The Causal Relationship Between Choline Metabolites and Acute Acalculous Cholecystitis: Identifying ABCG8 as Colocalized Gene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources
2.3. Two-Sample Mendelian Randomization Analysis
2.4. Reverse and Mediated Mendelian Randomization Analysis
2.5. Linkage Disequilibrium Score Regression (LDSC) and Co-Localization Analysis
2.6. Gene Enrichment Analysis
3. Results
3.1. Causal Relationship between Choline Metabolites and AAC
3.2. Reverse and Mediator Mendelian Randomization Analysis
3.3. Genetic Correlation between the Three Choline Metabolites and AAC
3.4. Enrichment Pathway for ABCG8
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, F.; Ma, Y.; Liu, Y. Association of milk consumption with the incidence of cholelithiasis disease in the US adult population. BMC Public Health 2023, 23, 1639. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, O.J.; Maher, M.M. Imaging of Cholecystitis. Am. J. Roentgenol. 2011, 196, W367–W374. [Google Scholar] [CrossRef] [PubMed]
- Elwood, D.R. Cholecystitis. Surg. Clin. N. Am. 2008, 88, 1241–1252. [Google Scholar] [CrossRef]
- Frazee, R.C.; Nagorney, D.M.; Mucha, P. Acute acalculous cholecystitis. Mayo Clin. Proc. 1989, 64, 163–167. [Google Scholar] [CrossRef]
- Barie, P.S.; Eachempati, S.R. Acute acalculous cholecystitis. Curr. Gastroenterol. Rep. 2003, 5, 302–309. [Google Scholar] [CrossRef]
- Indar, A.A.; Beckingham, I.J. Acute cholecystitis. Br. Med. J. 2002, 325, 639–643. [Google Scholar] [CrossRef]
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary Choline Intake: Current State of Knowledge across the Life Cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef]
- Leermakers, E.T.; Moreira, E.M.; Jong, J.C.K.-D.; Darweesh, S.K.; Visser, T.; Voortman, T.; Bautista, P.K.; Chowdhury, R.; Gorman, D.; Bramer, W.M.; et al. Effects of choline on health across the life course: A systematic review. Nutr. Rev. 2015, 73, 500–522. [Google Scholar] [CrossRef]
- Mi, J.; Jiang, L.; Liu, Z.; Wu, X.; Zhao, N.; Wang, Y.; Bai, X. Identification of blood metabolites linked to the risk of cholelithiasis: A comprehensive Mendelian randomization study. Hepatol. Int. 2022, 16, 1484–1493. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Smith, G.D. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ-Br. Med. J. 2018, 362, k601. [Google Scholar] [CrossRef]
- Wu, Y.; Broadaway, K.A.; Raulerson, C.K.; Scott, L.J.; Pan, C.; Ko, A.; He, A.; Tilford, C.; Fuchsberger, C.; E Locke, A.; et al. Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Hum. Mol. Genet. 2019, 28, 4162–4173. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA-J. Am. Med. Assoc. 2017, 318, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Peng, C.; He, Q.; Li, Y. Type 2 diabetes and the risk of synovitis-tenosynovitis: A two-sample Mendelian randomization study. Front. Public Health 2023, 11, 1142416. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.S.; Andrews, S.J.; Elsworth, B.; Gaunt, T.R.; Hemani, G.; Marcora, E. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 2021, 22, 32. [Google Scholar] [CrossRef]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Smith, G.D.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef]
- Mbatchou, J.; Barnard, L.; Backman, J.; Marcketta, A.; Kosmicki, J.A.; Ziyatdinov, A.; Benner, C.; O’dushlaine, C.; Barber, M.; Boutkov, B.; et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 2021, 53, 1097–1103. [Google Scholar] [CrossRef]
- Bowden, J.; Smith, G.D.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Bowden, J.; Smith, G.D.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.C.; Timpson, N.; Smith, G.D. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Smith, G.D.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Araujo, H.A.; Cooper, A.B.; Hassan, M.A.; Venditti, J. Estimating suspended sediment concentrations in areas with limited hydrological data using a mixed-effects model. Hydrol. Process. 2012, 26, 3678–3688. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Hemani, G.; Tilling, K.; Smith, G.D. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017, 13, e1007081. [Google Scholar]
- Ni, G.; Moser, G.; Wray, N.R.; Lee, S.H.; Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.; Farh, K.-H.; Holmans, P.A.; et al. Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. Am. J. Hum. Genet. 2018, 102, 1185–1194. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Liu, K.; Li, C.; Li, H.; Xiong, K.; Li, Z.; Lu, C.; Chen, W.; Liu, Y. Mendelian randomization rules out the causal relationship between serum lipids and cholecystitis. BMC Med Genomics 2021, 14, 224. [Google Scholar] [CrossRef]
- Rhoads, J.P.; Major, A.S. How Oxidized Low-Density Lipoprotein Activates Inflammatory Responses. Crit Rev Immunol. 2018, 38, 333–342. [Google Scholar] [CrossRef]
- Radford-Smith, D.E.; Yates, A.G.; Rizvi, L.; Anthony, D.C.; Probert, F. HDL and LDL have distinct, opposing effects on LPS-induced brain inflammation. Lipids Heal. Dis. 2023, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- Sato, R. Recent advances in regulating cholesterol and bile acid metabolism. Biosci. Biotechnol. Biochem. 2020, 84, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Hammad, S.M.; Lopes-Virella, M.F. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int. J. Mol. Sci. 2023, 24, 14015. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.B.; Graf, G.A.; Temel, R.E. ABCG5 and ABCG8: More than a defense against xenosterols. J. Lipid Res. 2018, 59, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Lammert, F.; Gurusamy, K.; Ko, C.W.; Miquel, J.F.; Méndez-Sánchez, N.; Portincasa, P.; Van Erpecum, K.J.; Van Laarhoven, C.J.; Wang, D.Q. Gallstones. Nat. Rev. Dis. Primers 2016, 2, 16024. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Choi, H.S.; Jun, D.W.; Yoo, K.-S.; Lee, J.; Yang, S.Y.; Kuver, R. ATP-Binding Cassette Sterol Transporters Are Differentially Expressed in Normal and Diseased Human Gallbladder. Dig. Dis. Sci. 2013, 58, 431–439. [Google Scholar] [CrossRef]
- Coy, D.J.; Wooton-Kee, C.R.; Yan, B.; Sabeva, N.; Su, K.; Graf, G.; Vore, M. ABCG5/ABCG8-independent biliary cholesterol excretion in lactating rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299(1), G228–G235. [Google Scholar] [CrossRef]
- Yu, X.-H.; Qian, K.; Jiang, N.; Zheng, X.L.; Cayabyab, F.S.; Tang, C.K. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin. Chim. Acta. 2014, 428, 82–88. [Google Scholar]
- Miyachi Y, Akiyama K, Tsukuda Y, Kumrungsee T, Yanaka N Liver choline metabolism and gene expression in choline-deficient mice offspring differ with gender. Biosci. Biotechnol. Biochem. 2021, 85, 447–451. [CrossRef]
- Mehedint, M.G.; Zeisel, S.H. Choline’s role in maintaining liver function: New evidence for epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 339–345. [Google Scholar] [CrossRef]
Exposure | nSNPs | MVMR-IVW | MVMR-Egger | p for MR-Egger Intercept | F Statistic | ||
---|---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | ||||
HDL | 321 | 0.9994 (0.9992 to 0.9997) | 0.3446 | 1.0014 (1.0008 to 1.0020) | 0.0916 | 0.0003 | 17.3554 |
Total choline | 0.9977 (0.9967 to 0.9987) | 0.0051 | 0.9975 (0.9965 to 0.9986) | 0.0022 | 11.1154 | ||
LDL | 90 | 0.9984 (0.9976 to 0.9991) | 0.0618 | 0.9983 (0.9975 to 0.9990) | 0.0895 | 0.867 | 52.8175 |
Total choline | 0.9985 (0.9978 to 0.9991) | 0.1153 | 0.9984 (0.9977 to 0.9991) | 0.1243 | 47.1951 | ||
Triglyceride | 278 | 1.0005 (1.0003 to 1.0008) | 0.3097 | 0.9994 (0.9991 to 0.9997) | 0.4261 | 0.0393 | 114.9307 |
Total choline | 0.9984 (0.9978 to 0.9991) | 0.0192 | 0.9984 (0.9977 to 0.9991) | 0.0137 | 22.0579 | ||
CAD | 88 | 0.9996 (0.9994 to 0.9998) | 0.263 | 0.9997 (0.9995 to 0.9998) | 0.5529 | 0.8148 | 29.6231 |
Total choline | 0.9979 (0.9969 to 0.9988) | 0.0001 | 0.9979 (0.9970 to 0.9988) | 0.0001 | 82.2872 | ||
HDL | 322 | 0.9992 (0.9989 to 0.9996) | 0.2120 | 1.0013 (1.0007 to 1.0018) | 0.1218 | 0.0002 | 19.9792 |
Phosphatidylcholine | 0.9981 (0.9973 to 0.9989) | 0.0140 | 0.9979 (0.9970 to 0.9988) | 0.0006 | 12.8171 | ||
LDL | 91 | 0.9981 (0.9973 to 0.9989) | 0.0299 | 0.9979 (0.9970 to 0.9988) | 0.0440 | 0.7143 | 68.9316 |
Phosphatidylcholine | 0.9989 (0.9984 to 0.9994) | 0.2219 | 0.9988 (0.9983 to 0.9993) | 0.2040 | 58.3947 | ||
Triglyceride | 280 | 1.0006 (1.0003 to 1.0008) | 0.2737 | 0.9995 (0.9993 to 0.9997) | 0.5045 | 0.0480 | 107.0640 |
Phosphatidylcholine | 0.9986 (0.9979 to 0.9992) | 0.0229 | 0.9985 (0.9979 to 0.9992) | 0.0185 | 24.7822 | ||
CAD | 86 | 0.9996 (0.9994 to 0.9997) | 0.2560 | 0.9997 (0.9996 to 0.9999) | 0.6550 | 0.6491 | 29.8555 |
Phosphatidylcholine | 0.9982 (0.9974 to 0.9990) | 0.0003 | 0.9982 (0.9975 to 0.9990) | 0.0007 | 91.7388 | ||
HDL | 316 | 0.9993 (0.9990 to 0.9996) | 0.2730 | 1.0014 (1.0008 to 1.0021) | 0.0929 | 0.0002 | 29.3628 |
Sphingomyelin | 0.9978 (0.9968 to 0.9987) | 0.0029 | 0.9978 (0.9968 to 0.9988) | 0.0026 | 16.1736 | ||
LDL | 90 | 0.9989 (0.9985 to 0.9994) | 0.3740 | 0.9988 (0.9983 to 0.9993) | 0.3520 | 0.7679 | 23.9513 |
Sphingomyelin | 0.9983 (0.9976 to 0.9991) | 0.1660 | 0.9983 (0.9975 to 0.9990) | 0.1590 | 24.7277 | ||
Triglyceride | 277 | 1.0000 (1.0000 to 1.0000) | 0.9573 | 0.9989 (0.9984 to 0.9994) | 0.1858 | 0.0829 | 77.8575 |
Sphingomyelin | 0.9977 (0.9967 to 0.9987) | 0.0005 | 0.9975 (0.9965 to 0.9986) | 0.0002 | 26.9886 | ||
CAD | 91 | 0.9997 (0.9996 to 0.9998) | 0.528 | 1.0006 (1.0003 to 1.0009) | 0.3730 | 0.0679 | 28.0342 |
Sphingomyelin | 0.9976 (0.9965 to 0.9986) | 0.0001 | 0.9977 (0.9967 to 0.9987) | 0.0002 | 83.5995 |
Exposure | Outcome | Rg | p |
---|---|---|---|
Total choline | Cholecystitis | −0.0940 | 0.6372 |
Phosphatidylcholine | Cholecystitis | −0.1077 | 0.5836 |
Sphingomyelin | Cholecystitis | −0.2796 | 0.1645 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Mao, K.; Yang, C.; Wang, X.; Liu, S.; Ma, Z.; Zhai, Q.; Shi, L.; Wu, Q.; Zhang, T. The Causal Relationship Between Choline Metabolites and Acute Acalculous Cholecystitis: Identifying ABCG8 as Colocalized Gene. Nutrients 2024, 16, 3588. https://doi.org/10.3390/nu16213588
Gao Y, Mao K, Yang C, Wang X, Liu S, Ma Z, Zhai Q, Shi L, Wu Q, Zhang T. The Causal Relationship Between Choline Metabolites and Acute Acalculous Cholecystitis: Identifying ABCG8 as Colocalized Gene. Nutrients. 2024; 16(21):3588. https://doi.org/10.3390/nu16213588
Chicago/Turabian StyleGao, Yuntong, Kun Mao, Congying Yang, Xisu Wang, Shixuan Liu, Zimeng Ma, Qi Zhai, Liang Shi, Qian Wu, and Tianxiao Zhang. 2024. "The Causal Relationship Between Choline Metabolites and Acute Acalculous Cholecystitis: Identifying ABCG8 as Colocalized Gene" Nutrients 16, no. 21: 3588. https://doi.org/10.3390/nu16213588
APA StyleGao, Y., Mao, K., Yang, C., Wang, X., Liu, S., Ma, Z., Zhai, Q., Shi, L., Wu, Q., & Zhang, T. (2024). The Causal Relationship Between Choline Metabolites and Acute Acalculous Cholecystitis: Identifying ABCG8 as Colocalized Gene. Nutrients, 16(21), 3588. https://doi.org/10.3390/nu16213588