Serum Pyridoxal 5′-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Collection and Biochemical Measurements
2.3. PAr Definition
2.4. Outcome Ascertainment and Follow-Up
2.5. Covariate Ascertainment
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants in GCCC Study
3.2. Association of Serum PLP and PAr with Survival
3.3. Stratified and Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Colorectal Cancer Collaborators. Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 627–647. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.C.; Zaki, T.A. Changing epidemiology of colorectal cancer—Birth cohort effects and emerging risk factors. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021, 22, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Franco, C.N.; Seabrook, L.J.; Nguyen, S.T.; Leonard, J.T.; Albrecht, L.V. Simplifying the B Complex: How Vitamins B6 and B9 Modulate One Carbon Metabolism in Cancer and Beyond. Metabolites 2022, 12, 961. [Google Scholar] [CrossRef]
- Sedlak, J.C.; Yilmaz, Ö.H.; Roper, J. Metabolism and Colorectal Cancer. Annu. Rev. Pathol. 2023, 18, 467–492. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Rogers, T.J.; Anderson, C.E.; Lien, E.C. Tumor lipid metabolism: A mechanistic link between diet and cancer progression. Curr. Opin. Biotechnol. 2023, 84, 102993. [Google Scholar] [CrossRef]
- Shah, U.A.; Iyengar, N.M. Plant-Based and Ketogenic Diets as Diverging Paths to Address Cancer: A Review. JAMA Oncol. 2022, 8, 1201–1208. [Google Scholar] [CrossRef]
- Zitvogel, L.; Pietrocola, F.; Kroemer, G. Nutrition, inflammation and cancer. Nat. Immunol. 2017, 18, 843–850. [Google Scholar] [CrossRef]
- Nasir, A.; Bullo, M.M.H.; Ahmed, Z.; Imtiaz, A.; Yaqoob, E.; Jadoon, M.; Ahmed, H.; Afreen, A.; Yaqoob, S. Nutrigenomics: Epigenetics and cancer prevention: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Stidley, C.A.; Picchi, M.A.; Leng, S.; Willink, R.; Crowell, R.E.; Flores, K.G.; Kang, H.; Byers, T.; Gilliland, F.D.; Belinsky, S.A. Multivitamins, folate, and green vegetables protect against gene promoter methylation in the aerodigestive tract of smokers. Cancer Res. 2010, 70, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Hardy, T.M.; Tollefsbol, T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics 2011, 3, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Duthie, S.J. Folate and cancer: How DNA damage, repair and methylation impact on colon carcinogenesis. J. Inherit. Metab. Dis. 2011, 34, 101–109. [Google Scholar] [CrossRef]
- Kawakita, D.; Matsuo, K.; Sato, F.; Oze, I.; Hosono, S.; Ito, H.; Watanabe, M.; Yatabe, Y.; Hanai, N.; Hasegawa, Y.; et al. Association between dietary folate intake and clinical outcome in head and neck squamous cell carcinoma. Ann. Oncol. 2012, 23, 186–192. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Stojanovska, L.; Apostolopoulos, V. The Effects of Vitamin B in Depression. Curr. Med. Chem. 2016, 23, 4317–4337. [Google Scholar] [CrossRef]
- Bassett, J.K.; Brinkman, M.T.; Dugué, P.A.; Ueland, P.M.; Midttun, Ø.; Ulvik, A.; Bolton, D.; Southey, M.C.; English, D.R.; Milne, R.L.; et al. Circulating concentrations of B group vitamins and urothelial cell carcinoma. Int. J. Cancer 2019, 144, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Leklem, J.E. Vitamin B-6: A status report. J. Nutr. 1990, 120 (Suppl. S11), 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Ulvik, A.; Midttun, Ø.; Pedersen, E.R.; Eussen, S.J.; Nygård, O.; Ueland, P.M. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am. J. Clin. Nutr. 2014, 100, 250–255. [Google Scholar] [CrossRef]
- Ryan, K.M.; Allers, K.A.; Harkin, A.; McLoughlin, D.M. Blood plasma B vitamins in depression and the therapeutic response to electroconvulsive therapy. Brain Behav. Immun. Health 2020, 4, 100063. [Google Scholar] [CrossRef]
- Zuo, H.; Ueland, P.M.; Midttun, Ø.; Vollset, S.E.; Tell, G.S.; Theofylaktopoulou, D.; Travis, R.C.; Boutron-Ruault, M.C.; Fournier, A.; Severi, G.; et al. Results from the European Prospective Investigation into Cancer and Nutrition Link Vitamin B6 Catabolism and Lung Cancer Risk. Cancer Res. 2018, 78, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.; Tell, G.S.; Ueland, P.M.; Nygård, O.; Vollset, S.E.; Midttun, Ø.; Meyer, K.; Ulvik, A. The PAr index, an indicator reflecting altered vitamin B-6 homeostasis, is associated with long-term risk of stroke in the general population: The Hordaland Health Study (HUSK). Am. J. Clin. Nutr. 2018, 107, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Gylling, B.; Myte, R.; Schneede, J.; Hallmans, G.; Häggström, J.; Johansson, I.; Ulvik, A.; Ueland, P.M.; Van Guelpen, B.; Palmqvist, R. Vitamin B-6 and colorectal cancer risk: A prospective population-based study using 3 distinct plasma markers of vitamin B-6 status. Am. J. Clin. Nutr. 2017, 105, 897–904. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Cheng, T.Y.; Beresford, S.A.; Brown, E.; Song, X.; Miller, J.W.; Zheng, Y.; Thomson, C.A.; Shikany, J.M.; Vitolins, M.Z.; et al. Red blood cell folate and plasma folate are not associated with risk of incident colorectal cancer in the Women’s Health Initiative observational study. Int. J. Cancer 2015, 137, 930–939. [Google Scholar] [CrossRef]
- Weinstein, S.J.; Albanes, D.; Selhub, J.; Graubard, B.; Lim, U.; Taylor, P.R.; Virtamo, J.; Stolzenberg-Solomon, R. One-carbon metabolism biomarkers and risk of colon and rectal cancers. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3233–3240. [Google Scholar] [CrossRef]
- Eussen, S.J.; Vollset, S.E.; Hustad, S.; Midttun, Ø.; Meyer, K.; Fredriksen, A.; Ueland, P.M.; Jenab, M.; Slimani, N.; Boffetta, P.; et al. Plasma vitamins B2, B6, and B12, and related genetic variants as predictors of colorectal cancer risk. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2549–2561. [Google Scholar] [CrossRef] [PubMed]
- Dray, X.; Boutron-Ruault, M.C.; Bertrais, S.; Sapinho, D.; Benhamiche-Bouvier, A.M.; Faivre, J. Influence of dietary factors on colorectal cancer survival. Gut 2003, 52, 868–873. [Google Scholar] [CrossRef]
- Leung, E.Y.; Roxburgh, C.S.; Talwar, D.; O’Reilly, D.S.; McKee, R.F.; Horgan, P.G.; McMillan, D.C. The relationships between plasma and red cell vitamin B2 and B6 concentrations and the systemic and local inflammatory responses in patients with colorectal cancer. Nutr. Cancer 2012, 64, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, P.; Nishihara, R.; Qian, Z.R.; Mima, K.; Cao, Y.; Sukawa, Y.; Kim, S.A.; Inamura, K.; Zhang, X.; Wu, K.; et al. Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival. Am. J. Clin. Nutr. 2015, 102, 1134–1141. [Google Scholar] [CrossRef]
- Holowatyj, A.N.; Ose, J.; Gigic, B.; Lin, T.; Ulvik, A.; Geijsen, A.; Brezina, S.; Kiblawi, R.; van Roekel, E.H.; Baierl, A.; et al. Higher vitamin B6 status is associated with improved survival among patients with stage I-III colorectal cancer. Am. J. Clin. Nutr. 2022, 116, 303–313. [Google Scholar] [CrossRef]
- Je, Y.; Lee, J.E.; Ma, J.; Zhang, X.; Cho, E.; Rosner, B.; Selhub, J.; Fuchs, C.S.; Meyerhardt, J.; Giovannucci, E. Prediagnostic plasma vitamin B6 (pyridoxal 5′-phosphate) and survival in patients with colorectal cancer. Cancer Causes Control 2013, 24, 719–729. [Google Scholar] [CrossRef]
- Zhong, X.; Fang, Y.J.; Pan, Z.Z.; Li, B.; Wang, L.; Zheng, M.C.; Chen, Y.M.; Zhang, C.X. Dietary fat, fatty acid intakes and colorectal cancer risk in Chinese adults: A case-control study. Eur. J. Cancer Prev. 2013, 22, 438–447. [Google Scholar] [CrossRef]
- Ma, T.; Tu, K.; Ou, Q.; Fang, Y.; Zhang, C. Comparing the Associations of Dietary Patterns Identified through Principal Component Analysis and Cluster Analysis with Colorectal Cancer Risk: A Large Case-Control Study in China. Nutrients 2023, 16, 147. [Google Scholar] [CrossRef]
- Meisser Redeuil, K.; Longet, K.; Bénet, S.; Munari, C.; Campos-Giménez, E. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A 2015, 1422, 89–98. [Google Scholar] [CrossRef]
- Midttun, O.; Hustad, S.; Solheim, E.; Schneede, J.; Ueland, P.M. Multianalyte quantification of vitamin B6 and B2 species in the nanomolar range in human plasma by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2005, 51, 1206–1216. [Google Scholar] [CrossRef]
- Xu, L.; Fang, Y.J.; Che, M.M.; Abulimiti, A.; Huang, C.Y.; Zhang, C.X. Association of Serum Pyridoxal-5′-Phosphate, Pyridoxal, and PAr with Colorectal Cancer Risk: A Large-Scale Case-Control Study. Nutrients 2022, 14, 2389. [Google Scholar] [CrossRef]
- Xu, L.; Wu, Q.X.; Li, X.; Fang, Y.J.; Zhou, R.L.; Che, M.M.; Ma, T.; Zhang, C.X. Serum flavin mononucleotide but not riboflavin is inversely associated with the risk of colorectal cancer. Food Funct. 2022, 13, 12246–12257. [Google Scholar] [CrossRef]
- Zhang, C.X.; Ho, S.C. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac. J. Clin. Nutr. 2009, 18, 240–250. [Google Scholar]
- Yang, Y.X.; Wang, G.Y.; Pan, X.C. China Food Composition Table; Peking University Medical Press: Beijing, China, 2002. [Google Scholar]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- Midttun, Ø.; Theofylaktopoulou, D.; McCann, A.; Fanidi, A.; Muller, D.C.; Meyer, K.; Ulvik, A.; Zheng, W.; Shu, X.O.; Xiang, Y.B.; et al. Circulating concentrations of biomarkers and metabolites related to vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations. Am. J. Clin. Nutr. 2017, 105, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, Ø.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, C. Vitamin and mineral supplement use in relation to all-cause mortality in the Iowa Women’s Health Study. Arch. Intern. Med. 2011, 171, 1633–1634. [Google Scholar] [CrossRef]
- Vrolijk, M.F.; Opperhuizen, A.; Jansen, E.; Hageman, G.J.; Bast, A.; Haenen, G. The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol. Vitr. 2017, 44, 206–212. [Google Scholar] [CrossRef]
- Selhub, J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging 2002, 6, 39–42. [Google Scholar]
- Bates, C.J.; Pentieva, K.D.; Prentice, A. An appraisal of vitamin B6 status indices and associated confounders, in young people aged 4-18 years and in people aged 65 years and over, in two national British surveys. Public Health Nutr. 1999, 2, 529–535. [Google Scholar] [CrossRef]
- Wang, P.; Huang, J.; Xue, F.; Abuduaini, M.; Tao, Y.; Liu, H. Associations of serum vitamin B6 status with the risks of cardiovascular, cancer, and all-cause mortality in the elderly. Front. Immunol. 2024, 15, 1354958. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.K.; Hansen, C.M.; Leklem, J.E.; Hardin, K.; Shultz, T.D. Improved vitamin B-6 status is positively related to lymphocyte proliferation in young women consuming a controlled diet. J. Nutr. 2002, 132, 3308–3313. [Google Scholar] [CrossRef] [PubMed]
- Chiang, E.P.; Smith, D.E.; Selhub, J.; Dallal, G.; Wang, Y.C.; Roubenoff, R. Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res. Ther. 2005, 7, R1254–R1262. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat. Res. 2001, 475, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859. [Google Scholar] [CrossRef]
- Matsubara, K.; Komatsu, S.; Oka, T.; Kato, N. Vitamin B6-mediated suppression of colon tumorigenesis, cell proliferation, and angiogenesis (review). J. Nutr. Biochem. 2003, 14, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Watanabe, H.; Oka, T.; Tsuge, H.; Kat, N. Dietary vitamin B6 suppresses colon tumorigenesis, 8-hydroxyguanosine, 4-hydroxynonenal, and inducible nitric oxide synthase protein in azoxymethane-treated mice. J. Nutr. Sci. Vitaminol. 2002, 48, 65–68. [Google Scholar] [CrossRef]
- Shen, J.; Lai, C.Q.; Mattei, J.; Ordovas, J.M.; Tucker, K.L. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: The Boston Puerto Rican Health Study. Am. J. Clin. Nutr. 2010, 91, 337–342. [Google Scholar] [CrossRef]
- Bargiela, D.; Cunha, P.P.; Veliça, P.; Foskolou, I.P.; Barbieri, L.; Rundqvist, H.; Johnson, R.S. Vitamin B6 Metabolism Determines T Cell Anti-Tumor Responses. Front. Immunol. 2022, 13, 837669. [Google Scholar] [CrossRef]
- Sakakeeny, L.; Roubenoff, R.; Obin, M.; Fontes, J.D.; Benjamin, E.J.; Bujanover, Y.; Jacques, P.F.; Selhub, J. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J. Nutr. 2012, 142, 1280–1285. [Google Scholar] [CrossRef]
- Paul, L.; Ueland, P.M.; Selhub, J. Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr. Rev. 2013, 71, 239–244. [Google Scholar] [CrossRef]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [Google Scholar] [CrossRef] [PubMed]
- Talbott, M.C.; Miller, L.T.; Kerkvliet, N.I. Pyridoxine supplementation: Effect on lymphocyte responses in elderly persons. Am. J. Clin. Nutr. 1987, 46, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Casciato, D.A.; McAdam, L.P.; Kopple, J.D.; Bluestone, R.; Goldberg, L.S.; Clements, P.J.; Knutson, D.W. Immunologic abnormalities in hemodialysis patients: Improvement after pyridoxine therapy. Nephron 1984, 38, 9–16. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chang, S.J.; Lee, B.J.; Lin, K.L.; Huang, Y.C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 2006, 60, 1207–1213. [Google Scholar] [CrossRef]
- Larsson, S.C.; Giovannucci, E.; Wolk, A. Vitamin B6 intake, alcohol consumption, and colorectal cancer: A longitudinal population-based cohort of women. Gastroenterology 2005, 128, 1830–1837. [Google Scholar] [CrossRef]
- Yasuda, H.; Hatano, T.; Honda, T.; Tsutsui, M.; Hattori, N.; Ando, M.; Komatsu, N. Vitamin B6 Deficiency Anemia Attributed to Levodopa/Carbidopa Intestinal Gel Therapy for Parkinson’s Disease: A Diagnostic Pitfall for Myelodysplastic Syndrome with Ring Sideroblasts. Intern. Med. 2022, 61, 3719–3722. [Google Scholar] [CrossRef]
- Gallo, G.; Vescio, G.; De Paola, G.; Sammarco, G. Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer. J. Clin. Med. 2021, 10, 2295. [Google Scholar] [CrossRef]
- Luo, X.J.; Zhao, Q.; Liu, J.; Zheng, J.B.; Qiu, M.Z.; Ju, H.Q.; Xu, R.H. Novel Genetic and Epigenetic Biomarkers of Prognostic and Predictive Significance in Stage II/III Colorectal Cancer. Mol. Ther. 2021, 29, 587–596. [Google Scholar] [CrossRef]
- Cao, Q.; Tian, Y.; Deng, Z.; Yang, F.; Chen, E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int. J. Mol. Sci. 2024, 25, 3358. [Google Scholar] [CrossRef]
- Giannopoulou, N.; Constantinou, C. Recent Developments in Diagnostic and Prognostic Biomarkers for Colorectal Cancer: A Narrative Review. Oncology 2023, 101, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Cariolou, M.; Markozannes, G.; Balducci, K.; Vieira, R.; Kiss, S.; Becerra-Tomás, N.; Aune, D.; Greenwood, D.C.; González-Gil, E.M.; et al. Post-diagnosis dietary factors, supplement use and colorectal cancer prognosis: A Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int. J. Cancer 2024, 155, 445–470. [Google Scholar] [CrossRef]
- Henriksen, H.B.; Ræder, H.; Bøhn, S.K.; Paur, I.; Kværner, A.S.; Billington, S.; Eriksen, M.T.; Wiedsvang, G.; Erlund, I.; Færden, A.; et al. The Norwegian dietary guidelines and colorectal cancer survival (CRC-NORDIET) study: A food-based multicentre randomized controlled trial. BMC Cancer 2017, 17, 83. [Google Scholar] [CrossRef]
- Ravasco, P.; Monteiro-Grillo, I.; Camilo, M. Individualized nutrition intervention is of major benefit to colorectal cancer patients: Long-term follow-up of a randomized controlled trial of nutritional therapy. Am. J. Clin. Nutr. 2012, 96, 1346–1353. [Google Scholar] [CrossRef]
- Rosenberg, J.; Ischebeck, T.; Commichau, F.M. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 2017, 35, 31–40. [Google Scholar] [CrossRef]
- Feng, Z.; Hua, J.; Guo, F.; Liu, Z.; Zhao, Y.; Wu, W. A retrospective analysis of vitamin B6 deficiency and associated changes of gut microbes in Crohn’s disease. Eur. J. Clin. Nutr. 2023, 77, 1034–1043. [Google Scholar] [CrossRef]
- Zheng, C.; Ge, Q.; Luo, C.; Hu, L.; Shen, Y.; Xue, Q. Enteral nutrition improves the prognosis and immune nutritional status of patients in the cardiothoracic surgery recovery unit: A propensity score-matched analysis. Clin. Nutr. 2022, 41, 2699–2705. [Google Scholar] [CrossRef]
- Martínez-Montoro, J.I.; Martínez-Sánchez, M.A.; Balaguer-Román, A.; Gil-Martínez, J.; Mesa-López, M.J.; Egea-Valenzuela, J.; Ruiz-Alcaraz, A.J.; Queipo-Ortuño, M.I.; Ferrer, M.; Fernández-García, J.C.; et al. Dietary modulation of gut microbiota in patients with colorectal cancer undergoing surgery: A review. Int. J. Surg. 2022, 104, 106751. [Google Scholar] [CrossRef]
- Duncan, M.; Moschopoulou, E.; Herrington, E.; Deane, J.; Roylance, R.; Jones, L.; Bourke, L.; Morgan, A.; Chalder, T.; Thaha, M.A.; et al. Review of systematic reviews of non-pharmacological interventions to improve quality of life in cancer survivors. BMJ Open 2017, 7, e015860. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.L.; Shang, B.; Chen, A.S.; Liu, S.Q.; Sun, W.; Yin, H.Z.; Yin, J.Q.; Su, Q. Nutrition support in surgical patients with colorectal cancer. World J. Gastroenterol. 2011, 17, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Quartiles of Serum PLP (nmol/L) a | p-Value b | |||
---|---|---|---|---|---|
Quartile 1 (n = 323) | Quartile 2 (n = 321) | Quartile 3 (n = 321) | Quartile 4 (n = 321) | ||
Sex (n, %) | 1.000 | ||||
Male | 181 (56.04) | 180 (56.07) | 180 (56.07) | 180 (56.07) | |
Female | 142 (43.96) | 141 (43.93) | 141 (43.93) | 141 (43.93) | |
Marital status (n, %) | 0.094 | ||||
Married | 311 (96.28) | 300 (93.46) | 309 (96.26) | 298 (92.83) | |
Unmarried/divorced/widowed | 12 (3.72) | 21 (6.54) | 12 (3.74) | 23 (7.17) | |
Residence (n, %) | 0.279 | ||||
Urban | 211 (65.33) | 192 (59.81) | 211 (65.73) | 213 (66.36) | |
Rural | 112 (34.67) | 129 (40.19) | 110 (34.27) | 108 (33.64) | |
Income, Yuan/month, (n, %) | 0.995 | ||||
less than 2000 | 49 (15.17) | 47 (14.64) | 46 (14.33) | 43 (13.40) | |
2001–5000 | 104 (32.20) | 102 (31.78) | 103 (32.09) | 99 (30.84) | |
5001–8000 | 90 (27.86) | 99 (30.84) | 97 (30.22) | 97 (30.22) | |
more than 8001 | 80 (24.77) | 73 (22.74) | 75 (23.36) | 82 (25.55) | |
Smoking status (n, %) | 0.515 | ||||
Never | 187 (57.89) | 196 (61.06) | 189 (58.88) | 203 (63.24) | |
Ever | 136 (42.11) | 125 (38.94) | 132 (41.12) | 118 (36.76) | |
Drinking, (n, %) | 0.017 | ||||
Never | 280 (86.69) | 271 (84.42) | 250 (77.88) | 272 (84.74) | |
Regular | 43 (13.31) | 50 (15.58) | 71 (22.12) | 49 (15.26) | |
BMI, kg/m2, (n, %) | 0.211 | ||||
<23.9 | 203 (62.85) | 190 (59.19) | 194 (60.44) | 176 (54.83) | |
≥23.9 | 120 (37.15) | 131 (40.81) | 127 (39.56) | 145 (45.17) | |
Physical activity, median (P25, P75), MET-h per week c | 28.88 (6.17, 52.50) | 28.88 (10.31, 52.50) | 26.25 (13.13, 52.50) | 28.88 (11.25, 52.50) | 0.940 |
Age at diagnosis in years, y, (n, %) | 0.183 | ||||
<50 | 78 (24.15) | 85 (26.48) | 69 (21.50) | 92 (28.66) | |
≥50 | 245 (75.85) | 236 (73.52) | 252 (78.50) | 229 (71.34) | |
Cancer stage (n, %) d | <0.001 | ||||
I | 34 (10.53) | 46 (14.33) | 61 (19.00) | 52 (16.20) | |
II | 112 (34.67) | 113 (35.20) | 111 (34.58) | 104 (32.40) | |
III | 98 (30.34) | 106 (33.02) | 96 (29.91) | 130 (40.50) | |
IV | 70 (21.67) | 49 (15.26) | 52 (16.20) | 34 (10.59) | |
Tumor site (n, %) | 0.068 | ||||
Colon | 216 (66.87) | 208 (64.80) | 184 (57.32) | 198 (61.68) | |
Rectum | 107 (33.13) | 113 (35.20) | 137 (42.68) | 123 (38.32) | |
Differentiation (n, %) e | 0.297 | ||||
Well-differentiated | 1 (0.31) | 1 (0.31) | 4 (1.25) | 4 (1.25) | |
Moderately differentiated | 223 (69.04) | 238 (74.14) | 237 (73.83) | 230 (71.65) | |
Poorly differentiated | 77 (23.84) | 68 (21.18) | 58 (18.07) | 73 (22.74) | |
Radiotherapy or chemotherapy (n, %) | 0.656 | ||||
No | 114 (35.29) | 108 (33.64) | 120 (37.38) | 106 (33.02) | |
Yes | 209 (64.71) | 213 (66.36) | 201 (62.62) | 215 (66.98) | |
Surgery (n, %) | 0.239 | ||||
No | 22 (6.81) | 14 (4.36) | 12 (3.74) | 13 (4.05) | |
Yes | 301 (93.19) | 307 (95.64) | 309 (96.26) | 308 (95.95) | |
History of cancer in first-degree relatives (n, %) | 0.753 | ||||
No | 279 (86.38) | 274 (85.36) | 283 (88.16) | 280 (87.23) | |
Yes | 44 (13.62) | 47 (14.64) | 38 (11.84) | 41 (12.77) | |
PL (nmol/L), median (P25, P75) | 10.78 (6.70, 15.62) | 10.92 (7.62, 15.19) | 10.97 (7.78, 16.84) | 16.00 (9.31, 28.70) | <0.001 |
PA (nmol/L), median (P25, P75) | 11.22 (7.62, 15.73) | 12.68 (9.63, 18.19) | 12.99 (9.24, 18.71) | 15.61 (11.15, 28.60) | <0.001 |
PAr, median (P25, P75) | 0.84 (0.58, 1.23) | 0.83 (0.58, 1.14) | 0.67 (0.47, 0.94) | 0.49 (0.33, 0.67) | <0.001 |
Dietary intake, median (P25, P75) f | |||||
Total energy (kcal/day) | 1544.15 (1263.22, 1817.55) | 1524.82 (1278.14, 1864.33) | 1519.02 (1250.05, 1858.67) | 1424.64 (1152.41, 1752.29) | 0.011 |
Protein (g/day) | 65.67 (55.35, 79.31) | 66.90 (53.58, 78.52) | 63.30 (52.42, 77.32) | 60.05 (49.28, 75.61) | 0.004 |
Vitamin B2 (mg/day) | 0.83 (0.71, 0.98) | 0.83 (0.69, 0.98) | 0.82 (0.68, 0.97) | 0.82 (0.70, 1.00) | 0.456 |
Vitamin B6 (mg/day) | 0.83 (0.71, 0.97) | 0.83 (0.71, 0.93) | 0.80 (0.67, 0.94) | 0.80 (0.69, 0.92) | 0.062 |
Folate (μg/day) | 208.59 (180.26, 240.70) | 200.84 (178.58, 237.52) | 205.38 (172.86, 242.00) | 208.70 (176.69, 247.09) | 0.397 |
Vitamin B12 (mg/day) | 1.67 (1.20, 2.15) | 1.65 (1.16, 2.36) | 1.62 (1.16, 2.25) | 1.65 (1.10, 2.37) | 0.939 |
Death/Number | Crude Model | Model 1 b | Model 2 c | |
---|---|---|---|---|
Overall survival | ||||
PLP, nmol/L | ||||
Quartile 1 | 96/323 | 1.00 | 1.00 | 1.00 |
Quartile 2 | 82/321 | 0.80 (0.60–1.08) | 0.79 (0.59–1.06) | 0.81 (0.60–1.09) |
Quartile 3 | 84/321 | 0.79 (0.59–1.06) | 0.78 (0.58–1.05) | 0.81 (0.60–1.09) |
Quartile 4 | 69/321 | 0.65 (0.47–0.88) | 0.66 (0.48–0.91) | 0.63 (0.46–0.87) |
p for trend a | 0.004 | 0.021 | 0.008 | |
PAr | ||||
Quartile 1 | 73/313 | 1.00 | 1.00 | 1.00 |
Quartile 2 | 85/321 | 1.14 (0.83–1.56) | 1.10 (0.81–1.51) | 1.07 (0.78–1.46) |
Quartile 3 | 86/323 | 1.17 (0.85–1.59) | 1.13 (0.83–1.55) | 1.10 (0.80–1.51) |
Quartile 4 | 87/329 | 1.15 (0.84–1.57) | 1.07 (0.78–1.47) | 1.03 (0.75–1.41) |
p for trend a | 0.293 | 0.797 | 0.964 | |
Colorectal cancer-specific survival | ||||
PLP, nmol/L | ||||
Quartile 1 | 85/323 | 1.00 | 1.00 | 1.00 |
Quartile 2 | 76/321 | 0.84 (0.62–1.15) | 0.83 (0.61–1.13) | 0.85 (0.62–1.16) |
Quartile 3 | 72/321 | 0.77 (0.56–1.06) | 0.77 (0.56–1.05) | 0.79 (0.58–1.09) |
Quartile 4 | 60/321 | 0.64 (0.46–0.89) | 0.65 (0.47–0.91) | 0.62 (0.44–0.87) |
p for trend a | 0.004 | 0.016 | 0.006 | |
PAr | ||||
Quartile 1 | 65/313 | 1.00 | 1.00 | 1.00 |
Quartile 2 | 75/321 | 1.14 (0.82–1.58) | 1.11 (0.80–1.55) | 1.07 (0.76–1.49) |
Quartile 3 | 78/323 | 1.19 (0.86–1.66) | 1.17 (0.84–1.63) | 1.12 (0.80–1.56) |
Quartile 4 | 75/329 | 1.13 (0.81–1.58) | 1.06 (0.75–1.48) | 1.01 (0.72–1.42) |
p for trend a | 0.398 | 0.892 | 0.964 |
Overall Survival | Colorectal Cancer-Specific Survival | |||||||
---|---|---|---|---|---|---|---|---|
Quartile 1 | Quartile 4 a | p for Trend b | p for Interaction c | Quartile 1 | Quartile 4 a | p for Trend b | p for Interaction c | |
PLP, nmol/L | ||||||||
Sex | 0.468 | 0.581 | ||||||
Male | 1.00 | 0.64 (0.43–0.94) | 0.062 | 1.00 | 0.66 (0.44–1.01) | 0.088 | ||
Female | 1.00 | 0.66 (0.38–1.15) | 0.077 | 1.00 | 0.61 (0.34–1.08) | 0.044 | ||
Age | 0.674 | 0.705 | ||||||
<50 | 1.00 | 0.68 (0.37–1.24) | 0.436 | 1.00 | 0.56 (0.29–1.07) | 0.196 | ||
≥50 | 1.00 | 0.62 (0.43–0.89) | 0.011 | 1.00 | 0.65 (0.44–0.97) | 0.023 | ||
BMI | 0.611 | 0.888 | ||||||
<23.9 | 1.00 | 0.72 (0.48–1.08) | 0.106 | 1.00 | 0.65 (0.42–1.01) | 0.044 | ||
≥23.9 | 1.00 | 0.50 (0.30–0.83) | 0.026 | 1.00 | 0.58 (0.34–0.99) | 0.080 | ||
Smoking status | 0.098 | 0.118 | ||||||
Ever | 1.00 | 0.84 (0.54–1.31) | 0.748 | 1.00 | 0.9 (0.55–1.460) | 0.855 | ||
Never | 1.00 | 0.51 (0.32–0.80) | 0.002 | 1.00 | 0.48 (0.29–0.77) | 0.001 | ||
Drinking status | 0.030 | 0.031 | ||||||
Regular | 1.00 | 0.57 (0.24–1.32) | 0.181 | 1.00 | 0.72 (0.27–1.90) | 0.261 | ||
Never | 1.00 | 0.67 (0.48–0.94) | 0.029 | 1.00 | 0.64 (0.45–0.92) | 0.020 | ||
Cancer stage | 0.717 | 0.581 | ||||||
I–III | 1.00 | 0.80 (0.51–1.26) | 0.323 | 1.00 | 0.74 (0.45–1.22) | 0.169 | ||
IV | 1.00 | 1.08 (0.67–1.74) | 0.637 | 1.00 | 0.95 (0.60–1.50) | 0.433 | ||
Tumor site | 0.340 | 0.501 | ||||||
Colon | 1.00 | 0.71 (0.47–1.07) | 0.174 | 1.00 | 0.68 (0.44–1.06) | 0.126 | ||
Rectum | 1.00 | 0.70 (0.41–1.16) | 0.132 | 1.00 | 0.74 (0.42–1.28) | 0.177 | ||
PAr | ||||||||
Sex | 0.811 | 0.769 | ||||||
Male | 1.00 | 0.95 (0.65–1.40) | 0.790 | 1.00 | 0.92 (0.61–1.39) | 0.627 | ||
Female | 1.00 | 1.11 (0.62–2.00) | 0.936 | 1.00 | 1.14 (0.62–2.11) | 0.782 | ||
Age | 0.889 | 0.797 | ||||||
<50 | 1.00 | 1.08 (0.53–2.20) | 0.742 | 1.00 | 1.37 (0.65–2.90) | 0.427 | ||
≥50 | 1.00 | 1.06 (0.74–1.52) | 0.890 | 1.00 | 0.97 (0.66–1.42) | 0.812 | ||
BMI | 0.838 | 0.943 | ||||||
<23.9 | 1.00 | 1.08 (0.72–1.62) | 0.913 | 1.00 | 1.12 (0.74–1.71) | 0.705 | ||
≥23.9 | 1.00 | 1.00 (0.59–1.69) | 0.769 | 1.00 | 0.88 (0.49–1.58) | 0.751 | ||
Smoking status | 0.452 | 0.425 | ||||||
Ever | 1.00 | 0.94 (0.61–1.44) | 0.995 | 1.00 | 0.85 (0.54–1.36) | 0.681 | ||
Never | 1.00 | 1.03 (0.64–1.68) | 0.645 | 1.00 | 1.11 (0.66–1.85) | 0.840 | ||
Drinking status | 0.882 | 0.945 | ||||||
Regular | 1.00 | 0.93 (0.49–1.80) | 0.989 | 1.00 | 0.84 (0.42–1.71) | 0.695 | ||
Never | 1.00 | 1.04 (0.72–1.50) | 0.971 | 1.00 | e | e | ||
Cancer stage | 0.717 | 0.593 | ||||||
I–III | 1.00 | 0.89 (0.57–1.41) | 0.492 | 1.00 | 0.88 (0.52–1.47) | 0.418 | ||
IV | 1.00 | 0.89 (0.55–1.42) | 0.911 | 1.00 | e | 0.825 | ||
Tumor site | 0.819 | 0.770 | ||||||
Colon | 1.00 | 1.04 (0.68–1.59) | 0.800 | 1.00 | 0.93 (0.59–1.47) | 0.455 | ||
Rectum | 1.00 | 0.88 (0.53–1.47) | 0.699 | 1.00 | 0.98 (0.58–1.68) | 0.972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, L.; Ou, Q.-J.; Xu, H.; Chen, Y.-Y.; Fang, Y.-J.; Zhang, C.-X. Serum Pyridoxal 5′-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study. Nutrients 2024, 16, 3685. https://doi.org/10.3390/nu16213685
Li X, Xu L, Ou Q-J, Xu H, Chen Y-Y, Fang Y-J, Zhang C-X. Serum Pyridoxal 5′-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study. Nutrients. 2024; 16(21):3685. https://doi.org/10.3390/nu16213685
Chicago/Turabian StyleLi, Xue, Lei Xu, Qing-Jian Ou, Huan Xu, Yuan-Yuan Chen, Yu-Jing Fang, and Cai-Xia Zhang. 2024. "Serum Pyridoxal 5′-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study" Nutrients 16, no. 21: 3685. https://doi.org/10.3390/nu16213685
APA StyleLi, X., Xu, L., Ou, Q. -J., Xu, H., Chen, Y. -Y., Fang, Y. -J., & Zhang, C. -X. (2024). Serum Pyridoxal 5′-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study. Nutrients, 16(21), 3685. https://doi.org/10.3390/nu16213685