Lifestyle Behaviours in Pre-Schoolers from Southern Spain—A Structural Equation Model According to Sex and Body Mass Index
Highlights
- The present study collectively examined various lifestyle determinants (screen time, sleep time, physical fitness, Mediterranean diet adherence, and eating behaviors) in preschool-aged children.
- Prolonged screen time is linked to lower physical fitness, sleep time, and Mediterranean diet adherence but is positively correlated with unhealthy eating behaviors and a higher body mass index.
- The present study emphasizes the importance of reducing screen time and promoting physical activity and healthy eating behaviors that mitigate childhood obesity risk.
- The sub-group analysis highlights the necessity of considering sex and body mass index in developing targeted health interventions.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Instruments
2.4. Statistical Analysis
Justification of Model Specification and Goodness of Fit Indices
3. Results
4. Discussion
Limitations, Strengths and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horesh, A.; Tsur, A.M.; Bardugo, A.; Twig, G. Adolescent and childhood obesity and excess morbidity and mortality in young adulthood-a systematic review. Curr. Obes. Rep. 2021, 10, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 August 2024).
- Aranceta-Bartrina, J.; Gianzo-Citores, M.; Pérez-Rodrigo, C. Prevalencia de sobrepeso, obesidad y obesidad abdominal en población española entre 3 y 24 años. Estudio ENPE. Rev. Esp. Cardiol. 2020, 73, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Aesan—Agencia Española de Seguridad Alimentaria y Nutrición. Available online: https://www.aesan.gob.es/AECOSAN/web/nutricion/detalle/aladino_2019.htm (accessed on 28 August 2024).
- López-Sobaler, A.M.; Aparicio, A.; Salas-González, M.D.; Loria Kohen, V.; Bermejo López, L.M. Obesidad en la población infantil en España y factores asociados. Nutr. Hosp. 2021, 38, 27–30. [Google Scholar]
- WHO European Childhood Obesity Surveillance Initiative (COSI) Report on the Fourth Round of Data Collection, 2015–2017. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2021-2495-42251-58349 (accessed on 28 August 2024).
- Estudio PASOS. Available online: https://gasolfoundation.org/es/estudio-pasos/ (accessed on 29 August 2024).
- Moreno, L.A.; Ochoa, M.C.; Wärnberg, J.; Marti, A.; Martínez, J.A.; Marcos, A. Treatment of obesity in children and adolescents. How nutrition can work? Int. J. Pediatr. Obes. 2008, 3 (Suppl. S1), 72–77. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kelly, A.S. Review of childhood obesity: From epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef]
- Poorolajal, J.; Sahraei, F.; Mohamdadi, Y.; Doosti-Irani, A.; Moradi, L. Behavioral factors influencing childhood obesity: A systematic review and meta-analysis. Obes. Res. Clin. Prac. 2020, 14, 109–118. [Google Scholar] [CrossRef]
- Ródenas-Munar, M.; Monserrat-Mesquida, M.; Gómez, S.F.; Wärnberg, J.; Medrano, M.; González-Gross, M.; Gusi, N.; Aznar, S.; Marín-Cascales, E.; González-Valeiro, M.A.; et al. Perceived quality of life is related to a healthy lifestyle and related outcomes in Spanish children and adolescents: The physical activity, sedentarism, and obesity in Spanish study. Nutrients 2023, 15, 5125. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61 (Suppl. S6), 1402S–1406S. [Google Scholar] [CrossRef] [PubMed]
- To Grow up Healthy, Children Need to Sit Less and Play More. Available online: https://www.who.int/news/item/24-04-2019-to-grow-up-healthy-children-need-to-sit-less-and-play-more (accessed on 29 August 2024).
- Manzano-Carrasco, S.; Felipe, J.L.; Sanchez-Sanchez, J.; Hernandez-Martin, A.; Gallardo, L.; Garcia-Unanue, J. Weight status, adherence to the Mediterranean diet, and physical fitness in Spanish children and adolescents: The active health study. Nutrients 2020, 12, 1680. [Google Scholar] [CrossRef]
- Lee, E.Y.; Yoon, K.H. Epidemic obesity in children and adolescents: Risk factors and prevention. Front Med. 2018, 12, 658–666. [Google Scholar]
- 1 de Cada 3 Menores de 5 años Duerme mal por la Noche. Available online: https://www.cope.es/actualidad/sociedad/noticias/menores-anos-duerme-mal-por-noche-20230614_2761142 (accessed on 29 August 2024).
- Huo, J.; Kuang, X.; Xi, Y.; Xiang, C.; Yong, C.; Liang, J.; Zou, H.; Lin, Q. Screen time and its association with vegetables, fruits, snacks and sugary sweetened beverages intake among chinese preschool children in Changsha, Hunan province: A cross-sectional study. Nutrients 2022, 14, 4086. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Berges, M.L.; Santaliestra-Pasias, A.M.; Mouratidou, T.; De Miguel-Etayo, P.; Androutsos, O.; De Craemer, M.; Galcheva, S.; Koletzko, B.; Kulaga, Z.; Manios, Y.; et al. Combined longitudinal effect of physical activity and screen time on food and beverage consumption in european preschool children: The toybox-study. Nutrients 2019, 11, 1048. [Google Scholar] [CrossRef] [PubMed]
- Peral-Suárez, Á.; Bermejo, L.M.; Salas-González, M.D.; Cuadrado-Soto, E.; Lozano-Estevan, M.D.C.; Loria-Kohen, V.; González-Rodríguez, L.G.; Aparicio, A.; Díaz-Olalla, J.M.; López-Sobaler, A.M. Lifestyle clusters of diet quality, sleep, and screen time and associations with weight status in children from Madrid city: ENPIMAD study. Nutrients 2024, 16, 2096. [Google Scholar] [CrossRef]
- Aragón-Martín, R.; Gómez-Sánchez, M.d.M.; Martínez-Nieto, J.M.; Novalbos-Ruiz, J.P.; Segundo-Iglesias, C.; Santi-Cano, M.J.; Castro-Piñero, J.; Lineros-González, C.; Hernán-García, M.; Schwarz-Rodríguez, M.; et al. Independent and combined association of lifestyle behaviours and physical fitness with body weight status in schoolchildren. Nutrients 2022, 14, 1208. [Google Scholar] [CrossRef] [PubMed]
- Todendi, P.F.; Martínez, J.A.; Reuter, C.P.; Matos, W.L.; Franke, S.I.R.; Razquin, C.; Milagro, F.I.; Kahl, V.F.S.; Fiegenbaum, M.; Valim, A.R.d.M. Biochemical profile, eating habits, and telomere length among Brazilian children and adolescents. Nutrition 2020, 71, 110645. [Google Scholar] [CrossRef]
- Jimeno-Martínez, A.; Maneschy, I.; Moreno, L.A.; Bueno-Lozano, G.; De Miguel-Etayo, P.; Flores-Rojas, K.; Jurado-Castro, J.M.; de Lamas, C.; Vázquez-Cobela, R.; Martinez-Lacruz, R.; et al. Reliability and validation of the child eating behavior questionnaire in 3- to 6-year-old Spanish children. Front. Psychol. 2022, 13, 705912. [Google Scholar]
- Fang, Z.; Spaeth, A.M.; Ma, N.; Zhu, S.; Hu, S.; Goel, N.; Detre, J.A.; Dinges, D.F.; Rao, H. Altered salience network connectivity predicts macronutrient intake after sleep deprivation. Sci. Rep. 2015, 5, 8215. [Google Scholar] [CrossRef]
- Mougharbel, F.; Valois, D.D.; Lamb, M.; Buchholz, A.; Obeid, N.; Flament, M.; Goldfield, G.S. Mediating role of disordered eating in the relationship between screen time and BMI in adolescents: Longitudinal findings from the Research on Eating and Adolescent Lifestyles (REAL) study. Public. Health Nutr. 2020, 23, 3336–3345. [Google Scholar] [CrossRef]
- Jones, R.A.; Hinkley, T.; Okely, A.D.; Salmon, J. Tracking physical activity and sedentary behavior in childhood: A systematic review. Am. J. Prev. Med. 2013, 44, 651–658. [Google Scholar] [CrossRef]
- Di Nucci, A.; Pilloni, S.; Scognamiglio, U.; Rossi, L. Adherence to mediterranean diet and food neophobia occurrence in children: A study carried out in Italy. Nutrients 2023, 15, 5078. [Google Scholar] [CrossRef]
- Leonhardt, M.; Overå, S. Are there differences in video gaming and use of social media among boys and girls?—A mixed methods approach. Int. J. Environ. Res. Public Health 2021, 18, 6085. [Google Scholar] [CrossRef] [PubMed]
- Gaina, A.; Sekine, M.; Hamanishi, S.; Chen, X.; Kagamimori, S. Gender and temporal differences in sleep-wake patterns in Japanese schoolchildren. Sleep 2005, 28, 337–342. [Google Scholar]
- Peral-Suárez, Á.; Cuadrado-Soto, E.; Perea, J.M.; Navia, B.; López-Sobaler, A.M.; Ortega, R.M. Physical activity practice and sports preferences in a group of Spanish schoolchildren depending on sex and parental care: A gender perspective. BMC Pediatr. 2020, 20, 337. [Google Scholar]
- Deslippe, A.L.; Bergeron, C.; Cohen, T.R. Boys and girls differ in their rationale behind eating: A systematic review of intrinsic and extrinsic motivations in dietary habits across countries. Front. Nutr. 2023, 10, 1256189. [Google Scholar]
- Wilkie, H.J.; Standage, M.; Gillison, F.B.; Cumming, S.P.; Katzmarzyk, P.T. Multiple lifestyle behaviours and overweight and obesity among children aged 9–11 years: Results from the UK site of the International Study of Childhood Obesity, Lifestyle and the Environment. BMJ Open 2016, 6, e010677. [Google Scholar] [CrossRef]
- Magee, C.; Caputi, P.; Iverson, D. The longitudinal relationship between sleep duration and body mass index in children: A growth mixture modeling approach. J. Dev. Behav. Pediatr. 2013, 34, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Barbry, A.; Carton, A.; Ovigneur, H.; Coquart, J. Relationships between sports club participation and physical fitness and Body Mass Index in childhood. J. Sports Med. Phys. Fit. 2021, 62, 931–937. [Google Scholar] [CrossRef]
- Jalo, E.; Konttinen, H.; Vepsäläinen, H.; Chaput, J.-P.; Hu, G.; Maher, C.; Maia, J.; Sarmiento, O.L.; Standage, M.; Tudor-Locke, C.; et al. Emotional eating, health behaviours, and obesity in children: A 12-country cross-sectional study. Nutrients 2019, 11, 351. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, J.; Chen, Y.; Li, W.; Xie, X.; Zhang, T.; Liu, G.; Chen, F. Associations of BMI growth rates and body composition with cardiometabolic risks in Chinese preschool children. J. Clin. Endocrinol. Metab. 2024. [Google Scholar] [CrossRef]
- Ebron, K.; Andersen, C.J.; Aguilar, D.; Blesso, C.N.; Barona, J.; Dugan, C.E.; Jones, J.L.; Al-Sarraj, T.; Fernandez, M.L. A Larger Body Mass Index is Associated with Increased Atherogenic Dyslipidemia, Insulin Resistance, and Low-Grade Inflammation in Individuals with Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2015, 13, 458–464. [Google Scholar] [CrossRef]
- de Souza, W.C.; Grzelczak, M.T.; Reiser, F.C.; de Lima, V.A.; de Souza, W.B.; Alarcón-Meza, E.I.; Brasilino, F.F.; Mascarenhas, L.P.G. Relação entre o IMC e o IAC em meninos pré-escolares. Rev. Bras. Qual. Vida. 2015, 7, 48–55. [Google Scholar] [CrossRef]
- Graversen, L.; Sørensen, T.I.A.; Petersen, L.; Sovio, U.; Kaakinen, M.; Sandbaek, A.; Laitinen, J.; Taanila, A.; Pouta, A.; Järvelin, M.-R.; et al. Preschool weight and body mass index in relation to central obesity and metabolic syndrome in adulthood. PLoS ONE 2014, 9, e89986. [Google Scholar] [CrossRef]
- Janssen, X.; Martin, A.; Hughes, A.R.; Hill, C.M.; Kotronoulas, G.; Hesketh, K.R. Associations of screen time, sedentary time and physical activity with sleep in under 5s: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 49, 101226. [Google Scholar] [CrossRef]
- Nathe, J.M.; Oskoui, T.T.; Weiss, E.M. Parental Views of Facilitators and Barriers to Research Participation: Systematic Review. Pediatrics 2023, 151, e2022058067. [Google Scholar] [CrossRef] [PubMed]
- Altavilla, C.; Caballero-Pérez, P. An update of the KIDMED questionnaire, a Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2019, 22, 2543–2547. [Google Scholar] [CrossRef]
- Sánchez-López, M.; García-Hermoso, A.; Ortega, F.B.; Moliner-Urdiales, D.; Labayen, I.; Castro-Piñero, J.; Benito, P.J.; Vicente-Rodríguez, G.; Sanchis-Moysi, J.; Cantallops, J.; et al. Validity and reliability of the International fItness scale (IFIS) in preschool children. Eur. J. Sport. Sci. 2023, 23, 818–828. [Google Scholar] [CrossRef]
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the children’s eating behaviour questionnaire. J. Child Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef]
- Sobradillo, B.; Aguirre, A.; Aresti, U.; Bilbao, A.; Fernández-Ramos, C.; Lizárraga, A.; Lorenzo, H.; Madariaga, L.; Rica, I.; Ruiz, I.; et al. Curvas y Tablas de Crecimiento. Estudios Longitudinal y Transversal; Fundación Faustino Orbegozo: Bilbao, Spain, 2004. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: New York, NY, USA, 2011; 432p. [Google Scholar]
- Marsh, H.W. Application of confirmatory factor analysis and structural equation modeling in sport and exercise psychology. In Handbook of Sport Psychology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 774–798. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: London, UK, 2016. [Google Scholar]
- Potter, M.; Spence, J.C.; Boulé, N.; Stearns, J.A.; Carson, V. Behavior tracking and 3-year longitudinal associations between physical activity, screen time, and fitness among young children. Pediatr. Exerc. Sci. 2018, 30, 132–141. [Google Scholar] [CrossRef]
- Xu, H.; Wen, L.M.; Hardy, L.L.; Rissel, C. Associations of outdoor play and screen time with nocturnal sleep duration and pattern among young children. Acta Paediatr. 2016, 105, 297–303. [Google Scholar] [CrossRef]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar]
- Avery, A.; Anderson, C.; McCullough, F. Associations between children’s diet quality and watching television during meal or snack consumption: A systematic review. Matern. Child Nutr. 2017, 13, e12428. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; A Ho-Urriola, J.; González, A.; Smalley, S.V.; Domínguez-Vásquez, P.; Cataldo, R.; Obregón, A.M.; Amador, P.; Weisstaub, G.; Hodgson, M.I. Association between eating behavior scores and obesity in Chilean children. Nutr. J. 2011, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Rocka, A.; Jasielska, F.; Madras, D.; Krawiec, P.; Pac-Kożuchowska, E. The impact of digital screen time on dietary habits and physical activity in children and adolescents. Nutrients 2022, 14, 2985. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Martínez, A.; Maneschy, I.; Rupérez, A.I.; Moreno, L.A. Factores determinantes del comportamiento alimentario y su impacto sobre la ingesta y la obesidad en niños. J. Behav. Feed. 2021, 1, 60–71. [Google Scholar] [CrossRef]
- Lazarou, C.; Panagiotakos, D.B.; Matalas, A.L. Physical activity mediates the protective effect of the Mediterranean diet on children’s obesity status: The CYKIDS study. Nutrition 2010, 26, 61–67. [Google Scholar] [CrossRef]
- Latorre Román, P.Á.; Moreno Del Castillo, R.; Lucena Zurita, M.; Salas Sánchez, J.; García-Pinillos, F.; Mora López, D. Physical fitness in preschool children: Association with sex, age and weight status. Child. Care Health Dev. 2017, 43, 267–273. [Google Scholar] [CrossRef]
- Litterbach, E.K.; Laws, R.; Zheng, M.; Campbell, K.J.; Spence, A.C. “That’s the routine”: A qualitative exploration of mealtime screen use in lower educated Australian families with young children. Appetite 2023, 180, 106377. [Google Scholar]
- Zerón-Rugerio, M.F.; Santamaría-Orleans, A.; Izquierdo-Pulido, M. Late bedtime combined with more screen time before bed increases the risk of obesity and lowers diet quality in Spanish children. Appetite 2024, 196, 107293. [Google Scholar] [PubMed]
- Faith, M.S.; Carnell, S.; Kral, T.V.E. Genetics of food intake self-regulation in childhood: Literature review and research opportunities. Hum. Hered. 2013, 75, 80–89. [Google Scholar] [CrossRef]
- González, N.F.; Rivas, A.D. Actividad física y ejercicio en la mujer. Rev. Colomb. Cardiol. 2018, 25, 125–131. [Google Scholar] [CrossRef]
- Grande-López, V. La hipersexualización femenina en los medios de comunicación como escaparate de belleza y éxito. Commun. Pap. 2019, 8, 21–32. [Google Scholar] [CrossRef]
- Gil-Llario, M.D.; Muñoz, V.; Ceccato, R.; Ballester-Arnal, R.; Giménez-García, C. Relationship between mothers’ thoughts and behaviors and their daughters’ development of the body image. Rev. Psicol. Clínica Niños Adolesc. 2019, 6, 30–35. [Google Scholar] [CrossRef]
- Herle, M.; Fildes, A.; Steinsbekk, S.; Rijsdijk, F.; Llewellyn, C.H. Emotional over- and under-eating in early childhood are learned not inherited. Sci. Rep. 2017, 7, 9092. [Google Scholar]
- Štefan, L.; Čule, M.; Milinović, I.; Juranko, D.; Sporiš, G. The Relationship between Lifestyle Factors and Body Compositionin Young Adults. Int. J. Environ. Res. Public. Health 2017, 14, 893. [Google Scholar] [CrossRef]
- Knowles, A.M.; Niven, A.; Fawkner, S. A Qualitative Examination of Factors Related to the Decrease in Physical Activity Behavior in Adolescent Girls During the Transition from Primary to Secondary School. J. Phys. Act. Health 2011, 8, 1084–1091. [Google Scholar]
- Davison, K.K.; Cutting, T.M.; Birch, L.L. Parents’ activity-related parenting practices predict girls’ physical activity. Med. Sci. Sports Exerc. 2003, 35, 1589–1595. [Google Scholar] [PubMed]
- Camacho-Miñano, M.J.; LaVoi, N.M.; Barr-Anderson, D.J. Interventions to promote physical activity among young and adolescent girls: A systematic review. Health Educ. Res. 2011, 26, 1025–1049. [Google Scholar] [CrossRef]
- Pulimeno, M.; Piscitelli, P.; Colazzo, S.; Colao, A.; Miani, A. School as ideal setting to promote health and wellbeing among young people. Health Promot. Perspect. 2020, 10, 316–324. [Google Scholar] [CrossRef]
- Descarpentrie, A.; Calas, L.; Cornet, M.; Heude, B.; Charles, M.A.; Avraam, D.; Brescianini, S.; Cadman, T.; Elhakeem, A.; Fernández-Barrés, S.; et al. Lifestyle patterns in European preschoolers: Associations with socio-demographic factors and body mass index. Pediatr. Obes. 2023, 18, e13079. [Google Scholar] [CrossRef]
- Asiamah, N.; Mensah, H.K.; Oteng-Abayie, E.F. Do larger samples really lead to more precise estimates? A simulation study. Am. J. Educ. Res. 2017, 5, 9–17. [Google Scholar]
- Sammons, H.M.; Atkinson, M.; Choonara, I.; Stephenson, T. What motivates British parents to consent for research? A questionnaire study. BMC Pediatr. 2007, 7, 12. [Google Scholar] [CrossRef] [PubMed]
Sex | BMI | ||||||
---|---|---|---|---|---|---|---|
Overall (n = 653) | Male (n = 317) | Female (n = 336) | p | Healthy Weight (n = 580) | Overweight/ Obese (n = 73) | p | |
Age (years) | 4.78 ± 0.93 | 4.78 ± 0.97 | 4.78 ± 0.90 | 0.892 | 4.76 ± 0.93 | 4.92 ± 0.92 | 0.210 |
BMI (kg/m2) | 15.53 ± 2.09 | 15.52 ± 1.92 | 15.53 ± 2.23 | 0.691 | |||
ST (hours) | 1.78 ± 1.07 | 1.81 ± 1.11 | 1.75 ± 1.02 | 0.604 | 1.76 ± 1.06 | 1.94 ± 1.12 | 0.271 |
SLT (hours) | 10.35 ± 0.66 | 10.29 ± 0.61 | 10.41 ± 0.70 | 0.011 | 10.37 ± 0.64 | 10.19 ± 0.74 | 0.147 |
MD adherence | 7.17 ± 2.03 | 7.18 ± 2.09 | 7.16 ± 1.97 | 0.999 | 7.21 ± 2.02 | 6.79 ± 2.05 | 0.115 |
Overall PF | 4.11 ± 0.57 | 4.14 ± 0.59 | 4.08 ± 0.55 | 0.104 | 4.12 ± 0.57 | 4.01 ± 0.55 | 0.069 |
GPF | 4.28 ± 0.65 | 4.30 ± 0.067 | 4.26 ± 0.62 | 0.267 | 4.30 ± 0.64 | 4.14 ± 0.65 | 0.045 |
CF | 4.05 ± 0.75 | 4.09 ± 0.76 | 4.02 ± 0.74 | 0.203 | 4.08 ± 0.75 | 3.82 ± 0.71 | 0.003 |
MS | 4.02 ± 0.70 | 4.06 ± 0.71 | 3.99 ± 0.69 | 0.223 | 4.03 ± 0.69 | 4.01 ± 0.75 | 0.902 |
SA | 4.12 ± 0.72 | 4.17 ± 0.72 | 4.07 ± 0.73 | 0.074 | 4.13 ± 0.74 | 4.05 ± 0.62 | 0.237 |
B | 4.07 ± 0.71 | 4.08 ± 0.74 | 4.07 ± 0.69 | 0.765 | 4.08 ± 0.72 | 4.05 ± 0.62 | 0.495 |
PRO-I | 2.51 ± 0.56 | 2.50 ± 0.56 | 2.51 ± 0.56 | 0.998 | 2.48 ± 0.53 | 2.74 ± 0.68 | 0.003 |
FR | 2.22 ± 0.84 | 2.17 ± 0.80 | 2.27 ± 0.87 | 0.258 | 2.18 ± 0.80 | 2.54 ± 1.06 | 0.008 |
EO | 1.76 ± 0.64 | 1.74 ± 0.65 | 1.78 ± 0.64 | 0.442 | 1.73 ± 0.62 | 1.97 ± 0.77 | 0.015 |
EF | 3.59 ± 0.80 | 3.60 ± 0.82 | 3.58 ± 0.78 | 0.407 | 3.56 ± 0.80 | 3.83 ± 0.74 | 0.006 |
DD | 2.46 ± 0.87 | 2.48 ± 0.91 | 2.43 ± 0.84 | 0.560 | 2.44 ± 0.86 | 2.61 ± 0.96 | 0.223 |
ANT-I | 2.90 ± 0.55 | 2.86 ± 0.56 | 2.94 ± 0.53 | 0.019 | 2.92 ± 0.56 | 2.77 ± 0.53 | 0.023 |
SR | 2.82 ± 0.67 | 2.75 ± 0.69 | 2.88 ± 0.64 | 0.004 | 2.84 ± 0.67 | 2.66 ± 0.67 | 0.037 |
SE | 3.08 ± 0.79 | 3.02 ± 0.81 | 3.13 ± 0.77 | 0.050 | 3.10 ± 0.79 | 2.92 ± 0.71 | 0.093 |
EU | 2.96 ± 0.60 | 2.94 ± 0.60 | 2.98 ± 0.60 | 0.429 | 2.98 ± 0.59 | 2.86 ± 0.61 | 0.129 |
FF | 2.76 ± 0.84 | 2.73 ± 0.86 | 2.80 ± 0.81 | 0.193 | 2.78 ± 0.84 | 2.65 ± 0.81 | 0.211 |
BMI | ST | SLT | Overall PF | MD | ANT-I | |
---|---|---|---|---|---|---|
ST | 0.074 | |||||
SLT | −0.053 | −0.219 ** | ||||
Overall PF | −0.025 | −0.152 ** | 0.093 * | |||
MD | −0.062 | −0.262 ** | 0.235 ** | 0.113 * | ||
ANT-I | −0.105 ** | 0.144 ** | −0.106 ** | −0.160 ** | −0.287 ** | |
PRO-I | 0.178 ** | 0.002 | 0.015 | 0.067 | 0.039 | −0.403 ** |
Association Between Variables | RW | SRW | |||
---|---|---|---|---|---|
Estimation | SE | CR | p | Estimation | |
PF ← ST | −0.073 | 0.021 | −3.466 | *** | −0.137 |
PF ← SLT | 0.050 | 0.034 | 1.451 | 0.147 | 0.058 |
MD ← SLT | 0.559 | 0.117 | 4.764 | *** | 0.181 |
MD ← PF | 0.233 | 0.133 | 1.750 | 0.080 | 0.066 |
MD ← ST | −0.403 | 0.073 | −5.537 | *** | −0.212 |
ANT-I ← ST | 0.032 | 0.020 | 1.554 | 0.120 | 0.062 |
ANT-I ← SLT | −0.012 | 0.033 | −0.379 | 0.705 | −0.015 |
ANT-I ← MD | −0.066 | 0.011 | −6.088 | *** | −0.242 |
PRO-I ← ANT-I | −0.415 | 0.038 | −10.924 | *** | −0.407 |
PRO-I ← MD | −0.020 | 0.010 | −1.941 | 0.052 | −0.072 |
BMI ← ANT-I | −0.264 | 0.165 | −1.606 | 0.108 | −0.069 |
BMI ← PRO-I | 0.566 | 0.156 | 3.632 | *** | 0.152 |
BMI ← MD | −0.088 | 0.041 | −2.130 | 0.033 | −0.085 |
SLT ↔ ST | −0.155 | 0.028 | −5.508 | *** | −0.221 |
Association Between Variables | RW | SRW | |||
---|---|---|---|---|---|
Estimation | SE | CR | p | Estimation | |
PF ← ST | −0.079 | 0.029 | −2.693 | 0.007 | −0.147 |
PF ← SLT | 0.109 | 0.043 | 2.523 | 0.012 | 0.137 |
MD ← SLT | 0.553 | 0.149 | 3.716 | *** | 0.196 |
MD ← PF | 0.034 | 0.186 | 0.185 | 0.853 | 0.010 |
MD ← ST | −0.497 | 0.101 | −4.908 | *** | −0.259 |
ANT-I ← ST | 0.011 | 0.029 | 0.395 | 0.693 | 0.022 |
ANT-I ← SLT | −0.056 | 0.042 | −0.1324 | 0.185 | −0.074 |
ANT-I ← MD | −0.047 | 0.015 | −3.067 | 0.002 | −0.175 |
PRO-I ← ANT-I | −0.448 | 0.054 | −8.351 | *** | −0.424 |
PRO-I ← MD | −0.018 | 0.014 | −1.256 | 0.209 | −0.064 |
BMI ← ANT-I | −0.361 | 0.251 | −1.436 | 0.151 | −0.085 |
BMI ← PRO-I | −696 | 0.233 | 2.988 | 0.003 | 0.174 |
BMI ← MD | −0.129 | 0.061 | −2.094 | 0.036 | −0.114 |
SLT ↔ ST | −0.149 | 0.040 | −3.764 | *** | −0.210 |
Association Between Variables | RW | SRW | |||
---|---|---|---|---|---|
Estimation | SE | CR | p | Estimation | |
PF ← ST | −0.071 | 0.030 | −2.361 | 0.018 | −0.135 |
PF ← SLT | −0.024 | 0.055 | −0.426 | 0.570 | −0.024 |
MD ← SLT | 0.614 | 0.189 | 3.241 | 0.001 | 0.179 |
MD ← PF | 0.406 | 0.193 | 2.108 | 0.035 | 0.114 |
MD ← ST | −0.319 | 0.104 | −3.058 | 0.002 | −0.170 |
ANT-I ← ST | 0.054 | 0.028 | 1.925 | 0.054 | 0.107 |
ANT-I ← SLT | 0.028 | 0.052 | −544 | 0.587 | 0.030 |
ANT-I ← MD | −0.082 | 0.015 | −5.469 | *** | −0.302 |
PRO-I ← ANT-I | −0.393 | 0.054 | −7.216 | *** | −0.397 |
PRO-I ← MD | −0.021 | 0.015 | −1.446 | 0.148 | −0.079 |
BMI ← ANT-I | −0.154 | 0.215 | −0.715 | 0.474 | −0.045 |
BMI ← PRO-I | 0.427 | 0.206 | 2.069 | 0.039 | 0.124 |
BMI ← MD | −0.043 | 0.054 | −0.790 | 0.430 | −0.047 |
SLT ↔ ST | −0.156 | 0.039 | −4.021 | *** | −0.232 |
Association Between Variables | RW | SRW | |||
---|---|---|---|---|---|
Estimation | SE | CR | p | Estimation | |
PF ← ST | −0.064 | 0.023 | −2.819 | 0.005 | −0.119 |
PF ← SLT | 0.056 | 0.038 | 1.496 | 0.135 | 0.063 |
MD ← SLT | 0.491 | 0.127 | 3.855 | *** | 0.157 |
MD ← PF | 0.147 | 0.141 | 1.043 | 0.297 | 0.042 |
MD ← ST | −0.446 | 0.078 | −5.736 | *** | −0.234 |
ANT-I ← ST | 0.030 | 0.022 | 1.396 | 0.163 | 0.059 |
ANT-I ← SLT | −0.036 | 0.035 | −1.010 | 0.313 | −0.042 |
ANT-I ← MD | −0.073 | 0.011 | −6.408 | *** | −0.268 |
PRO-I ← ANT-I | −0.406 | 0.039 | −10.485 | *** | −0.417 |
PRO-I ← MD | −0.021 | 0.011 | −1.966 | 0.049 | −0.078 |
SLT ↔ ST | −0.161 | 0.029 | −5.529 | *** | −0.236 |
Association Between Variables | RW | SRW | |||
---|---|---|---|---|---|
Estimation | SE | CR | p | Estimation | |
PF ← ST | −0.123 | 0.056 | −2.206 | 0.027 | −0.137 |
PF ← SLT | −0.001 | 0.085 | −0.014 | 0.989 | 0.058 |
MD ← SLT | 0.880 | 0.294 | 2.991 | 0.003 | 0.181 |
MD ← PF | 1.058 | 0.410 | 2.579 | 0.010 | 0.066 |
MD ← ST | −0.057 | 0.201 | −0.283 | 0.777 | −0.212 |
ANT-I ← ST | 0.028 | 0.055 | 0.506 | 0.613 | 0.062 |
ANT-I ← SLT | 0.062 | 0.088 | 0.699 | 0.485 | −0.015 |
ANT-I ← MD | 0.024 | 0.032 | −0.749 | 0.454 | −0.242 |
PRO-I ← ANT-I | −0.398 | 0.146 | −2.725 | 0.006 | −0.407 |
PRO-I ← MD | 0.009 | 0.068 | −0.233 | 0.815 | −0.072 |
SLT ↔ ST | −0.078 | 0.097 | −0.809 | 0.419 | −0.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villodres, G.C.; Padial-Ruz, R.; Salas-Montoro, J.-A.; Muros, J.J. Lifestyle Behaviours in Pre-Schoolers from Southern Spain—A Structural Equation Model According to Sex and Body Mass Index. Nutrients 2024, 16, 3582. https://doi.org/10.3390/nu16213582
Villodres GC, Padial-Ruz R, Salas-Montoro J-A, Muros JJ. Lifestyle Behaviours in Pre-Schoolers from Southern Spain—A Structural Equation Model According to Sex and Body Mass Index. Nutrients. 2024; 16(21):3582. https://doi.org/10.3390/nu16213582
Chicago/Turabian StyleVillodres, Gracia Cristina, Rosario Padial-Ruz, José-Antonio Salas-Montoro, and José Joaquín Muros. 2024. "Lifestyle Behaviours in Pre-Schoolers from Southern Spain—A Structural Equation Model According to Sex and Body Mass Index" Nutrients 16, no. 21: 3582. https://doi.org/10.3390/nu16213582
APA StyleVillodres, G. C., Padial-Ruz, R., Salas-Montoro, J. -A., & Muros, J. J. (2024). Lifestyle Behaviours in Pre-Schoolers from Southern Spain—A Structural Equation Model According to Sex and Body Mass Index. Nutrients, 16(21), 3582. https://doi.org/10.3390/nu16213582