Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Process
3. Results
3.1. Vitamins
3.1.1. Vitamins A, C, and E (Antioxidants)
3.1.2. Vitamin B
3.1.3. Vitamin D3 and Calcium
3.2. Polyunsaturated Fatty Acids (PUFAs)
3.3. Probiotics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prince, M.; Ali, G.-C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.-T. Recent Global Trends in the Prevalence and Incidence of Dementia, and Survival with Dementia. Alzheimer’s Res. Ther. 2016, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Kramarow, E.A. Diagnosed Dementia in Adults Age 65 and Older: United States, 2022; National Center for Health Statistics (U.S.): Hyattsville, MD, USA, 2024. [Google Scholar]
- Alzheimer’s Facts and Figures Report|Alzheimer’s Association. Available online: https://www.alz.org/alzheimers-dementia/facts-figures (accessed on 28 August 2024).
- Dementia: Number of People Affected to Triple in Next 30 Years. Available online: https://www.who.int/news/item/07-12-2017-dementia-number-of-people-affected-to-triple-in-next-30-years (accessed on 8 August 2024).
- Dementia Prevention: Reduce Your Risk, Starting Now. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/dementia/dementia-prevention-reduce-your-risk (accessed on 9 November 2022).
- Montero-Odasso, M.; Ismail, Z.; Livingston, G. One Third of Dementia Cases Can Be Prevented within the next 25 Years by Tackling Risk Factors. The Case “for” and “Against”. Alzheimer’s Res. Ther. 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.B.; Pardee, A.B. Evidence for Defective Retinoid Transport and Function in Late Onset Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2003, 100, 2901–2905. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Vitamin A Exhibits Potent Antiamyloidogenic and Fibril-Destabilizing Effects in Vitro. Exp. Neurol. 2004, 189, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Mock, J.T.; Chaudhari, K.; Sidhu, A.; Sumien, N. The Influence of Vitamins E and C and Exercise on Brain Aging. Exp. Gerontol. 2017, 94, 69–72. [Google Scholar] [CrossRef]
- Zandi, P.P.; Anthony, J.C.; Khachaturian, A.S.; Stone, S.V.; Gustafson, D.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A.; Breitner, J.C.S.; Cache County Study Group. Reduced Risk of Alzheimer Disease in Users of Antioxidant Vitamin Supplements: The Cache County Study. Arch. Neurol. 2004, 61, 82–88. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2019, 26, 5–13. [Google Scholar] [CrossRef]
- de Oliveira, L.R.C.; Mimura, L.A.N.; Fraga-Silva, T.F.d.C.; Ishikawa, L.L.W.; Fernandes, A.A.H.; Zorzella-Pezavento, S.F.G.; Sartori, A. Calcitriol Prevents Neuroinflammation and Reduces Blood-Brain Barrier Disruption and Local Macrophage/Microglia Activation. Front. Pharmacol. 2020, 11, 161. [Google Scholar] [CrossRef]
- Cui, X.; Eyles, D.W. Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients 2022, 14, 4353. [Google Scholar] [CrossRef]
- Sayeed, I.; Turan, N.; Stein, D.G.; Wali, B. Vitamin D Deficiency Increases Blood-Brain Barrier Dysfunction after Ischemic Stroke in Male Rats. Exp. Neurol. 2019, 312, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Dighriri, I.M.; Alsubaie, A.M.; Hakami, F.M.; Hamithi, D.M.; Alshekh, M.M.; Khobrani, F.A.; Dalak, F.E.; Hakami, A.A.; Alsueaadi, E.H.; Alsaawi, L.S.; et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022, 14, e30091. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Satyanarayanan, S.K.; Li, A.; Yan, L.; Zhao, Z.; Yuan, Q.; Su, K.-P.; Su, H. Unraveling the Impact of Omega-3 Polyunsaturated Fatty Acids on Blood-Brain Barrier (BBB) Integrity and Glymphatic Function. Brain Behav. Immun. 2024, 115, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975805/ (accessed on 8 August 2024).
- Ansari, F.; Neshat, M.; Pourjafar, H.; Jafari, S.M.; Samakkhah, S.A.; Mirzakhani, E. The Role of Probiotics and Prebiotics in Modulating of the Gut-Brain Axis. Front. Nutr. 2023, 10, 1173660. [Google Scholar] [CrossRef] [PubMed]
- Dhami, M.; Raj, K.; Singh, S. Relevance of Gut Microbiota to Alzheimer’s Disease (AD): Potential Effects of Probiotic in Management of AD. Aging Health Res. 2023, 3, 100128. [Google Scholar] [CrossRef]
- Orimo, H. [Reviewing the definition of elderly]. Nippon. Ronen Igakkai Zasshi. Jpn. J. Geriatr. 2006, 43, 27–34. [Google Scholar] [CrossRef]
- Christen, Y. Oxidative Stress and Alzheimer Disease. Am. J. Clin. Nutr. 2000, 71, 621S–629S. [Google Scholar] [CrossRef]
- Rinaldi, P.; Polidori, M.C.; Metastasio, A.; Mariani, E.; Mattioli, P.; Cherubini, A.; Catani, M.; Cecchetti, R.; Senin, U.; Mecocci, P. Plasma Antioxidants Are Similarly Depleted in Mild Cognitive Impairment and in Alzheimer’s Disease. Neurobiol. Aging 2003, 24, 915–919. [Google Scholar] [CrossRef]
- Moreira, P.I.; Smith, M.A.; Zhu, X.; Honda, K.; Lee, H.-G.; Aliev, G.; Perry, G. Oxidative Damage and Alzheimer’s Disease: Are Antioxidant Therapies Useful? Drug News Perspect. 2005, 18, 13–19. [Google Scholar] [CrossRef]
- Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of Antioxidant Supplement Use and Dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium Trial (PREADViSE). JAMA Neurol. 2017, 74, 567–573. [Google Scholar] [CrossRef]
- Koch, M.; Furtado, J.D.; Cronjé, H.T.; DeKosky, S.T.; Fitzpatrick, A.L.; Lopez, O.L.; Kuller, L.H.; Mukamal, K.J.; Jensen, M.K. Plasma Antioxidants and Risk of Dementia in Older Adults. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12208. [Google Scholar] [CrossRef] [PubMed]
- von Arnim, C.A.F.; Herbolsheimer, F.; Nikolaus, T.; Peter, R.; Biesalski, H.K.; Ludolph, A.C.; Riepe, M.; Nagel, G.; ActiFE Ulm Study Group. Dietary Antioxidants and Dementia in a Population-Based Case-Control Study among Older People in South Germany. J. Alzheimer’s Dis. 2012, 31, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Dementia and Alzheimer’s Disease in Community-Dwelling Elders Taking Vitamin C and/or Vitamin E—Gerda G Fillenbaum, Maragatha N Kuchibhatla, Joseph T Hanlon, Margaret B Artz, Carl F Pieper, Kenneth E Schmader, Maurice W Dysken, Shelly L Gray. 2005. Available online: https://journals.sagepub.com/doi/10.1345/aph.1G280?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 7 August 2024).
- Power, R.; Nolan, J.M.; Prado-Cabrero, A.; Roche, W.; Coen, R.; Power, T.; Mulcahy, R. Omega-3 Fatty Acid, Carotenoid and Vitamin E Supplementation Improves Working Memory in Older Adults: A Randomised Clinical Trial. Clin. Nutr. 2022, 41, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Stavrinou, P.S.; Andreou, E.; Aphamis, G.; Pantzaris, M.; Ioannou, M.; Patrikios, I.S.; Giannaki, C.D. The Effects of a 6-Month High Dose Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins Supplementation on Cognitive Function and Functional Capacity in Older Adults with Mild Cognitive Impairment. Nutrients 2020, 12, 325. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J. Vitamin B1 (Thiamine) and Dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef]
- Health Quality Ontario. Vitamin B12 and Cognitive Function: An Evidence-Based Analysis. Ont. Health Technol. Assess. Ser. 2013, 13, 1–45. [Google Scholar]
- Nguyen, H.D.; Kim, M.-S. The Role of Mixed B Vitamin Intakes on Cognitive Performance: Modeling, Genes and miRNAs Involved. J. Psychiatr. Res. 2022, 152, 38–56. [Google Scholar] [CrossRef]
- van Soest, A.P.M.; van de Rest, O.; Witkamp, R.F.; Cederholm, T.; de Groot, L.C.P.G.M. DHA Status Influences Effects of B-Vitamin Supplementation on Cognitive Ageing: A Post-Hoc Analysis of the B-Proof Trial. Eur. J. Nutr. 2022, 61, 3731–3739. [Google Scholar] [CrossRef]
- Orr, M.E.; Kotkowski, E.; Ramirez, P.; Bair-Kelps, D.; Liu, Q.; Brenner, C.; Schmidt, M.S.; Fox, P.T.; Larbi, A.; Tan, C.; et al. A Randomized Placebo-Controlled Trial of Nicotinamide Riboside in Older Adults with Mild Cognitive Impairment. GeroScience 2023, 46, 665–682. [Google Scholar] [CrossRef]
- Smith, A.D.; Smith, S.M.; de Jager, C.A.; Whitbread, P.; Johnston, C.; Agacinski, G.; Oulhaj, A.; Bradley, K.M.; Jacoby, R.; Refsum, H. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial. PLoS ONE 2010, 5, e12244. [Google Scholar] [CrossRef]
- Stott, D.J.; MacIntosh, G.; Lowe, G.D.; Rumley, A.; McMahon, A.D.; Langhorne, P.; Tait, R.C.; O’Reilly, D.S.J.; Spilg, E.G.; MacDonald, J.B.; et al. Randomized Controlled Trial of Homocysteine-Lowering Vitamin Treatment in Elderly Patients with Vascular Disease1 2 3 4. Am. J. Clin. Nutr. 2005, 82, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- van Uffelen, J.G.Z.; Chinapaw, M.J.M.; Mechelen, W.V.; Hopman-Rock, M. Walking or Vitamin B for Cognition in Older Adults with Mild Cognitive Impairment? A Randomised Controlled Trial. Br. J. Sports Med. 2008, 42, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Jernerén, F.; Elshorbagy, A.K.; Oulhaj, A.; Smith, S.M.; Refsum, H.; Smith, A.D. Brain Atrophy in Cognitively Impaired Elderly: The Importance of Long-Chain ω-3 Fatty Acids and B Vitamin Status in a Randomized Controlled Trial12. Am. J. Clin. Nutr. 2015, 102, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Aisen, P.S.; Schneider, L.S.; Sano, M.; Diaz-Arrastia, R.; van Dyck, C.H.; Weiner, M.F.; Bottiglieri, T.; Jin, S.; Stokes, K.T.; Thomas, R.G.; et al. High-Dose B Vitamin Supplementation and Cognitive Decline in Alzheimer Disease: A Randomized Controlled Trial. JAMA 2008, 300, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Kwok, T.; Lee, J.; Law, C.B.; Pan, P.C.; Yung, C.Y.; Choi, K.C.; Lam, L.C. A Randomized Placebo Controlled Trial of Homocysteine Lowering to Reduce Cognitive Decline in Older Demented People. Clin. Nutr. 2011, 30, 297–302. [Google Scholar] [CrossRef]
- McMahon, J.A.; Green, T.J.; Skeaff, C.M.; Knight, R.G.; Mann, J.I.; Williams, S.M. A Controlled Trial of Homocysteine Lowering and Cognitive Performance. N. Engl. J. Med. 2006, 354, 2764–2772. [Google Scholar] [CrossRef]
- Wu, Y.; Smith, A.D.; Bastani, N.E.; Refsum, H.; Kwok, T. The Dihydrofolate Reductase 19-Bp Deletion Modifies the Beneficial Effect of B-Vitamin Therapy in Mild Cognitive Impairment: Pooled Study of Two Randomized Placebo-Controlled Trials. Hum. Mol. Genet. 2021, 31, 1151–1158. [Google Scholar] [CrossRef]
- Kwok, T.; Wu, Y.; Lee, J.; Lee, R.; Yung, C.Y.; Choi, G.; Lee, V.; Harrison, J.; Lam, L.; Mok, V. A Randomized Placebo-Controlled Trial of Using B Vitamins to Prevent Cognitive Decline in Older Mild Cognitive Impairment Patients. Clin. Nutr. 2020, 39, 2399–2405. [Google Scholar] [CrossRef]
- Ford, A.H.; Flicker, L.; Alfonso, H.; Thomas, J.; Clarnette, R.; Martins, R.; Almeida, O.P. Vitamins B(12), B(6), and Folic Acid for Cognition in Older Men. Neurology 2010, 75, 1540–1547. [Google Scholar] [CrossRef]
- Sluimer, J.D.; van der Flier, W.M.; Karas, G.B.; Fox, N.C.; Scheltens, P.; Barkhof, F.; Vrenken, H. Whole-Brain Atrophy Rate and Cognitive Decline: Longitudinal MR Study of Memory Clinic Patients. Radiology 2008, 248, 590–598. [Google Scholar] [CrossRef]
- Wu, Y.; Smith, A.D.; Refsum, H.; Kwok, T. Effectiveness of B Vitamins and Their Interactions with Aspirin in Improving Cognitive Functioning in Older People with Mild Cognitive Impairment: Pooled Post-Hoc Analyses of Two Randomized Trials. J. Nutr. Health Aging 2021, 25, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Szczechowiak, K.; Diniz, B.S.; Leszek, J. Diet and Alzheimer’s Dementia—Nutritional Approach to Modulate Inflammation. Pharmacol. Biochem. Behav. 2019, 184, 172743. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Taimuri, U.; Basnan, S.A.; Ai-Orabi, W.K.; Awadallah, A.; Almowald, F.; Hazazi, A. Low Vitamin D and Its Association with Cognitive Impairment and Dementia. J. Aging Res. 2020, 2020, 6097820. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of Vitamin D Supplementation on Cognitive Function and Blood Aβ-Related Biomarkers in Older Adults with Alzheimer’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Owusu, J.E.; Islam, S.; Katumuluwa, S.S.; Stolberg, A.R.; Usera, G.L.; Anwarullah, A.A.; Shieh, A.; Dhaliwal, R.; Ragolia, L.; Mikhail, M.B.; et al. Cognition and Vitamin D in Older African-American Women- Physical Performance and Osteoporosis Prevention with Vitamin D in Older African Americans Trial and Dementia. J. Am. Geriatr. Soc. 2019, 67, 81–86. [Google Scholar] [CrossRef]
- Rossom, R.C.; Espeland, M.A.; Manson, J.E.; Dysken, M.W.; Johnson, K.C.; Lane, D.S.; LeBlanc, E.S.; Lederle, F.A.; Masaki, K.H.; Margolis, K.L. Calcium and Vitamin D Supplementation and Cognitive Impairment in the Women’s Health Initiative. J. Am. Geriatr. Soc. 2012, 60, 2197–2205. [Google Scholar] [CrossRef]
- Bray, N.W.; Pieruccini-Faria, F.; Witt, S.T.; Bartha, R.; Doherty, T.J.; Nagamatsu, L.S.; Almeida, Q.J.; Liu-Ambrose, T.; Middleton, L.E.; Bherer, L.; et al. Combining Exercise with Cognitive Training and Vitamin D3 to Improve Functional Brain Connectivity (FBC) in Older Adults with Mild Cognitive Impairment (MCI). Results from the SYNERGIC Trial. GeroScience 2023, 45, 1967–1985. [Google Scholar] [CrossRef]
- Yang, T.; Wang, H.; Xiong, Y.; Chen, C.; Duan, K.; Jia, J.; Ma, F. Vitamin D Supplementation Improves Cognitive Function Through Reducing Oxidative Stress Regulated by Telomere Length in Older Adults with Mild Cognitive Impairment: A 12-Month Randomized Controlled Trial. J. Alzheimer’s Dis. 2020, 78, 1509–1518. [Google Scholar] [CrossRef]
- Zhao, C.; Tsapanou, A.; Manly, J.; Schupf, N.; Brickman, A.M.; Gu, Y. Vitamin D Intake Is Associated with Dementia Risk in the Washington Heights-Inwood Columbia Aging Project (WHICAP). Alzheimer’s Dement. 2020, 16, 1393–1401. [Google Scholar] [CrossRef]
- Llewellyn, D.J.; Lang, I.A.; Langa, K.M.; Muniz-Terrera, G.; Phillips, C.L.; Cherubini, A.; Ferrucci, L.; Melzer, D. Vitamin D and Risk of Cognitive Decline in Elderly Persons. Arch. Intern. Med. 2010, 170, 1135–1141. [Google Scholar] [CrossRef]
- Sommer, I.; Griebler, U.; Kien, C.; Auer, S.; Klerings, I.; Hammer, R.; Holzer, P.; Gartlehner, G. Vitamin D Deficiency as a Risk Factor for Dementia: A Systematic Review and Meta-Analysis. BMC Geriatr. 2017, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Boston, 677 Huntington Avenue; Ma 02115 +1495-1000 Vitamin D. Available online: https://www.hsph.harvard.edu/nutritionsource/vitamin-d/ (accessed on 24 October 2022).
- Drugs That Deplete: Vitamin D|Complementary and Alternative Medicine|St. Luke’s Hospital. Available online: https://www.stlukes-stl.com/health-content/medicine/33/000724.htm (accessed on 30 July 2024).
- Polyunsaturated Fat. Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/polyunsaturated-fats (accessed on 27 October 2022).
- de Oliveira Otto, M.C.; Wu, J.H.Y.; Thacker, E.L.; Lai, H.T.M.; Lemaitre, R.N.; Padhye, N.; Song, X.; King, I.B.; Lopez, O.; Siscovick, D.S.; et al. Circulating Omega-3 and Omega-6 Fatty Acids, Cognitive Decline, and Dementia in Older Adults. J. Alzheimer’s Dis. 2023, 95, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, S.; Chen, J.; Li, Y.; Wu, Y.; Zhang, D. Association of Dietary ω-3 and ω-6 Fatty Acids Intake with Cognitive Performance in Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutr. J. 2020, 19, 25. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Omega-3 Fatty Acids. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ (accessed on 2 August 2024).
- Parletta, N.; Milte, C.M.; Meyer, B.J. Nutritional Modulation of Cognitive Function and Mental Health. J. Nutr. Biochem. 2013, 24, 725–743. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Plourde, M.; Pifferi, F.; Bégin, M.; Féart, C.; Barberger-Gateau, P. Fish, Docosahexaenoic Acid and Alzheimer’s Disease. Prog. Lipid Res. 2009, 48, 239–256. [Google Scholar] [CrossRef]
- Chhetri, J.K.; de Souto Barreto, P.; Cantet, C.; Pothier, K.; Cesari, M.; Andrieu, S.; Coley, N.; Vellas, B. Effects of a 3-Year Multi-Domain Intervention with or without Omega-3 Supplementation on Cognitive Functions in Older Subjects with Increased CAIDE Dementia Scores. J. Alzheimer’s Dis. 2018, 64, 71–78. [Google Scholar] [CrossRef]
- Maltais, M.; de Souto Barreto, P.; Bowman, G.L.; Smith, A.D.; Cantet, C.; Andrieu, S.; Rolland, Y. Omega-3 Supplementation for the Prevention of Cognitive Decline in Older Adults: Does It Depend on Homocysteine Levels? J. Nutr. Health Aging 2022, 26, 615–620. [Google Scholar] [CrossRef]
- Rondanelli, M.; Opizzi, A.; Faliva, M.; Mozzoni, M.; Antoniello, N.; Cazzola, R.; Savarè, R.; Cerutti, R.; Grossi, E.; Cestaro, B. Effects of a Diet Integration with an Oily Emulsion of DHA-Phospholipids Containing Melatonin and Tryptophan in Elderly Patients Suffering from Mild Cognitive Impairment. Nutr. Neurosci. 2012, 15, 46–54. [Google Scholar] [CrossRef]
- Thomas, A.; Baillet, M.; Proust-Lima, C.; Féart, C.; Foubert-Samier, A.; Helmer, C.; Catheline, G.; Samieri, C. Long-Chain Omega-3 Polyunsaturated Fatty Acids, Brain Atrophy, Cognitive Decline and Dementia Risk. Alzheimer’s Dement. 2020, 16, e042968. [Google Scholar] [CrossRef]
- Tabue-Teguo, M.; Barreto de Souza, P.; Cantet, C.; Andrieu, S.; Simo, N.; Fougère, B.; Dartigues, J.F.; Vellas, B. Effect of Multidomain Intervention, Omega-3 Polyunsaturated Fatty Acids Supplementation or Their Combinaison on Cognitive Function in Non-Demented Older Adults According to Frail Status: Results from the MAPT Study. J. Nutr. Health Aging 2018, 22, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Daďová, K.; Petr, M.; Tufano, J.J.; Sontáková, L.; Krauzová, E.; Štěpán, M.; Šiklová, M.; Šteffl, M. Calanus Oil Supplementation Does Not Further Improve Short-Term Memory or Brain-Derived Neurotrophic Factor in Older Women Who Underwent Exercise Training. Clin. Interv. Aging 2022, 17, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- van de Rest, O.; Geleijnse, J.M.; Kok, F.J.; van Staveren, W.A.; Dullemeijer, C.; Olderikkert, M.G.M.; Beekman, A.T.F.; de Groot, C.P.G.M. Effect of Fish Oil on Cognitive Performance in Older Subjects: A Randomized, Controlled Trial. Neurology 2008, 71, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Heckman, M.G.; Davis, J.M. Post Hoc Power Calculations: An Inappropriate Method for Interpreting the Findings of a Research Study. Available online: https://www.jrheum.org/content/jrheum/early/2022/05/10/jrheum.211115.full.pdf (accessed on 28 October 2022).
- Thomas, A.; Baillet, M.; Proust-Lima, C.; Féart, C.; Foubert-Samier, A.; Helmer, C.; Catheline, G.; Samieri, C. Blood Polyunsaturated Omega-3 Fatty Acids, Brain Atrophy, Cognitive Decline, and Dementia Risk. Alzheimer’s Dement. 2021, 17, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Giudici, K.V.; de Souto Barreto, P.; Beard, J.; Cantet, C.; Araujo de Carvalho, I.; Rolland, Y.; Vellas, B.; MAPT DSA group. Effect of Long-Term Omega-3 Supplementation and a Lifestyle Multidomain Intervention on Intrinsic Capacity among Community-Dwelling Older Adults: Secondary Analysis of a Randomized, Placebo-Controlled Trial (MAPT Study). Maturitas 2020, 141, 39–45. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Wang, R.; Lu, J.; Peng, S.; Yang, S.; Wang, Y.; Zheng, K.; Li, R.; Lin, L.; Li, M. Probiotic Intervention Benefits Multiple Neural Behaviors in Older Adults with Mild Cognitive Impairment. Geriatr. Nur. 2023, 51, 167–175. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Huang, Y.-Y.; Tsai, S.-Y.; Kuo, Y.-W.; Lin, J.-H.; Ho, H.-H.; Chen, J.-F.; Hsia, K.-C.; Sun, Y. Efficacy of Probiotic Supplements on Brain-Derived Neurotrophic Factor, Inflammatory Biomarkers, Oxidative Stress and Cognitive Function in Patients with Alzheimer’s Dementia: A 12-Week Randomized, Double-Blind Active-Controlled Study. Nutrients 2023, 16, 16. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kinoshita, T.; Matsumoto, A.; Yoshino, K.; Saito, I.; Xiao, J.-Z. Bifidobacterium Breve A1 Supplementation Improved Cognitive Decline in Older Adults with Mild Cognitive Impairment: An Open-Label, Single-Arm Study. J. Prev. Alzheimer’s Dis. 2019, 6, 70–75. [Google Scholar] [CrossRef]
- Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; et al. Effect of Probiotic Bifidobacterium Breve in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimer’s Dis. 2022, 88, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Katsumata, N.; Bernier, F.; Ohno, K.; Yamauchi, Y.; Odamaki, T.; Yoshikawa, K.; Ito, K.; Kaneko, T. Probiotic Bifidobacterium Breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimer’s Dis. 2020, 77, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, V.; Aljumaah, M.; Azcarate-Peril, M.A.; Gunstad, J. Examining the Cognitive Benefits of Probiotic Supplementation in Physically Active Older Adults: A Randomized Clinical Trial. Appl. Physiol. Nutr. Metab. 2022, 47, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K. Mild Cognitive Impairment: An Epidemiological Perspective. Dialogues Clin. Neurosci. 2004, 6, 401–408. [Google Scholar] [CrossRef]
- What Is Dementia? Symptoms, Types, and Diagnosis. Available online: https://www.nia.nih.gov/health/what-is-dementia (accessed on 15 November 2022).
- Office of Dietary Supplements—Vitamin D. Available online: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/ (accessed on 9 August 2024).
- Du, Y.; Liang, F.; Zhang, L.; Liu, J.; Dou, H. Vitamin D Supplement for Prevention of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Am. J. Ther. 2020, 28, e638–e648. [Google Scholar] [CrossRef]
- Brainard, J.S.; Jimoh, O.F.; Deane, K.H.O.; Biswas, P.; Donaldson, D.; Maas, K.; Abdelhamid, A.S.; Hooper, L.; PUFAH Group. Omega-3, Omega-6, and Polyunsaturated Fat for Cognition: Systematic Review and Meta-Analysis of Randomized Trials. J. Am. Med. Dir. Assoc. 2020, 21, 1439–1450.e21. [Google Scholar] [CrossRef]
- Naomi, R.; Embong, H.; Othman, F.; Ghazi, H.F.; Maruthey, N.; Bahari, H. Probiotics for Alzheimer’s Disease: A Systematic Review. Nutrients 2021, 14, 20. [Google Scholar] [CrossRef]
- Ticinesi, A.; Tana, C.; Nouvenne, A.; Prati, B.; Lauretani, F.; Meschi, T. Gut Microbiota, Cognitive Frailty and Dementia in Older Individuals: A Systematic Review. Clin. Interv. Aging 2018, 13, 1497–1511. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Xing, Y.; Jia, J.; Tang, Y. B Vitamins and Prevention of Cognitive Decline and Incident Dementia: A Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 931–949. [Google Scholar] [CrossRef]
- Kurlowicz, L.; Wallace, M. The Mini-Mental State Examination (MMSE). J. Gerontol. Nurs. 1999, 25, 8–9. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Waring, S.C.; Cullum, C.M.; Hall, J.; Lacritz, L.; Massman, P.J.; Lupo, P.J.; Reisch, J.S.; Doody, R. Staging Dementia Using Clinical Dementia Rating Scale Sum of Boxes Scores. Arch. Neurol. 2008, 65, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
Author, Publication Year | Sample Size | Baseline | Study Design | Age Range | Intervention | Length | Cognitive Outcome | Main Result |
---|---|---|---|---|---|---|---|---|
Fillenbaum et al., 2005 [27] | 616 | Non-demented and AD | Secondary analysis | 72.9 ± 2 | NA—self-reported vitamin C and E supplement use | Long term (15 years) | SPMSQ scores 1; DSM 2; MMSE 3 | =for VC; VE |
von Arnim et al., 2012 [26] | 74 | MCI | Observational—Secondary analysis | 80 ± 9 | NA—serum antioxidant measure (including vitamin C, vitamin E, β-carotene, lycopene, and coenzyme Q10) | Cross-sectional | MMSE 3; semantic word fluency; verbal memory; visual memory | =for VE ↑ for VC; VA |
Kryscio et al., 2017 [24] | 3786 | Non-demented, MCI, and AD | Randomized double blind placebo controlled | 67.6 ± 5.3 (>60 y.o.) | (1) vitamin E (400 IU/day); (2) selenium (200 μg/day); (3) vitamin E (400 IU/day) + selenium (200 μg/day) | Long term (6 years) | MIS 4; TICS-m 5 | =for VE; selenium (men-only trial) |
Devore et al., 2011 [30] | 5395 | Non-demented | Prospective cohort | 67.6 ± 0.5 (>55 y.o.) | NA—dietary antioxidant assessment | Long term (9.6 years) | MMSE 3; GMS 6; DSM 2; NINCDS-ADRDA 7 | ↑ (in subjects with higher dietary vitamin E consumption) |
Koch et al., 2021 [25] | 996 | Non-demented, MCI, and AD | Case cohort | 79 ± 2 | NA—serum antioxidants | Long term (5.9 years) | 3MS 8; CDR 9; ADAS 10 | =for VA; VE |
Author, Publication Year | Sample Size | Baseline | Study Design | Age Range | Intervention | Length | Cognitive Outcome | Main Result |
---|---|---|---|---|---|---|---|---|
Ford et al., 2010 [44] | 299 | Non-demented | Randomized; double blind; placebo controlled | 79 ± 2.8 | (1) 400 μg of B12 + 2 mg of folic acid + 25 mg of B6 once daily | Medium-term intervention (24 months); Long-term FU (8 years) | TICS 1; MMSE 2; BDI 3 | = |
Kwok et al., 2020 [43] | 279 | MCI | Randomized; placebo controlled | 78 ± 5.4 | (1) 500 μg of methylcobalamin + 400 μg of folic acid once daily | Medium term (24 months) | CDR-SOB 4; CDR-global 5; memory Z-score; executive function Z-score; HDRS 6 | = |
Wu et al., 2021 [42] | 545 | MCI | Randomized; placebo controlled; pooled (UK and HK) | 77.1 ± 5.3 | (1) UK: 800 μg of FA + 500 μg of cyanocobalamin + 20 mg of vitamin B6 (2) HK: 400 μg of FA + 500 μg of methylcobalamin | Medium term (24 months) | CDR-global 5; CDR-SOB 4; memory Z-score; executive Z-score, brain atrophy rate | = (+ only in non-aspirin users specifically with the ins/ins genotype) |
McMahon et al., 2006 [41] | 276 | Non-demented | Randomized; double blind; placebo controlled | 73.5 ± 5.8 | (1) 1000 μg of folate + 500 μg of vitamin B12 + 10 mg of vitamin B6 | Medium term (24 months) | MMSE 2; RAVLT 7; WMS 8; COWAT 9; CFT 10 | = |
Kwok et al., 2011 [40] | 140 | MCI | Randomized; double blind; placebo controlled | 78.2 ± 7.9 | (1) 1 mg of methylcobalamin + 5 mg of folic acid daily | Medium term (24 months) | MDRS 11; MMSE 2; CSSD 12 | = |
Aisen et al., 2008 [39] | 409 | AD | Randomized; double blind; controlled | 76.3 ± 8 | (1) 5 mg of folate + 25 mg of vitamin B6 + 1 mg of vitamin B12 daily | Medium term (18 months) | MMSE 2; CDR-SOB 4; ADCS-ADL 12; Neuropsychiatric inventory; Quality of life–AD | = |
Jernerén et al., 2015 [38] | 168 | MCI | Randomized; placebo controlled | 76.6 ± 0.7 | (1) 0.8 mg of folic acid + 20 mg of vitamin B6 + 0.5 mg of vitamin B12 daily | Medium term (24 months) | Brain atrophy rates | = (+ only in subjects with high plasma ω-3 fatty acid levels) |
Uffelen et al., 2008 [37] | 152 | MCI + AD | Randomized; placebo controlled | 75 ± 2.9 | (1) 5 mg of folic acid + 0.4 mg of vitamin B12 + 50 mg of vitamin B6 daily + moderate-intensity walking twice weekly | Medium term (12 months) | MMSE 2; AVLT 13; VFT 14; DSST 15; SCWT-A 16 | = |
Stott et al., 2005 [36] | 185 | Non-demented | Randomized; double blind; placebo controlled | 74 ± 8 | (1) 2.5 mg of folic acid + 500 μg of vitamin B12 + 25 mg of vitamin B6 + 25 mg of riboflavin daily | Medium term (12 months) | MMSE 2; DSST 15 | = |
Smith et al., 2010 [35] | 271 | MCI | Randomized; double blind; placebo controlled | 76.6 ± 5.2 | (1) 0.8 mg of folic acid + 0.5 mg of vitamin B12 + 20 mg of vitamin B6 daily | Medium term (24 months) | MMSE 2; CAMDEX 16, TICS-M 1; Brain atrophy rates; GDS 17 | ↑ |
Orr et al., 2023 [34] | 20 | MCI | Randomized; double blind; placebo controlled | 76.2 ± 9.9 | (1) nicotinamide riboside, 250 mg twice a day | Short term (10 weeks) | MoCA 18; EXIT 19; CLOX 20; GDS 17; GAS 21; Brain atrophy rates | = |
van Soest et al., 2022 [33] | 191 | Non-demented | Randomized; double blind; placebo controlled | 71.6 ± 5.9 | (1) 400 µg of folic acid + 500 µg of vitamin B12 daily | Medium term (24 months) | RAVLT 7; Digit span task; TMT 22; SCWT 16; SDMT 23; Letter fluency | = (+ only in subjects with higher plasma DHA levels) |
Author, Publication Year | Sample Size | Baseline | Study Design | Age Range | Intervention | Length | Cognitive Outcome | Main Result |
---|---|---|---|---|---|---|---|---|
Jia et al., 2019 [49] | 210 | AD | Randomized; double blind; placebo controlled | 67.78 ± 5.19 | (1) 800 IU of vitamin D3 daily | Medium term (12 months) | WAIS-RC 1; ADL 2; IQ score; MMSE 3 | ↑ |
Owusu et al., 2019 [50] | 260 | Non-demented | Randomized; double blind; placebo controlled | 68.95 ± 3.5 | (1) 2400 IU, 3600 IU, or 4800 IU of vitamin D3 with 1200 mg of Ca to achieve a serum level of >30 ng/mL; (2) Placebo with 1200 mg of Ca daily | Long term (3 years) | MMSE 3; orientation to place; attention to calculation; recall; naming; repetition; comprehension; reading; writing; drawing | = (specifically in older African American women) |
Rossom et al., 2012 [51] | 4152 | MCI; AD; non-demented | Randomized; double blind; placebo controlled | 70.8 ± 5.8 | (1) 1000 mg of calcium carbonate and 400 IU of vitamin D3 daily | Long term (7.8 years) | DSM-IV 12; CERAD 4; Burnam score; digits forward and backward; PMA vocabulary; card rotations; letter and category fluency; California Verbal Learning Test; Benton Visual Retention Test; finger tapping | = (specifically in women) |
Bray et al., 2023 [52] | 120 | MCI | Randomized; double blind; placebo controlled | 73.89 ± 6.5 | (1) 60 min of physical exercise; (2) 30 min of cognitive training + 60 min of physical exercise; (3) 60 min of physical exercise + vitamin D3 (10,000 IU/pill) 3 times per week; (4) 30 min of cognitive training + 60 min of physical exercise + vitamin D3 3x/week | Short term (20 weeks) | ADAS-Cog-13 5; TMT 6; FBC 7 | = (↑ if with physical exercise) |
Yang et al., 2020 [53] | 183 | MCI | Randomized; double blind; placebo controlled | 66.9 ± 6.1 | (1) 800 IU of vitamin D3 daily | Medium term (12 months) | WAIS-RC 8; FSIQ 9; MMSE 3 | ↑ |
Zhao et al., 2020 [54] | 1759 | Non-demented | Prospective longitudinal cohort | 76.9 ± 6.5 | NA | Long term (5.8 years) | DSM 10; NINCDS-ADRDA 11 | ↑ |
Llewelly et al., 2010 [55] | 858 | MCI; AD; non-demented | Prospective longitudinal cohort | 73.95 ± 7.9 | NA | Long term (6 years) | MMSE 3; TMT A and B 6 | ↑ |
Author, Publication Year | Sample Size | Baseline | Study Design | Age Range | Intervention | Length | Cognitive Outcome | Main Result |
---|---|---|---|---|---|---|---|---|
Power et al., 2022 [28] | 30 | Non-demented | Randomized; double blind; placebo controlled | 69.03 ± 4.41 | (1) 1 g of fish oil (contains 430 mg of DHA and 90 mg of EPA) + 22 mg of carotenoids (10 mg of lutein, 10 mg of meso-zeaxanthin, and 2 mg of zeaxanthin) + 15 mg of vitamin E daily | Medium term (24 months) | MoCA 1; RBANS 2; CANTAB 3 | ↑ (with ω-3FAs, xanthophyll, carotenoids, and vitamin E) |
Chhetri et al., 2018 [67] | 1293 | MCI | Randomized; double blind; placebo controlled | 75.39 ± 4.32 | (1) 800 mg of DHA+ 225 mg of EPA; (2) multi-domain (nutritional counseling, physical exercise, and cognitive stimulation) + placebo; (3) multi-domain + 800 mg of DHA+ 225 mg of EPA | Long term (3 years) | FCSRT 4; MMSE 5; WAIS-R 6; CNT 7; TMT 8; COWAT 9; DSST 10 | ↑ |
Giudici et al., 2020 [73] | 1445 | Non-demented | Randomized; placebo controlled | 75.3 ± 4.4 | (1) Multi-domain intervention (includes cognitive stimulation + physical activity + nutritional counseling) + 400 mg of DHA + ≤112.5 mg of EPA twice daily; (2) Multi-domain intervention + placebo; (3) 400 mg of DHA + ≤112.5 mg of EPA twice daily | Long term (3 years) | MMSE 5; DSST 10; FCSRT 11; CNT 7 | = |
* Maltais et al., 2022 [68] | 1680 | Non-demented | Secondary data analysis | 75.9 ± 4.7 | (1) 400 mg of DHA + 112.5 mg of EPA twice daily | Long term (5 years) | FCSRT 11; MMSE 5; DSST 10; WAIS 12; CNT 7; COWAT 9; TMT 8; CDR score 13 | ↑ (Subjects with high Hcy levels benefit less) |
Tabue-Tegu et al., 2018 [74] | 1464 | Non-demented | Randomized; placebo controlled | 75.37 ± 4.62 | (1) 800 mg of DHA; (2) Multi-domain intervention (includes nutrition, physical activity, and cognition) | Long term (3 years) | MMSE 5; TMT 8; FCSRT 11; DSST 10; CNT 7; COWAT 9 | = |
Rondanelli et al., 2012 [69] | 25 | MCI | Randomized; placebo controlled | 86 ± 6 | (1) DHA (720 mg) + EPA (286 mg) + vitamin E (16 mg) + soy phospholipids (160 mg) + tryptophan (95 mg) + melatonin (5 mg) | Short term (12 weeks) | MMSE 5; Short-term memory; Long-term memory; Attentional abilities; Visuo-constructional and visuo-spatial abilities | ↑ |
Daďová et al., 2022 [75] | 55 | Not specified | Randomized; placebo controlled | 70.9 ± 3.9 | (1) 105 mg of DHA + 125 mg of EPA + exercise training; (2) placebo + exercise training | Short term (16 weeks) | POBAV 14; BDNF 15 | = (women only; ↑ in physically active subjects) |
Van de Rest et al., 2008 [76] | 302 | Non-demented | Randomized; double blind; placebo controlled | 69.7 ± 3.4 | (1) 400 mg of EPA + DHA; (2) 1800 mg of EPA + DHA | Medium term (6 months) | Word-Learning Test; DGS 16; TMT 8; SCWT 17; VFT 18 | = |
Thomas et al., 2020 [70] | 1279 | Non-demented | Prospective longitudinal cohort | 74.3 ± 4.9 | NA—examined plasma EPA and DHA | Long term (17 years) | CDR13-global; MMSE 5; TMT-A 8; MRI 19 | ↑ |
Stavrinou et al., 2020 [29] | 46 | MCI | Randomized; double blind; placebo controlled | 78.8 ± 7.3 | (1) 810 mg of EPA + 4140 mg of DHA + 1800 mg of gamma-linolenic acid + 3150 mg of linoleic acid + 0.6 mg of vitamin A, 22 mg of vitamin E + 760 mg of pure γ-tocopherol | Medium term (6 months) | ACE-R 20; MMSE 5; STROOP 21 | ↑ |
Author, Publication Year | Sample Size | Baseline | Study Design | Age Range | Intervention | Length | Cognitive Outcome | Main Result |
---|---|---|---|---|---|---|---|---|
Fei et al., 2023 [78] | 42 | MCI | Randomized; placebo controlled | 76.40 ± 9.61 | (1) 2 g (>2 × 1010 CFU/g) of probiotics daily (includes L. plantarum, L. rhamnosus, L. johnsonii, L. paracasei, L. salivarius, L. acidophilus, L. casei, L. reuteri, L. fermentum, L. lactis, Bifido. lactis, Bifido. animalis, and Bifido. infantis) | Short term (12 weeks) | MMSE 1; MoCA scores 2; PSQI 3 | ↑ |
Hsu et al., 2023 [79] | 40 | AD | Randomized; double blind; controlled | 75.8 ± 7.3 | (1) 1 × 1010 CFU/capsule of probiotics daily (Bifidobacterium longum subsp. infantis BLI-02, B. breve Bv-889, B. animalis subsp. lactis CP-9, B. bifidum VDD088, and Lactobacillus plantarum PL-02) | Short term (12 weeks) | MMSE 1; CDR 4; ADAS-Cog 5; ADL test 6 | = |
Kobayashi et al., 2019 [80] | 27 | MCI | Open-label, single-arm study | 83.2 ± 4.9 | (1) >1 × 1010 CFU/capsule of B. breve A1 daily | Short term (24 weeks) | MMSE 1; DSST 7; POMS2 8; TMD 9 | ↑ |
Asaoka et al., 2022 [81] | 130 | MCI | Randomized; double blind; placebo controlled | 78 ± 6.1 | (1) B. breve MCC1274 (contains 2 × 1010 CFU) | Short term (24 weeks) | ADAS-Cog 5; MMSE 1; brain atrophy rates; VSRAD scores 10 | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; DeJager, J.; Gardner, E.M. Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review. Nutrients 2024, 16, 3567. https://doi.org/10.3390/nu16203567
Fu Q, DeJager J, Gardner EM. Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review. Nutrients. 2024; 16(20):3567. https://doi.org/10.3390/nu16203567
Chicago/Turabian StyleFu, Qi, Jill DeJager, and Elizabeth M. Gardner. 2024. "Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review" Nutrients 16, no. 20: 3567. https://doi.org/10.3390/nu16203567
APA StyleFu, Q., DeJager, J., & Gardner, E. M. (2024). Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review. Nutrients, 16(20), 3567. https://doi.org/10.3390/nu16203567