The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
Inclusion Criteria
2.3. Data Extraction
3. Results
3.1. Characteristics of the Included Studies
3.2. Quality Assessment
3.3. Alteration in Gut Microbiota Diversity in Hypertension
3.3.1. Shannon Index
3.3.2. Chao1 Index
3.3.3. ACE Index
3.3.4. Simpson Index
3.3.5. F/B Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACE Index | Abundance-based Coverage Estimator Index |
BMI | Body Mass Index |
BP | Blood Pressure |
DBP | Diastolic Blood Pressure |
FBG | Fasting Blood Glucose |
F/B ratio | Firmicutes-to-Bacteroidetes ratio |
GM | Gut Microbiota |
HC | Healthy Control |
HTN | Hypertension |
SBP | Systolic Blood Pressure |
SCFA | Short-Chain Fatty Acid |
16S rRNA | 16S ribosomal RNA |
References
- Richards, E.M.; Pepine, C.J.; Raizada, M.K.; Kim, S. The Gut, Its Microbiome, and Hypertension. Curr. Hypertens. Rep. 2017, 19, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valenzuela, P.L.; Carrera-Bastos, P.; Gálvez, B.G.; Ruiz-Hurtado, G.; Ordovas, J.M.; Ruilope, L.M.; Lucia, A. Lifestyle interventions for the prevention and treatment of hypertension. Nat. Rev. Cardiol. 2021, 18, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Lulla, A.; Sioda, M.; Winglee, K.; Wu, M.C.; Jacobs, D.R., Jr.; Shikany, J.M.; Lloyd-Jones, D.M.; Launer, L.J.; Fodor, A.A.; et al. Gut Microbiota Composition and Blood Pressure. Hypertension 2019, 73, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Ribeiro, R.V.; Stevens, B.R.; Gill, P.; Muralitharan, R.R.; Yiallourou, S.; Muir, J.; Carrington, M.; Head, G.A.; Kaye, D.M.; et al. Essential Hypertension Is Associated with Changes in Gut Microbial Metabolic Pathways: A Multisite Analysis of Ambulatory Blood Pressure. Hypertension 2021, 78, 804–815. [Google Scholar] [CrossRef]
- Muralitharan, R.R.; Jama, H.A.; Xie, L.; Peh, A.; Snelson, M.; Marques, F.Z. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications. Hypertension 2020, 76, 1674–1687. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.A.; Verdi, S.; Maxan, M.-E.; Shin, C.M.; Zierer, J.; Bowyer, R.C.E.; Martin, T.; Williams, F.M.K.; Menni, C.; Bell, J.T.; et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 2018, 9, 2655. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Wang, Z.; Yu, B. Gut Microbiota Dysbiosis in Human Hypertension: A Systematic Review of Observational Studies. Front. Cardiovasc. Med. 2021, 8, 650227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, Y.; Zhao, J.; Wang, Y.; Bai, M.; Sun, S. Specific Alterations of Gut Microbiota in Chinese Patients with Hypertension: A Systematic Review and Meta-Analysis. Kidney Blood Press. Res. 2022, 47, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Pinart, M.; Dötsch, A.; Schlicht, K.; Laudes, M.; Bouwman, J.; Forslund, S.K.; Pischon, T.; Nimptsch, K. Gut microbiome composition in obese and non-obese persons: A systematic review and meta-analysis. Nutrients 2021, 14, 12. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Lin, L.; Jiang, F.; Peng, Y.; Li, S.; Chen, L.; Lin, Y. Gut microbiota changes in patients with hypertension: A systematic review and meta-analysis. J. Clin. Hypertens. 2023, 25, 1053–1068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 29, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Critical Appraisal Skills Programme. CASP Checklist. 2022. Available online: https://casp-uk.net/casp-tools-checklists/ (accessed on 15 September 2023).
- Calderón-Pérez, L.; Gosalbes, M.J.; Yuste, S.; Valls, R.M.; Pedret, A.; Llauradó, E.; Jimenez-Hernandez, N.; Artacho, A.; Pla-Pagà, L.; Companys, J.; et al. Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study. Sci. Rep. 2020, 10, 6436. [Google Scholar] [CrossRef]
- Takagi, T.; Naito, Y.; Kashiwagi, S.; Uchiyama, K.; Mizushima, K.; Kamada, K.; Ishikawa, T.; Inoue, R.; Okuda, K.; Tsujimoto, Y.; et al. Changes in the gut microbiota are associated with hypertension, hyperlipidemia, and type 2 diabetes mellitus in Japanese subjects. Nutrients 2020, 12, 2996. [Google Scholar] [CrossRef] [PubMed]
- Silveira-Nunes, G.; Durso, D.F.; de Oliveira, L.R.A., Jr.; Cunha, E.H.M.; Maioli, T.U.; Vieira, A.T.; Speziali, E.; Corrêa-Oliveira, R.; Martins-Filho, O.A.; Teixeira-Carvalho, A.; et al. Hypertension is associated with intestinal microbiota dysbiosis and inflammation in a Brazilian population. Front. Pharmacol. 2020, 11, 258. [Google Scholar] [CrossRef]
- Palmu, J.; Salosensaari, A.; Havulinna, A.S.; Cheng, S.; Inouye, M.; Jain, M.; Salido, R.A.; Sanders, K.; Brennan, C.; Humphrey, G.C.; et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J. Am. Heart Assoc. 2020, 9, e016641. [Google Scholar] [CrossRef]
- Verhaar, B.J.; Collard, D.; Prodan, A.; Levels, J.H.; Zwinderman, A.H.; Bäckhed, F.; Vogt, L.; Peters, M.J.; Muller, M.; Nieuwdorp, M.; et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: The HELIUS study. Eur. Heart J. 2020, 41, 4259–4267. [Google Scholar] [CrossRef]
- Yan, Q.; Gu, Y.; Li, X.; Yang, W.; Jia, L.; Chen, C.; Han, X.; Huang, Y.; Zhao, L.; Li, P.; et al. Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 2017, 7, 381. [Google Scholar] [CrossRef]
- Mushtaq, N.; Hussain, S.; Zhang, S.; Yuan, L.; Li, H.; Ullah, S.; Wang, Y.; Xu, J. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int. J. Mol. Med. 2019, 44, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Mushi, Z.; Baili, W.; Han, L.; Enqi, W.; Huanhu, Z.; Shuchun, L. Differential analysis of hypertension-associated intestinal microbiota. Int. J. Med. Sci. 2019, 16, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.L.; Ma, Z.J.; Ren, M.; Wei, Y.M.; Liao, Y.H.; Shen, Y.L.; Fan, S.M.; Li, L.; Wu, Q.X.; Gao, Z.S.; et al. Distinct features of gut microbiota in high-altitude Tibetan and middle-altitude Han hypertensive patients. Cardiol. Res. Pract. 2020, 2020, 1957843. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Zhu, C.; Jin, G.; Zhu, M.; Hua, J.; He, Y. Analysis of gut microbiota in patients with coronary artery disease and hypertension. Evid.-Based Complement. Altern. Med. 2021, 2021, 7195082. [Google Scholar] [CrossRef]
- Wang, J.M.; Yang, M.X.; Wu, Q.F.; Chen, J.; Deng, S.F.; Chen, L.; Wei, D.N.; Liang, F.R. Improvement of intestinal flora: Accompany with the antihypertensive effect of electroacupuncture on stage 1 hypertension. Chin. Med. 2021, 16, 7. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Q.; Liu, Z.; Shen, S.; Ai, J.; Zhu, Y.; Zhou, L. Alteration of gut microbiota relates to metabolic disorders in primary aldosteronism patients. Front. Endocrinol. 2021, 12, 667951. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Howard, A.G.; Tsilimigras, M.C.; Avery, C.L.; Meyer, K.A.; Sha, W.; Sun, S.; Zhang, J.; Su, C.; et al. Gut Microbiota and Host Plasma Metabolites in Association with Blood Pressure in Chinese Adults. Hypertension 2021, 77, 706–717. [Google Scholar] [CrossRef]
- Qu, L.; Dong, Z.; Ma, S.; Liu, Y.; Zhou, W.; Wang, Z.; Wu, C.; Ma, R.; Jiang, X.; Zu, T.; et al. Gut Microbiome Signatures Are Predictive of Cognitive Impairment in Hypertension Patients—A Cohort Study. Front. Microbiol. 2022, 13, 841614. [Google Scholar] [CrossRef]
- Ferreira-Halder, C.V.; de Sousa Faria, A.V.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, E.; Leonel, A.; Teixeira, L.; Silva, A.; Silva, J.; Pelaez, J.; Capettini, L.; Lemos, V.; Santos, R.; Alvarez-Leite, J. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.F.; Aden, L.A.; Barbaro, N.R.; Van Beusecum, J.P.; Xiao, L.; Simmons, A.J.; Warden, C.; Pasic, L.; Himmel, L.E.; Washington, M.K.; et al. High dietary salt–induced Dendritic Cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 2019, 4, e126241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walejko, J.M.; Kim, S.; Goel, R.; Handberg, E.M.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. Gut Microbiota and Serum Metabolite Differences in African Americans and White Americans with High Blood Pressure. Int. J. Cardiol. 2018, 271, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Stanislawski, M.A.; Dabelea, D.; Lange, L.A.; Wagner, B.D.; Lozupone, C.A. Gut microbiota phenotypes of obesity. NPJ Biofilms Microbiomes 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front. Nutr. 2022, 8, 634897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, G.D.; Compher, C.; Chen, E.Z.; Smith, S.A.; Shah, R.D.; Bittinger, K.; Chehoud, C.; Albenberg, L.G.; Nessel, L.; Gilroy, E.; et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016, 65, 63–72. [Google Scholar] [CrossRef]
- Micheletti, C.; Medori, M.C.; Bonetti, G.; Iaconelli, A.; Aquilanti, B.; Matera, G.; Bertelli, M. Effects of Carob Extract on the Intestinal Microbiome and Glucose Metabolism: A Systematic Review and Meta-Analysis. Clin. Ter. 2023, 174 (Suppl. S2), 169–172. [Google Scholar] [CrossRef] [PubMed]
- Abrignani, V.; Salvo, A.; Pacinella, G.; Tuttolomondo, A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, N.; Barua, N.; Tin, M.C.; Dharmaratne, P.; Wong, S.H.; Ip, M. The use of probiotics and prebiotics in decolonizing pathogenic bacteria from the gut; a systematic review and meta-analysis of clinical outcomes. Gut Microbes 2024, 16, 2356279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qamar, N.; Castano, D.; Patt, C.; Chu, T.; Cottrell, J.; Chang, S.L. Meta-analysis of alcohol induced gut dysbiosis and the resulting behavioral impact. Behav. Brain Res. 2019, 376, 112196. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Ablitip, A.; Wang, R.; Luciana, T.; Wei, M.; Ma, X. Effects of Exercise on Gut Microbiota of Adults: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matenchuk, B.A.; Mandhane, P.J.; Kozyrskyj, A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 2020, 53, 101340. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, Q.; Liu, Y.; Wang, L.; Ge, Z.; Li, Z.; Feng, S.; Wu, C. Gut microbiota and hypertension: Association, mechanisms and treatment. Clin. Exp. Hypertens. 2023, 45, 2195135. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Total Patients | HTN Patients | HC Patients | Study Type | Mean Age (HTN) | Mean Age (HC) | Age Diff (p < 0.05) | HTN (mm Hg) | HC (mm Hg) | Investigation |
---|---|---|---|---|---|---|---|---|---|---|---|
Li et al., 2017 [4] | China | 196 | 99 | 41 | Cohort | 53.6 | 53.7 | No | SBP ≥ 140 or DBP ≥ 90 | SBP ≤ 125, DBP ≤ 80 | Shannon F/B Ratio |
Yan et al., 2017 [21] | China | 120 | 60 | 60 | Case- Control | 57 | 56 | No | BP ≥ 140/90 | BP ≤ 120/80 | Shannon |
Jackson et al., 2018 [7] | Britain | 2737 | 2737 | - | Cohort | 60 | Not Available | No | Diagnosed | Not Available | Shannon |
Mushtaq et al., 2019 [22] | China | 80 | 50 | 30 | Case- Control | 62.5 | 60.5 | No | Grade 3 Hypertension | Healthy Volunteers | F/B Ratio |
Dan et al., 2019 [23] | China | 129 | 67 | 62 | Case- Control | 69.3 | 69.5 | No | SBP ≥ 140 or DBP ≥ 90 | 90 ≤ SBP ≤ 140, 60 ≤ DBP ≤ 90 | Shannon Chao1 ACE Simpson |
Calderón- Pérez et al., 2020 [16] | Spain | 61 | 29 | 32 | Cross- Sectional | 53.7 | 41.1 | Yes | 140 ≤ SBP ≤ 159 | SBP < 120 | Chao1 Shannon |
Takagi et al., 2020 [17] | Japan | 151 | 97 | 54 | Case- Control | 69 | 65.5 | No | SBP ≥ 140 or DBP ≥ 90 | Controls | Shannon |
Zhu et al., 2020 [24] | China | 225 | 121 | 104 | Case- Control | 54.6 | 52.4 | No | Grade 3 Hypertension | Controls | F/B Ratio Shannon |
Silveira-Nunes et al., 2020 [18] | Brazil | 80 | 48 | 32 | Case- Control | 65.3 | 63.3 | No | SBP > 140, DBP > 90 | Normotensive | F/B ratio Shannon |
Palmu et al., 2020 [19] | Finland | 6953 | 6953 | - | Cohort | 49.2 | Not Available | No | SBP ≥ 140 or DBP ≥ 90 | Not Available | Shannon |
Verhaar et al., 2020 [20] | Netherlands | 4672 | 4672 | - | Cohort | 49.8 | Not Available | No | SBP > 140 or DBP > 90 | Not Available | Shannon |
Sun et al., 2020 [3] | USA | 529 | 529 | - | Cohort | 55.3 | Not Available | No | SBP ≥ 140, DBP ≥ 90 | Not Available | Shannon |
Nakai et al., 2021 [5] | Australia | 70 | 23 | 47 | Case- Control | 60.3 | 59.2 | No | European Guidelines | Normotensive | Shannon Chao1 Simpson |
Wan et al., 2021 [25] | China | 600 | 300 | 300 | Case- Control | 69.5 | 69.3 | No | SBP ≥ 140 or DBP ≥ 90 | Normal BP | Shannon Chao1 Simpson |
Wang JM et al., 2021 [26] | China | 108 | 93 | 15 | Case- Control | 61.4 | 56.3 | No | Stage 1 Hypertension | Healthy Participants | Shannon Chao1 Simpson ACE F/B Ratio |
Liu Y et al., 2021 [27] | China | 52 | 26 | 26 | Case- Control | 56.9 | 50.1 | Yes | SBP ≥ 140 or DBP ≥ 90 | SBP ≤ 139, DBP ≤ 89 | Shannon Simpson |
Wang Y et al., 2021 [28] | China | 1082 | 1082 | - | Cohort | 51 | Not Available | No | SBP ≥ 140, DBP ≥ 90 | Not Available | Shannon |
Qu et al., 2022 [29] | China | 97 | 63 | 34 | Cohort | 59.8 | 59.2 | No | SBP ≥ 140, DBP ≥ 90 | Healthy Volunteers | Shannon Chao1 Simpson ACE |
Author | Year | Total Patients | Number of Patients in Each Group | Mean Difference | 95% CI | Statistically Significant |
---|---|---|---|---|---|---|
Li et al. [4] | 2017 | 196 | HTN: 99 HC: 41 | −0.40 | (−0.76, −0.03) | Lower |
Yan et al. [21] | 2017 | 120 | HTN: 60 HC: 60 | −0.49 | (−0.85, −0.12) | Lower |
Dan et al. [23] | 2019 | 129 | HTN: 67 HC: 62 | 0.12 | (−0.23, 0.47) | No difference |
Silveira-Nunes et al. [18] | 2020 | 80 | HTN: 48 HC: 32 | −0.35 | (−0.81, 0.10) | No difference |
Zhu et al. [24] | 2020 | 225 | HTN: 121 HC: 104 | −0.15 | (−0.41, 0.12) | No difference |
Takagi et al. [17] | 2020 | 151 | HTN: 97 HC: 54 | −0.32 | (−0.65, 0.02) | No difference |
Calderón-Pérez et al. [16] | 2020 | 61 | HTN: 29 HC: 32 | 0.22 | (−0.29, 0.72) | No difference |
Wang JM et al. [26] | 2021 | 108 | HTN: 29 HC: 15 | 0.00 | (−0.62, 0.62) | No difference |
Nakai et al. [5] | 2021 | 70 | HTN: 23 HC: 46 | 0.16 | (−0.34, 0.66) | No difference |
Wan et al. [25] | 2021 | 600 | HTN: 300 HC: 300 | −0.10 | (−0.26, 0.06) | No difference |
Liu Y et al. [27] | 2021 | 52 | HTN: 26 HC: 26 | −0.17 | (−0.71, 0.37) | No difference |
Qu et al. [29] | 2022 | 97 | HTN: 63 HC: 34 | 0.03 | (−0.39, 0.44) | No difference |
Author | Year | Total Patients | Number of Patients in Each Group | Mean Difference | 95% CI | Statistically Significant |
---|---|---|---|---|---|---|
Dan et al. [23] | 2019 | 129 | HTN: 67 HC: 62 | 0.18 | (−0.16, 0.53) | No difference |
Calderón-Pérez et al. [16] | 2020 | 61 | HTN:29 HC: 32 | −0.04 | (−0.54, 0.47) | No difference |
Nakai et al. [5] | 2021 | 70 | HTN: 23 HC: 46 | 0.13 | (−0.37, 0.63) | No difference |
Wan et al. [25] | 2021 | 600 | HTN: 300 HC: 300 | 0.08 | (−0.08, 0.25) | No difference |
Wang JM et al. [26] | 2021 | 108 | HTN: 29 HC: 15 | 0.40 | (−0.23, 1.03) | No difference |
Qu et al. [29] | 2022 | 97 | HTN: 63 HC: 34 | 0.16 | (−0.25, 0.58) | No difference |
Author | Year | Total Patients | Number of Patients in Each Group | Mean Difference | 95% CI | Statistically Significant |
---|---|---|---|---|---|---|
Dan et al. [23] | 2019 | 129 | HTN: 67 HC: 62 | 0.12 | (−0.22, 0.47) | No difference |
Wang JM et al. [26] | 2021 | 108 | HTN: 29 HC: 15 | 0.44 | (−0.19, 1.07) | No difference |
Qu et al. [29] | 2022 | 97 | HTN: 63 HC: 34 | 0.16 | (−0.26, 0.58) | No difference |
Author | Year | Total Patients | Number of Patients in Each Group | Mean Difference | 95% CI | Statistically Significant |
---|---|---|---|---|---|---|
Dan et al. [23] | 2019 | 129 | HTN: 67 HC: 62 | 0.17 | (−0.18, 0.51) | No difference |
Wang JM et al. [26] | 2021 | 108 | HTN: 29 HC: 15 | 0.25 | (−0.37, 0.88) | No difference |
Nakai et al. [5] | 2021 | 70 | HTN: 23 HC: 46 | 0.20 | (−0.30, 0.70) | No difference |
Wan et al. [25] | 2021 | 600 | HTN: 300 HC: 300 | −0.13 | (−0.29, 0.03) | No difference |
Liu Y et al. [27] | 2021 | 52 | HTN: 26 HC: 26 | 0.47 | (−0.08, 1.02) | No difference |
Qu et al. [29] | 2022 | 97 | HTN: 63 HC: 34 | 0.03 | (−0.39, 0.44) | No difference |
Author | Year | Total Patients | Number of Patients in Each Group | Mean Difference | 95% CI | Statistically Significant |
---|---|---|---|---|---|---|
Li et al. [4] | 2017 | 196 | HTN: 99 HC: 41 | −0.24 | (−0.61, 0.12) | No difference |
Mushtaq et al. [22] | 2019 | 80 | HTN: 20 HC: 10 | 4.09 | (2.74, 5.43) | Higher |
Zhu et al. [24] | 2020 | 225 | HTN: 121 HC: 104 | 0.06 | (−0.20, 0.32) | No difference |
Silveira-Nunes et al. [18] | 2020 | 80 | HTN: 48 HC: 32 | 0.42 | (−0.03, 0.87) | No difference |
Wang JM et al. [26] | 2021 | 108 | HTN: 29 HC: 15 | 1.26 | (0.58, 1.94) | Higher |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiavos, A.; Antza, C.; Trakatelli, C.; Kotsis, V. The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota. Nutrients 2024, 16, 3698. https://doi.org/10.3390/nu16213698
Tsiavos A, Antza C, Trakatelli C, Kotsis V. The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota. Nutrients. 2024; 16(21):3698. https://doi.org/10.3390/nu16213698
Chicago/Turabian StyleTsiavos, Alexandros, Christina Antza, Christina Trakatelli, and Vasilios Kotsis. 2024. "The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota" Nutrients 16, no. 21: 3698. https://doi.org/10.3390/nu16213698
APA StyleTsiavos, A., Antza, C., Trakatelli, C., & Kotsis, V. (2024). The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota. Nutrients, 16(21), 3698. https://doi.org/10.3390/nu16213698