Body Composition in Cases with Normal Alanine Aminotransferase Values in Medical Health Checkups
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients and Our Study
2.2. Our Type Classification
2.3. Statistics
3. Results
3.1. Baseline Features
3.2. Body Composition-Related Parameters Among Four Types in Men and Women
3.3. The Percentage of Decreased SMM in Four Types in Men and Women
3.4. Body Composition-Related Parameters Among Four Types in Men with ≥50 Years and <50 Years
3.5. Body Composition-Related Parameters Among Four Types in Women with ≥50 Years and <50 Years
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Available online: https://www.jsh.or.jp/medical/nara_sengen/ (accessed on 1 September 2024).
- Onishi, S.; Fukuda, A.; Matsui, M.; Ushiro, K.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Changes in alanine aminotransferase and body composition and metabolic factors among individuals receiving medical health checkups. Hepatol. Res. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; He, J.; Huang, W.; Liao, E.; Liu, Y.; Zhan, J.; Wang, Y. Analysis of the relationship between serum alanine aminotransferase and body composition in Chinese women. Aging Med. 2022, 5, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Bekkelund, S.I.; Jorde, R. Alanine Aminotransferase and Body Composition in Obese Men and Women. Dis. Markers 2019, 2019, 1695874. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Montemayor, L.; Ugalde-Casas, P.A.; Lam-Franco, L.; Bustamante-Careaga, H.; Serrano-González, M.; Gutiérrez, N.G.; Martínez, U. Association of ALT and the metabolic syndrome among Mexican children. Obes. Res. Clin. Pract. 2014, 8, e79–e87. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Au Yeung, S.L.; Kwok, M.K.; Leung, J.Y.Y.; Hui, L.L.; Leung, G.M.; Schooling, C.M. The effect of liver enzymes on body composition: A Mendelian randomization study. PLoS ONE 2020, 15, e0228737. [Google Scholar] [CrossRef]
- Onishi, S.; Fukuda, A.; Matsui, M.; Ushiro, K.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Body Composition Analysis in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients 2023, 15, 3878. [Google Scholar] [CrossRef]
- Kawakami, R.; Tanisawa, K.; Ito, T.; Usui, C.; Miyachi, M.; Torii, S.; Midorikawa, T.; Ishii, K.; Muraoka, I.; Suzuki, K.; et al. Fat-Free Mass Index as a Surrogate Marker of Appendicular Skeletal Muscle Mass Index for Low Muscle Mass Screening in Sarcopenia. J. Am. Med. Dir. Assoc. 2022, 23, 1955–1961.e3. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Shiina, K.; Matsumoto, C.; Nakano, H.; Fujii, M.; Yamashina, A.; Chikamori, T.; Tomiyama, H. Correlation of the Fatty Liver Index with the Pathophysiological Abnormalities Associated with Cardiovascular Risk Markers in Japanese Men without any History of Cardiovascular Disease: Comparison with the Fibrosis-4 Score. J. Atheroscler. Thromb. 2021, 28, 524–534. [Google Scholar] [CrossRef]
- Bradshaw, P.T. Body composition and cancer survival: A narrative review. Br. J. Cancer 2024, 130, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Tobari, M.; Hashimoto, E. Characteristic Features of Nonalcoholic Fatty Liver Disease in Japan with a Focus on the Roles of Age, Sex and Body Mass Index. Gut Liver 2020, 14, 537–545. [Google Scholar] [CrossRef]
- Tokushige, K.; Ikejima, K.; Ono, M.; Eguchi, Y.; Kamada, Y.; Itoh, Y.; Akuta, N.; Yoneda, M.; Iwasa, M.; Yoneda, M.; et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J. Gastroenterol. 2021, 56, 951–963. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D.; Lin, B.; Filipp, S.L.; Cusi, K.; Gurka, M.J. Severity of metabolic syndrome is greater among nonalcoholic adults with elevated ALT and advanced fibrosis. Nutr. Res. 2021, 88, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, X.; Yu, S.; Zhou, Y.; Li, Z.; Sun, Y. Metabolic Syndrome and Serum Liver Enzymes in the General Chinese Population. Int. J. Environ. Res. Public Health 2016, 13, 223. [Google Scholar] [CrossRef]
- Laufer, M.; Perelman, M.; Sarfaty, M.; Itelman, E.; Segal, G. Low Alanine Aminotransferase, as a Marker of Sarcopenia and Frailty, Is Associated with Shorter Survival Among Prostate Cancer Patients and Survivors. A Retrospective Cohort Analysis of 4064 Patients. Eur. Urol. Open Sci. 2023, 55, 38–44. [Google Scholar] [CrossRef]
- Uliel, N.; Segal, G.; Perri, A.; Turpashvili, N.; Kassif, L.R.; Itelman, E. Low ALT, a marker of sarcopenia and frailty, is associated with shortened survival amongst myelodysplastic syndrome patients: A retrospective study. Medicine 2023, 102, e33659. [Google Scholar] [CrossRef] [PubMed]
- Lasman, N.; Shalom, M.; Turpashvili, N.; Goldhaber, G.; Lifshitz, Y.; Leibowitz, E.; Berger, G.; Saltzman-Shenhav, G.; Brom, A.; Cohen, D.; et al. Baseline low ALT activity is associated with increased long-term mortality after COPD exacerbations. BMC Pulm. Med. 2020, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Laufer, M.; Perelman, M.; Segal, G.; Sarfaty, M.; Itelman, E. Low Alanine Aminotransferase as a Marker for Sarcopenia and Frailty, Is Associated with Decreased Survival of Bladder Cancer Patients and Survivors—A Retrospective Data Analysis of 3075 Patients. Cancers 2023, 16, 174. [Google Scholar] [CrossRef]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli, I.R.; Picardi, A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.; Swan, L.; Fox, R.; Warters, A.; O’Sullivan, M. Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients 2023, 15, 1505. [Google Scholar] [CrossRef]
- Ushio, K.; Mikami, Y.; Obayashi, H.; Fujishita, H.; Fukuhara, K.; Sakamitsu, T.; Hirata, K.; Ikuta, Y.; Kimura, H.; Adachi, N. Decreased Muscle-to-Fat Mass Ratio Is Associated with Low Muscular Fitness and High Alanine Aminotransferase in Children and Adolescent Boys in Organized Sports Clubs. J. Clin. Med. 2021, 10, 2272. [Google Scholar] [CrossRef]
- Mizuno, N.; Seko, Y.; Kataoka, S.; Okuda, K.; Furuta, M.; Takemura, M.; Taketani, H.; Hara, T.; Umemura, A.; Nishikawa, T.; et al. Increase in the skeletal muscle mass to body fat mass ratio predicts the decline in transaminase in patients with nonalcoholic fatty liver disease. J. Gastroenterol. 2019, 54, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index With Body Mass Index and Association With Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Xiang, J.; Hou, Y.; Xuan, L.; Wang, T.; Li, M.; Zhao, Z.; Xu, Y.; Lu, J.; Chen, Y.; et al. Fat mass to fat-free mass ratio and the risk of non-alcoholic fatty liver disease and fibrosis in non-obese and obese individuals. Nutr. Metab. 2021, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Rugila, D.F.; Oliveira, J.M.; Machado, F.V.C.; Correia, N.S.; Puzzi, V.C.; Passos, N.F.P.; Freitas, P.D.; Pitta, F.; Carvalho, C.R.F.; Furlanetto, K.C. Fat mass to fat-free mass ratio and its associations with clinical characteristics in asthma. Heart Lung 2022, 56, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Chen, H.W.; Lin, Y.; Li, F.R.; Zhong, Q.; Huang, Y.N.; Wu, X.B. Total and Regional Fat/Muscle Mass Ratio and Risks of Incident Cardiovascular Disease and Mortality. J. Am. Heart Assoc. 2023, 12, e030101. [Google Scholar] [CrossRef]
- Seo, Y.G.; Song, H.J.; Song, Y.R. Fat-to-muscle ratio as a predictor of insulin resistance and metabolic syndrome in Korean adults. J. Cachexia Sarcopenia Muscle 2020, 11, 710–725. [Google Scholar] [CrossRef]
- Wang, N.; Sun, Y.; Zhang, H.; Chen, C.; Wang, Y.; Zhang, J.; Xia, F.; Benedict, C.; Tan, X.; Lu, Y. Total and regional fat-to-muscle mass ratio measured by bioelectrical impedance and risk of incident type 2 diabetes. J. Cachexia Sarcopenia Muscle 2021, 12, 2154–2162. [Google Scholar] [CrossRef]
- Cho, A.R.; Suh, E.; Oh, H.; Cho, B.H.; Gil, M.; Lee, Y.K. Low Muscle and High Fat Percentages Are Associated with Low Natural Killer Cell Activity: A Cross-Sectional Study. Int. J. Mol. Sci. 2023, 24, 12505. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
Men (n = 7569) | Women (n = 9497) | p Value | |
---|---|---|---|
Age (years) | 52 (44–62) | 51 (43.5–59) | <0.0001 |
Body mass index (kg/m2) | 23.4 (21.4–25.7) | 21.1 (19.2–23.6) | <0.0001 |
Waist circumference (cm) | 84 (78.5–90.5) | 76 (70.5–83.5) | <0.0001 |
Systolic blood pressure (mmHg) | 121 (111–132) | 112 (103–125) | <0.0001 |
Diastolic blood pressure (mmHg) | 77 (69–85) | 69 (62–78) | <0.0001 |
Alanine aminotransferase (IU/L) | 21 (16–31) | 15 (12–20) | <0.0001 |
Gamma-glutamyl transferase (IU/L) | 30 (20–50) | 17 (13–26) | <0.0001 |
Triglyceride (mg/dL) | 97 (68–142) | 69 (52–97) | <0.0001 |
Fasting blood glucose (mg/dL) | 91 (85–99) | 86 (81–92) | <0.0001 |
eGFR (mL/min/1.73 m2) | 70.1 (62.0–78.7) | 72.7 (64.4–81.9) | <0.0001 |
Fat mass index (kg/m2) | 5.06 (3.83–6.45) | 6.03 (4.67–7.94) | <0.0001 |
Fat-free mass index (kg/m2) | 18.38 (17.48–19.38) | 15.11 (14.48–15.77) | <0.0001 |
F-FF ratio | 0.28 (0.22–0.34) | 0.40 (0.32–0.51) | <0.0001 |
Fatty liver index | 24.78 (10.36–49.24) | 6.56 (3.11–17.23) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushiro, K.; Fukuda, A.; Matsui, M.; Onishi, S.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Body Composition in Cases with Normal Alanine Aminotransferase Values in Medical Health Checkups. Nutrients 2024, 16, 3847. https://doi.org/10.3390/nu16223847
Ushiro K, Fukuda A, Matsui M, Onishi S, Nishikawa T, Asai A, Kim SK, Nishikawa H. Body Composition in Cases with Normal Alanine Aminotransferase Values in Medical Health Checkups. Nutrients. 2024; 16(22):3847. https://doi.org/10.3390/nu16223847
Chicago/Turabian StyleUshiro, Kosuke, Akira Fukuda, Masahiro Matsui, Saori Onishi, Tomohiro Nishikawa, Akira Asai, Soo Ki Kim, and Hiroki Nishikawa. 2024. "Body Composition in Cases with Normal Alanine Aminotransferase Values in Medical Health Checkups" Nutrients 16, no. 22: 3847. https://doi.org/10.3390/nu16223847
APA StyleUshiro, K., Fukuda, A., Matsui, M., Onishi, S., Nishikawa, T., Asai, A., Kim, S. K., & Nishikawa, H. (2024). Body Composition in Cases with Normal Alanine Aminotransferase Values in Medical Health Checkups. Nutrients, 16(22), 3847. https://doi.org/10.3390/nu16223847