprivation in dogs. Am. J. Vet. Res. 2015, 76, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.; Jensen, T.; Johnson, A.; Knowles, P.; Meyer, R.; Rucinsky, R.; Shafford, H.; American Association of Feline Practicioners; American Animal Hospital Association. 2013 AAHA/AAFP fluid therapy guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2013, 49, 149–159. [Google Scholar] [CrossRef]
- Hoffmann, M.L.; DenBleyker, M.; Smith, J.C.; Stricker, E.M. Inhibition of thirst when dehydrated rats drink water or saline. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1199–R1207. [Google Scholar] [CrossRef]
- Hasegawa, K.; Yamaguchi, Y.; Tanaka, M. Differential roles of VPS and RAAS in water homeostasis and a risk for kidney dysfunction in rats undergoing rapid fasting/dehydration with regular exercise. Physiol. Rep. 2021, 9, e14670. [Google Scholar] [CrossRef]
- Schreurs, G.; Maudsley, S.; Nast, C.; Praet, M.; Da Silva Fernandes, S.; Boor, P.; D’Haese, P.; De Broe, M.E.; Vervaet, B.A. Chronic dehydration induces injury pathways in rats, but does not mimic histopathology of chronic interstitial nephritis in agricultural communities. Sci. Rep. 2023, 13, 18119. [Google Scholar] [CrossRef] [PubMed]
- Shirreffs, S.M.; Merson, S.J.; Fraser, S.M.; Archer, D.T. The effects of fluid restriction on hydration status and subjective feelings in man. Br. J. Nutr. 2004, 91, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Leib, D.E.; Zimmerman, C.A.; Knight, Z.A. Thirst. Curr. Biol. 2016, 26, R1260–R1265. [Google Scholar] [CrossRef]
- Osman, H.F.; Atya, A.M. Influence of Electrolytes Supplementation on Cardiac and Renal Functions after Prolonged Exercise in Male Rats. World Appl. Sci. J. 2013, 23, 1377–1385. [Google Scholar]
- Zavvos, A.; Miliotis, P.; Stergiopoulos, D.; Koskolou, M.; Geladas, N. The Effect of Caffeine Intake on Body Fluids Replacement After Exercise-Induced Dehydration. Nutr. Today 2020, 55, 288. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Maresh, C.M.; Castellani, J.W.; Bergeron, M.F.; Kenefick, R.W.; LaGasse, K.E.; Riebe, D. Urinary indices of hydration status. Int. J. Sport Nutr. Exerc. Metab. 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Pérez-Luco, C.; Díaz-Castro, F.; Jorquera, C.; Troncoso, R.; Zbinden-Foncea, H.; Johannsen, N.M.; Castro-Sepulveda, M. Fluid Restriction Decreases Solid Food Consumption Post-Exercise. Nutrients 2019, 11, 1209. [Google Scholar] [CrossRef]
- Ly, N.Q.; Hamstra-Wright, K.L.; Horswill, C.A. Post-Exercise Rehydration in Athletes: Effects of Sodium and Carbohydrate in Commercial Hydration Beverages. Nutrients 2023, 15, 4759. [Google Scholar] [CrossRef]
- James, L.J.; Evans, G.H.; Madin, J.; Scott, D.; Stepney, M.; Harris, R.; Stone, R.; Clayton, D.J. Effect of varying the concentrations of carbohydrate and milk protein in rehydration solutions ingested after exercise in the heat. Br. J. Nutr. 2013, 110, 1285–1291. [Google Scholar] [CrossRef]
- Hackney, K.J.; Cook, S.B.; Fairchild, T.J.; Ploutz-Snyder, L.L. Skeletal muscle volume following dehydration induced by exercise in heat. Extrem. Physiol. Med. 2012, 1, 3. [Google Scholar] [CrossRef]
- Adams, W.M.; Vandermark, L.W.; Belval, L.N.; Casa, D.J. The Utility of Thirst as a Measure of Hydration Status Following Exercise-Induced Dehydration. Nutrients 2019, 11, 2689. [Google Scholar] [CrossRef]
- Ungaro, C.T.; Reimel, A.J.; Nuccio, R.P.; Barnes, K.A.; Pahnke, M.D.; Baker, L.B. Non-invasive estimation of hydration status changes through tear fluid osmolarity during exercise and post-exercise rehydration. Eur. J. Appl. Physiol. 2015, 115, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Barney, C.C.; Folkerts, M.M. Thermal dehydration-induced thirst in rats: Role of body temperature. Am. J. Physiol. 1995, 269 Pt 2, R557–R564. [Google Scholar] [CrossRef] [PubMed]
- Barney, C.C.; West, D.R. Control of water intake in thermally dehydrated rats. Physiol. Behav. 1990, 48, 387–395. [Google Scholar] [CrossRef]
- Whyte, D.G.; Thunhorst, R.L.; Johnson, A.K. Reduced thirst in old, thermally dehydrated rats. Physiol. Behav. 2004, 81, 569–576. [Google Scholar] [CrossRef]
- Bashyam, A.; Frangieh, C.J.; Li, M.; Cima, M.J. Dehydration assessment via a portable, single sided magnetic resonance sensor. Magn. Reson. Med. 2020, 83, 1390–1404. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.F.; Beltz, T.G.; Thunhorst, R.L.; Johnson, A.K. Investigations on the physiological controls of water and saline intake in C57BL/6 mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R394–R403. [Google Scholar] [CrossRef]
- Rowland, N.E.; Fregly, M.J. Characteristics of thirst and sodium appetite in mice (Mus musculus). Behav. Neurosci. 1988, 102, 969–974. [Google Scholar] [CrossRef]
- David, R.B.; Roncari, C.F.; Lauar, M.R.; Vendramini, R.C.; Antunes-Rodrigues, J.; Menani, J.V.; De Luca, L.A. Sodium intake, brain c-Fos protein and gastric emptying in cell-dehydrated rats treated with methysergide into the lateral parabrachial nucleus. Physiol. Behav. 2015, 151, 111–120. [Google Scholar] [CrossRef]
- Pereira, D.T.B.; Vendramini, R.C.; David, R.B.; Nozaki, P.N.; Menani, J.V.; De Luca, L.A. Isotonic NaCl intake by cell-dehydrated rats. Physiol. Behav. 2002, 76, 501–505. [Google Scholar] [CrossRef]
- Demikhov, A.; Bumeister, V.; Khomenko, I.; Mykhailychenko, K.; Yarmolenko, O.; Prykhodko, O.; Demikhova, N. Morphological changes of rats thyroid gland under the influence of moderate degree of cellular dehydration. Atherosclerosis 2022, 355, 157. [Google Scholar] [CrossRef]
- Alvarez-Salas, E.; Mengod, G.; García-Luna, C.; Soberanes-Chávez, P.; Matamoros-Trejo, G.; de Gortari, P. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats. Neuropeptides 2016, 56, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Tasker, J.G. Nongenomic Glucocorticoid Suppression of a Postsynaptic Potassium Current via Emergent Autocrine Endocannabinoid Signaling in Hypothalamic Neuroendocrine Cells following Chronic Dehydration. eNeuro 2017, 4, e0216-17.2017. [Google Scholar] [CrossRef] [PubMed]
- Denton, D.A.; Blair-West, J.R.; McBurnie, M.; Osborne, P.G.; Tarjan, E.; Williams, R.M.; Weisinger, R.S. Angiotensin and salt appetite of BALB/c mice. Am. J. Physiol. 1990, 259 Pt 2, R729–R735. [Google Scholar] [CrossRef] [PubMed]
- Weisinger, R.S.; Blair-West, J.R.; Denton, D.A.; McBurnie, M.; Ong, F.; Tarjan, E.; Williams, R.M. Effect of angiotensin-converting enzyme inhibitor on salt appetite and thirst of BALB/c mice. Am. J. Physiol. 1990, 259 Pt 2, R736–R740. [Google Scholar] [CrossRef]
- Evered, M.D.; Robinson, M.M.; Rose, P.A. Effect of arterial pressure on drinking and urinary responses to angiotensin II. Am. J. Physiol. 1988, 254 Pt 2, R69–R74. [Google Scholar] [CrossRef]
- Robinson, M.M.; Evered, M.D. Pressor action of intravenous angiotensin II reduces drinking response in rats. Am. J. Physiol. 1987, 252 Pt 2, R754–R759. [Google Scholar] [CrossRef]
- Buggy, J.; Hoffman, W.E.; Phillips, M.I.; Fisher, A.E.; Johnson, A.K. Osmosensitivity of rat third ventricle and interactions with angiotensin. Am. J. Physiol. 1979, 236, R75–R82. [Google Scholar] [CrossRef]
- Shankar, S.S.; Brater, D.C. Loop diuretics: From the Na-K-2Cl transporter to clinical use. Am. J. Physiol. Renal Physiol. 2003, 284, F11–F21. [Google Scholar] [CrossRef]
- Cannes do Nascimento, N.; Dos Santos, A.P.; Sivasankar, M.P.; Cox, A. Unraveling the molecular pathobiology of vocal fold systemic dehydration using an in vivo rabbit model. PLoS ONE 2020, 15, e0236348. [Google Scholar] [CrossRef]
- Brozmanova, A.; Jochem, J.; Javorka, K.; Zila, I.; Zwirska-Korczala, K. Diuretic-induced dehydration/hypovolemia inhibits thermal panting in rabbits. Respir. Physiol. Neurobiol. 2006, 150, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.C.; Papangelou, A.; Lin, C.; Mirski, M.A.; Gottschalk, A.; Toung, T.J.K. Comparison of equivolume, equiosmolar solutions of mannitol and hypertonic saline with or without furosemide on brain water content in normal rats. Anesthesiology 2013, 118, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, Y. Renoprotective effect of oral rehydration solution III in exertional heatstroke rats. Ren. Fail. 2019, 41, 190–196. [Google Scholar] [CrossRef]
- Miyamoto, K.; Suzuki, K.; Ohtaki, H.; Nakamura, M.; Yamaga, H.; Yagi, M.; Honda, K.; Hayashi, M.; Dohi, K. A novel mouse model of heatstroke accounting for ambient temperature and relative humidity. J. Intensive Care 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Nose, H.; Morita, M.; Yawata, T.; Morimoto, T. Recovery of blood volume and osmolality after thermal dehydration in rats. Am. J. Physiol. 1986, 251 Pt 2, R492–R498. [Google Scholar] [CrossRef]
- Okuno, T.; Yawata, T.; Nose, H.; Morimoto, T. Difference in rehydration process due to salt concentration of drinking water in rats. J. Appl. Physiol. (1985) 1988, 64, 2438–2443. [Google Scholar] [CrossRef]
- Thurston, J.H.; Hauhart, R.E.; Schulz, D.W. Effect of Chronic Hypernatremic Dehydration and Rapid Rehydration on Brain Carbohydrate, Energy, and Amino Acid Metabolism in Weanling Mice. J. Neurochem. 1983, 40, 240–245. [Google Scholar] [CrossRef]
- Bailey, T.W.; do Nascimento, N.C.; Dos Santos, A.P.; Sivasankar, M.P.; Cox, A. Comparative proteomic changes in rabbit vocal folds undergoing systemic dehydration and systemic rehydration. J. Proteom. 2023, 270, 104734. [Google Scholar] [CrossRef]
- Gottlieb, H.B.; Ji, L.L.; Cunningham, J.T. Role of superior laryngeal nerve and Fos staining following dehydration and rehydration in the rat. Physiol. Behav. 2011, 104, 1053–1058. [Google Scholar] [CrossRef]
- Arnauld, E.; Wattiaux, J.P.; Arsaut, J.; Rostène, W.; Vincent, J.D. Alterations in vasopressin and oxytocin messenger RNA in the rat supraoptic nucleus during dehydration-rehydration evaluated by in situ hybridization and northern blotting. Neurosci. Lett. 1993, 149, 177–181. [Google Scholar] [CrossRef]
- Kim, J.; De Jesus, O. Medication Routes of Administration. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK568677/ (accessed on 28 June 2024).
- Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 600–613. [Google Scholar] [PubMed]
- Morton, D.B.; Jennings, M.; Buckwell, A.; Ewbank, R.; Godfrey, C.; Holgate, B.; Inglis, I.; James, R.; Page, C.; Sharman, I.; et al. Refining procedures for the administration of substances. Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. British Veterinary Association Animal Welfare Foundation/Fund for the Replacement of Animals in Medical Experiments/Royal Society for the Prevention of Cruelty to Animals/Universities Federation for Animal Welfare. Lab. Anim. 2001, 35, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.E. Drug therapy in dental practice: General principles. Part 1—Pharmacokinetic considerations. Anesth. Prog. 2006, 53, 140–145; quiz 146. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Abély, M.; Alam, N.H.; Dossou, F.; Chowdhury, A.K.A.; Desjeux, J.-F. Water and electrolyte salvage in an animal model of dehydration and malnutrition. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 27–33. [Google Scholar] [CrossRef]
- Wyler, F.; Stalder, G.; Kaeslin, M.; Hof, R.P. Hemodynamics in experimental hypernatremic dehydration with special reference to individual organ blood flow in shock and after rehydration. Pediatr. Res. 1983, 17, 919–923. [Google Scholar] [CrossRef]
- Fregly, M.J.; Rowland, N.E. Effect of intragastric and intraperitoneal water and saline loads on the pharmacologic induction of drinking in rats. Brain Res. Bull. 1986, 16, 407–414. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Su, C.-H.; Lee, I.-N.; Yang, J.-T.; Lin, L.-C.; Huang, Y.-C.; Yang, J.-L. Effects of Early Rehydration on Brain Perfusion and Infarct Core after Middle Cerebral Artery Occlusion in Rats. Brain Sci. 2021, 11, 439. [Google Scholar] [CrossRef]
- Nose, H.; Mack, G.W.; Shi, X.R.; Nadel, E.R. Role of osmolality and plasma volume during rehydration in humans. J. Appl. Physiol. (1985) 1988, 65, 325–331. [Google Scholar] [CrossRef]
- Rl, S. Role of whole foods in promoting hydration after exercise in humans. J. Am. Coll. Nutr. 2007, 26 (Suppl. 5), 592S–596S. [Google Scholar] [CrossRef]
- Maughan, R.J.; Watson, P.; Cordery, P.A.; Walsh, N.P.; Oliver, S.J.; Dolci, A.; Rodriguez-Sanchez, N.; Galloway, S.D. A randomized trial to assess the potential of different beverages to affect hydration status: Development of a beverage hydration index. Am. J. Clin. Nutr. 2016, 103, 717–723. [Google Scholar] [CrossRef]
- Coombes, J.S.; Hamilton, K.L. The effectiveness of commercially available sports drinks. Sports Med. 2000, 29, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, D.S.; Kopetschny, B.H.; Badenhorst, C.E. The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med. 2022, 52, 349–375. [Google Scholar] [CrossRef] [PubMed]
- James, L. Milk protein and the restoration of fluid balance after exercise. Med. Sport Sci. 2012, 59, 120–126. [Google Scholar] [CrossRef]
- Pritchett, K.; Pritchett, R. Chocolate milk: A post-exercise recovery beverage for endurance sports. Med. Sport. Sci. 2012, 59, 127–134. [Google Scholar] [CrossRef]
- Hartman, S.; Brown, E.; Loomis, E.; Russell, H.A. Gastroenteritis in Children. Am. Fam. Physician 2019, 99, 159–165. [Google Scholar]
- Heller, K.E.; Sohn, W.; Burt, B.A.; Eklund, S.A. Water Consumption in the United States in 1994–96 and Implications for Water Fluoridation Policy. J. Public Health Dent. 1999, 59, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Bethancourt, G.; Johner, S.A.; Remer, T. Contribution of fruit and vegetable intake to hydration status in schoolchildren. Am. J. Clin. Nutr. 2013, 98, 1103–1112. [Google Scholar] [CrossRef]
- Maughan, R.J.; Leiper, J.B.; Shirreffs, S.M. Restoration of fluid balance after exercise-induced dehydration: Effects of food and fluid intake. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 317–325. [Google Scholar] [CrossRef]
- Ray, M.L.; Bryan, M.W.; Ruden, T.M.; Baier, S.M.; Sharp, R.L.; King, D.S. Effect of sodium in a rehydration beverage when consumed as a fluid or meal. J. Appl. Physiol. (1985) 1998, 85, 1329–1336. [Google Scholar] [CrossRef]
- Aghsaeifard, Z.; Heidari, G.; Alizadeh, R. Understanding the use of oral rehydration therapy: A narrative review from clinical practice to main recommendations. Health Sci. Rep. 2022, 5, e827. [Google Scholar] [CrossRef] [PubMed]
- Nystrom, E.; Bergquist, W. Chapter 3—Fluids and Electrolytes: Challenges With Short Bowel Syndrome. In Adult Short Bowel Syndrome; Corrigan, M.L., Roberts, K., Steiger, E., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 27–43. ISBN 978-0-12-814330-8. [Google Scholar] [CrossRef]
- von Hattingberg, H.M. Water: Mechanism of oral rehydration, water deficiency = deficiency in salt. Methods Find. Exp. Clin. Pharmacol. 1992, 14, 289–295. [Google Scholar] [PubMed]
- Binder, H.J.; Brown, I.; Ramakrishna, B.S.; Young, G.P. Oral Rehydration Therapy in the Second Decade of the Twenty-first Century. Curr. Gastroenterol. Rep. 2014, 16, 376. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.W.; Burns, S.F.; Lee, J.K.W. Efficacy of Ingesting an Oral Rehydration Solution after Exercise on Fluid Balance and Endurance Performance. Nutrients 2020, 12, 3826. [Google Scholar] [CrossRef] [PubMed]
- Teichberg, S.; Wingertzahn, M.A.; Moyse, J.; Wapnir, R.A. Effect of gum arabic in an oral rehydration solution on recovery from diarrhea in rats. J. Pediatr. Gastroenterol. Nutr. 1999, 29, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Wingertzahn, M.A.; Teichberg, S.; Wapnir, R.A. Modified starch enhances absorption and accelerates recovery in experimental diarrhea in rats. Pediatr. Res. 1999, 45, 397–402. [Google Scholar] [CrossRef]
- Brossier, D.W.; Tume, L.N.; Briant, A.R.; Jotterand Chaparro, C.; Moullet, C.; Rooze, S.; Verbruggen, S.C.A.T.; Marino, L.V.; Alsohime, F.; Beldjilali, S.; et al. ESPNIC clinical practice guidelines: Intravenous maintenance fluid therapy in acute and critically ill children- a systematic review and meta-analysis. Intensive Care Med. 2022, 48, 1691–1708. [Google Scholar] [CrossRef]
- Hoorn, E.J. Intravenous fluids: Balancing solutions. J. Nephrol. 2017, 30, 485–492. [Google Scholar] [CrossRef]
- Epstein, E.M.; Patel, P.; Waseem, M. Crystalloid Fluids. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed on 14 August 2024).
- Rudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front. Vet. Sci. 2021, 8, 639848. [Google Scholar] [CrossRef]
- Singh, S.; Kerndt, C.C.; Davis, D. Ringer’s Lactate. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK500033/ (accessed on 29 February 2024).
- Moritz, M.L.; Ayus, J.C. Improving intravenous fluid therapy in children with gastroenteritis. Pediatr. Nephrol. 2010, 25, 1383–1384. [Google Scholar] [CrossRef]
- National Clinical Guideline Centre (UK). Intravenous Fluid Therapy: Intravenous Fluid Therapy in Adults in Hospital; Royal College of Physicians: London, UK, 2013. Available online: http://www.ncbi.nlm.nih.gov/books/NBK247761/ (accessed on 28 June 2024).
- Chang, R.; Holcomb, J.B. Choice of Fluid Therapy in the Initial Management of Sepsis, Severe Sepsis, and Septic Shock. Shock 2016, 46, 17. [Google Scholar] [CrossRef]
- Tonog, P.; Lakhkar, A.D. Normal Saline. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK545210/ (accessed on 29 February 2024).
- Lorente, J.V.; Hahn, R.G.; Jover, J.L.; Del Cojo, E.; Hervías, M.; Jiménez, I.; Uña, R.; Clau-Terré, F.; Monge, M.I.; Llau, J.V.; et al. Role of Crystalloids in the Perioperative Setting: From Basics to Clinical Applications and Enhanced Recovery Protocols. J. Clin. Med. 2023, 12, 5930. [Google Scholar] [CrossRef] [PubMed]
- Caccialanza, R.; Constans, T.; Cotogni, P.; Zaloga, G.P.; Pontes-Arruda, A. Subcutaneous Infusion of Fluids for Hydration or Nutrition: A Review. J. Parenter. Enter. Nutr. 2018, 42, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, D.; Cooke, M.; Sriram, D.; Gray, B. Subcutaneous hydration and medications infusions (effectiveness, safety, acceptability): A systematic review of systematic reviews. PLoS ONE 2020, 15, e0237572. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, J. Subcutaneous fluid administration and the hydration of older people. Br. J. Nurs. 2014, 23, S10–S14. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.R.; Balu-Iyer, S.V. Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J. Pharm. Sci. 2018, 107, 1247–1260. [Google Scholar] [CrossRef]
- Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.; Cheuvront, S.; Chiampas, G.; González-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [Google Scholar] [CrossRef]
- Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 2007, 39, 377. [CrossRef]
- Armstrong, L.E. Rehydration during Endurance Exercise: Challenges, Research, Options, Methods. Nutrients 2021, 13, 887. [Google Scholar] [CrossRef]
- Casa, D.J.; Maresh, C.M.; Armstrong, L.E.; Kavouras, S.A.; Herrera, J.A.; Hacker, F.T.; Keith, N.R.; Elliott, T.A. Intravenous versus oral rehydration during a brief period: Responses to subsequent exercise in the heat. Med. Sci. Sports Exerc. 2000, 32, 124–133. [Google Scholar] [CrossRef]
- Givan, G.V.; Diehl, J.J. Intravenous Fluid Use in Athletes. Sports Health 2012, 4, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L. Why, Oh Why, Are So Many Older Adults Not Drinking Enough Fluid? J. Acad. Nutr. Diet. 2016, 116, 774–778. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, A.M.; Sahota, O.; Maughan, R.J.; Lobo, D.N. The pathophysiology of fluid and electrolyte balance in the older adult surgical patient. Clin. Nutr. 2014, 33, 6–13. [Google Scholar] [CrossRef]
- Li, S.; Xiao, X.; Zhang, X. Hydration Status in Older Adults: Current Knowledge and Future Challenges. Nutrients 2023, 15, 2609. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.; Sobotka, L.; et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef] [PubMed]
- Preventing and treating dehydration in the elderly during periods of illness and warm weather. J. Nutr. Health Aging 2009, 13, 150–157. [CrossRef]
- Frisoli Junior, A.; de Paula, A.P.; Feldman, D.; Nasri, F. Subcutaneous hydration by hypodermoclysis. A practical and low cost treatment for elderly patients. Drugs Aging 2000, 16, 313–319. [Google Scholar] [CrossRef]
- Powers, K.S. Dehydration: Isonatremic, Hyponatremic, and Hypernatremic Recognition and Management. Pediatr. Rev. 2015, 36, 274–283; quiz 284–285. [Google Scholar] [CrossRef] [PubMed]
- Tutay, G.J.; Capraro, G.; Spirko, B.; Garb, J.; Smithline, H. Electrolyte profile of pediatric patients with hypertrophic pyloric stenosis. Pediatr. Emerg. Care 2013, 29, 465–468. [Google Scholar] [CrossRef]
- World Health Organization. Updated Guideline: Paediatric Emergency Triage, Assessment and Treatment: Care of Critically-Ill Children; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-151021-9. Available online: https://iris.who.int/handle/10665/204463 (accessed on 20 September 2024).
- Atherly-John, Y.C.; Cunningham, S.J.; Crain, E.F. A randomized trial of oral vs intravenous rehydration in a pediatric emergency department. Arch. Pediatr. Adolesc. Med. 2002, 156, 1240–1243. [Google Scholar] [CrossRef]
- Daley, S.F.; Avva, U. Pediatric Dehydration. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK436022/ (accessed on 21 September 2024).
- Meyers, A.; Sampson, A.; Saladino, R.; Dixit, S.; Adams, W.; Mondolfi, A. Safety and effectiveness of homemade and reconstituted packet cereal-based oral rehydration solutions: A randomized clinical trial. Pediatrics 1997, 100, E3. [Google Scholar] [CrossRef] [PubMed]
- Fluid Resuscitation in Neonatal and Pediatric Hypovolemic Shock: A Dutch Pediatric Society Evidence-Based Clinical Practice Guideline-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/16791662/ (accessed on 21 September 2024).
- Canavan, A.; Billy, S.; Arant, J. Diagnosis and Management of Dehydration in Children. Am. Fam. Physician 2009, 80, 692–696. [Google Scholar] [PubMed]
- Maughan, R.J.; Leiper, J.B.; Shirreffs, S.M. Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat. Br. J. Sports Med. 1997, 31, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Madhavan Unny, N.; Zarina, A.; Beena, V. Fluid and Electrolyte Balance. In Textbook of Veterinary Physiology; Das, P.K., Sejian, V., Mukherjee, J., Banerjee, D., Eds.; Springer Nature: Singapore, 2023; pp. 193–211. ISBN 978-981-19941-0-4. [Google Scholar]
- Rossi, G.M.; Regolisti, G.; Peyronel, F.; Fiaccadori, E. Recent insights into sodium and potassium handling by the aldosterone-sensitive distal nephron: A review of the relevant physiology. J. Nephrol. 2020, 33, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Louden, J.D. Regulation of fluid and electrolyte balance. Anaesth. Intensive Care Med. 2012, 13, 302–308. [Google Scholar] [CrossRef]
- Tsilosani, A.; Gao, C.; Zhang, W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front. Physiol. 2022, 13, 770375. [Google Scholar] [CrossRef]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. (1985) 2017, 122, 945–951. [Google Scholar] [CrossRef]
- Yawata, T. Effect of potassium solution on rehydration in rats: Comparison with sodium solution and water. Jpn. J. Physiol. 1990, 40, 369–381. [Google Scholar] [CrossRef]
- Evans, G.H.; Shirreffs, S.M.; Maughan, R.J. Postexercise rehydration in man: The effects of osmolality and carbohydrate content of ingested drinks. Nutrition 2009, 25, 905–913. [Google Scholar] [CrossRef]
- Osterberg, K.L.; Pallardy, S.E.; Johnson, R.J.; Horswill, C.A. Carbohydrate exerts a mild influence on fluid retention following exercise-induced dehydration. J. Appl. Physiol. (1985) 2010, 108, 245–250. [Google Scholar] [CrossRef]
- Goodall, R.M. Oral Rehydration versus Intravenous Therapy for Treating Dehydration Due to Gastroenteritis in Children: A Meta-Analysis of Randomised Controlled Trials-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/15086953/ (accessed on 27 June 2024).
- Schultz, S.G.; Curran, P.F. Coupled transport of sodium and organic solutes. Physiol. Rev. 1970, 50, 637–718. [Google Scholar] [CrossRef] [PubMed]
- Fordtran, J.S. Stimulation of active and passive sodium absorption by sugars in the human jejunum. J. Clin. Investig. 1975, 55, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Seifert, J.; Harmon, J.; DeClercq, P. Protein added to a sports drink improves fluid retention. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.B.; Phillips, S.M.; Atherton, P.J.; Patel, R.; Yarasheski, K.E.; Tarnopolsky, M.A.; Rennie, M.J. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 2008, 586, 3701–3717. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, R.A.; Zdanowicz, M.M.; Teichberg, S.; Lifshitz, F. Oral hydration solutions in experimental osmotic diarrhea: Enhancement by alanine and other amino acids and oligopeptides. Am. J. Clin. Nutr. 1988, 48, 84–90. [Google Scholar] [CrossRef]
- Wapnir, R.A.; Wingertzahn, M.A.; Teichberg, S. L-arginine in low concentration improves rat intestinal water and sodium absorption from oral rehydration solutions. Gut 1997, 40, 602–607. [Google Scholar] [CrossRef]
- Hellier, M.D.; Thirumalai, C.; Holdsworth, C.D. The effect of amino acids and dipeptides on sodium and water absorption in man. Gut 1973, 14, 41–45. [Google Scholar] [CrossRef]
Appearance Score | Attitude Score | ||
---|---|---|---|
5 | Normal; skin tent and posture appear normal | 5 | Normal; exhibits activity in the cage prior to and during handling |
4 | Noticeable skin tent on the dorsum | 4 | Reduced activity, yet alert and responsive to handling |
3 | Hunched posture with piloerection and moderate skin tent | 3 | Lethargic, diminished resistance to handling |
2 | Eyes appear sunken, with severe piloerection and pronounced skin tent | 2 | Unresponsive; only moves when physically touched |
1 | Unable to right itself | 1 | Fails to flee when a hand is presented in the cage |
Dehydration Level | Physical Exam Findings |
---|---|
Euhydrated | Normal hydration status |
Mild (~5%) | Minimal loss of skin turgor, semidry mucous membranes, normal eye appearance |
Moderate (~8%) | Moderate loss of skin turgor, dry mucous membranes, sunken eyes (enophthalmos), weak and rapid pulses |
Severe (>10%) | Considerable loss of skin turgor, extremely dry mucous membranes, severe enophthalmos, tachycardia, weak/thready pulses, altered consciousness, hypotension |
Method of Dehydration Induction | Method/Instruments | Subject | Description | Advantages | Disadvantages | Indicators | References |
---|---|---|---|---|---|---|---|
Fluid-restriction-induced dehydration | Acute dehydration | Human volunteers | Continuous water restriction Human: 13 h (1.0% BWL), 24 h (1.8% BWL), 37 h (2.7% BWL) | Straightforward Affordable More reference value | Time-consuming Ethical considerations | Thirst, headache, body weight, plasma volume, serum sodium, serum chloride, serum osmolality, urine volume, urine sodium, urine potassium, urine chloride, urine osmolality, angiotensin II | [24] |
Animals | Continuous water restriction Rats: 18–24 h (6% BWL), 36–48 h (6–10% BWL), 66–72 h (>10% BWL) Mice: 24 h (12% BWL), 48 h (18% BWL) Dogs: 12–24 h | Straightforward Affordable | Time-consuming Difficult to control precisely | Food intake, body weight, attitude and appearance scores, plasma volume, plasma osmolality, plasma sodium, plasma corticosterone, packed-cell volume (PCV), total plasma protein, plasma renin activity (PRA), hematocrit, blood urea nitrogen (BUN), platelet count, urinary sodium, urinary potassium, urinary osmolality, neutrophil, lymphocyte, white blood cell (WBC) count | [14,15,16,17,18,19,20] | ||
Chronic dehydration | 1. Limiting the daily water intake Rats/Mice: 50/75% daily water intake for 7 days 2. Intermittent water restriction Rats: water deprivation for 15 h each evening over a 20-day period/10 h of water restriction every 24 h, 5 days a week, over 4 weeks | [16,21,22,23] | |||||
Exercise-induced dehydration | Treadmills | Animals | Rats: acclimated to treadmill for 3 days before, four sets of exercises at a rate of 25 m/min, 2 min interval between each set | Precise control over exercise duration and intensity | Possibility of interference among test subjects Reduced activity levels Equipment required | Sodium, potassium, chloride, calcium, phosphorus, magnesium, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), serum urea, creatinine, aldosterone | [26] |
Treadmill/stationary bike/friction-braked cycle ergometer/Monark cycle ergometer/elliptical machine | Human volunteers | 1. Fixed-intensity and duration exercise protocols Cycled for 1–1.5 h at 50–60% of their maximum heart rate and 30–32 °C/three sets of 25 min intermittent-intensity exercises on a treadmill, stationary bike, and elliptical machine, with 5 min rest periods between sets. 2. Exercise to a predetermined percentage of body weight loss 1.6% BWL: exercised on a friction-braked cycle ergometer at an intensity of 2 W/kg body mass in a 35 °C environment, with each session lasting 10 min, followed by a 5 min rest. 3–5% BWL: cycled on a Monark cycle ergometer at 60 rpm in a 38 °C climate chamber 3. Combine fluid restriction with exercise-induced dehydration Walked on a motorized treadmill at 5.6–6.4 km/h on a 2% incline for 25 min, followed by a 5 min rest, repeating this cycle six times. Fluid intake was restricted for 14 h before | More reference value More cooperative | Ethical considerations Equipment required | Body weight, thirst perception (TH) scale, thirst sensation scale (TSS), urine-specific gravity, urine color, saliva flow rate, urine volume, urine osmolality, serum osmolality, tear fluid osmolality, sweat sodium concentration | [27,28,29,30,31,32,33,34] | |
Thermal dehydration | High temperature | Animals | Exposing animals to higher room temperatures Rats: 40 °C for 0–4 h without water provided/infrared lamp to raise the colonic temperature by 0.05 °C/min for 60 min or until it reached 41.5 °C Mice: 37 °C and 15–20% relative humidity without water provided | Straightforward | Cause undue harm | Body weight, water intake, plasma osmolality, plasma sodium, plasma potassium, hematocrit, plasma protein, urine output | [35,36,37,38] |
Chemical-induced dehydration | Saline treatment | Animals | 1. Subcutaneous injection Mice: 3% or 6% weight/volume, 0.5 mL/mouse 2. Intracerebroventricular injection Mice: 600 mM/μL, 2 μL/mouse 3. Intraperitoneal injection Mice: 10 mL of 1 M NaCl/kg b.w. 4. Oral treatment Gavage (rats): 2 mL of 2 mol/L NaCl/3 mL of 1.5% NaCl three times daily for 20 days Consume water containing 2% NaCl for 6–8 days (rats) | Less time-consuming (except for long-term oral treatment) Less confound variables | Difficult to operate Cause undue harm | Water intake, plasma sodium, plasma osmolality | [39,40,41,42,43,44,45] |
Isoproterenol treatment | Subcutaneous injection Mice: 15–400 μg/kg | Water intake | [39,40] | ||||
Polyethylene glycol treatment | Subcutaneous injection Mice: 25% wt./vol, 1 mL/mouse | Water intake | [39,40] | ||||
Angiotensin ll treatment | Intracerebroventricular injection Mice: 3.1–100 ng/2 μL, 2 μL/mouse | Water intake | [39,40,46,47,48,49,50] | ||||
Furosemide treatment | 1. Intraperitoneal injection Rabbits: 50 mg/mL, 5 mg/kg 2. Intravenous injection Rabbits: 5 mg/kg Rats: intravenous injection of 8 mg/kg furosemide following 4.2% hypertonic saline (3.2 mL/100 g) | Body weight, urine output, plasma volume, plasma sodium, plasma potassium, plasma chloride, hemoglobin, packed cell volume, total plasma protein, creatinine, blood urea nitrogen, brain water content, pulmonary water content, muscle water content, small bowel water content | [52,53,54] | ||||
Captopril treatment | Chronic addition of captopril to the drinking water Mice: 0.5–1.0 mg/mL | Easy to operate | Time-consuming, imprecise control of intake | Water intake | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wei, X.; Zhao, X.; Wang, W.; Deng, J.; Yang, H. A Review on In Vivo Research Dehydration Models and Application of Rehydration Strategies. Nutrients 2024, 16, 3566. https://doi.org/10.3390/nu16203566
Wang B, Wei X, Zhao X, Wang W, Deng J, Yang H. A Review on In Vivo Research Dehydration Models and Application of Rehydration Strategies. Nutrients. 2024; 16(20):3566. https://doi.org/10.3390/nu16203566
Chicago/Turabian StyleWang, Boyuan, Xiaolu Wei, Xiyan Zhao, Weimin Wang, Jianjun Deng, and Haixia Yang. 2024. "A Review on In Vivo Research Dehydration Models and Application of Rehydration Strategies" Nutrients 16, no. 20: 3566. https://doi.org/10.3390/nu16203566
APA StyleWang, B., Wei, X., Zhao, X., Wang, W., Deng, J., & Yang, H. (2024). A Review on In Vivo Research Dehydration Models and Application of Rehydration Strategies. Nutrients, 16(20), 3566. https://doi.org/10.3390/nu16203566