The Relationship Between Dietary Patterns, Cognition, and Cardiometabolic Health in Healthy, Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment of Diet
2.4. Assessment of Cognition: Cambridge Neuropsychological Test Automated Battery
2.5. Cognitive Domain Variable Derivation
2.6. Metabolic Syndrome Severity Score (MetSSS)
2.7. Variables That Contributed to the MetSSS
2.8. Covariates
2.9. Principal Component Analysis (PCA) to Derive Dietary Patterns
2.10. Removal of Participants with Implausible Energy Intake
2.11. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Dietary Patterns
3.3. Dietary Patterns and Cognitive Composite Outcomes
3.4. Sensitivity Analysis Without Imputed Data
3.5. The Moderating Effect of Cardiometabolic Health
3.6. Sensitivity Analysis Without Imputed Data for Moderation Analysis
4. Discussion
4.1. Meat-Dominant Diet and Cognition
4.2. Western-Style Diet and Cognition
4.3. Plant-Dominant Diet and Cognition
4.4. Strengths, Limitations, and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the global burden of disease study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science—Implications for current research, dietary guidelines, and food policy. BMJ 2018, 13, 361. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Rutjes, A.W.S.; Denton, A.D.; Di Nisio, M.; Chong, L.-Y.; Abraham, R.P.; Al-Assaf, A.S.; Anderson, J.L.; Malik, A.M.; Vernooij, R.; Martínez, G.; et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst. Rev. 2018, 2019, CD011906. [Google Scholar] [CrossRef]
- Jacques, P.F.; Tucker, K.L. Are dietary patterns useful for understanding the role of diet in chronic disease? Am. J. Clin. Nutr. 2001, 73, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Parletta, N. Implementing a Mediterranean-style diet outside the mediterranean region. Curr. Atheroscler. Rep. 2018, 20, 28. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61 (Suppl. 6), 1402S–1406S. [Google Scholar] [CrossRef]
- Petersson, S.D.; Philippou, E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv. Nutr. 2016, 7, 889–904. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á.; et al. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Brickman, A.M.; Stern, Y.; Habeck, C.G.; Razlighi, Q.R.; Luchsinger, J.A.; Manly, J.J.; Schupf, N.; Mayeux, R.; Scarmeas, N. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 2015, 85, 1744–1751. [Google Scholar] [CrossRef]
- Mosconi, L.; Murray, J.; Tsui, W.H.; Li, Y.; Davies, M.; Williams, S.; Pirraglia, E.; Spector, N.; Osorio, R.S.; Glodzik, L.; et al. Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for alzheimer’s disease. J. Prev. Alzheimers Dis. 2014, 1, 23–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Titova, O.E.; Ax, E.; Brooks, S.J.; Sjögren, P.; Cederholm, T.; Kilander, L.; Kullberg, J.; Larsson, E.-M.; Johansson, L.; Åhlström, H.; et al. Mediterranean diet habits in older individuals: Associations with cognitive functioning and brain volumes. Exp. Gerontol. 2013, 48, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Corley, J.; Cox, S.R.; Valdés Hernández, M.C.; Craig, L.C.; Dickie, D.A.; Karama, S.; McNeill, G.M.; Bastin, M.E.; Wardlaw, J.M.; et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 2017, 88, 449–455. [Google Scholar] [CrossRef]
- Rodrigues, B.; Coelho, A.; Portugal-Nunes, C.; Magalhães, R.; Moreira, P.S.; Castanho, T.C.; Amorim, L.; Marques, P.; Soares, J.M.; Sousa, N.; et al. Higher adherence to the mediterranean diet is associated with preserved white matter integrity and altered structural connectivity. Front Neurosci. 2020, 14, 786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gardener, H.; Scarmeas, N.; Gu, Y.; Boden-Albala, B.; Elkind, M.S.; Sacco, R.L.; DeCarli, C.; Wright, C.B. Mediterranean Diet and White Matter Hyperintensity Volume in the Northern Manhattan Study. Arch. Neurol. 2012, 69, 251–256. [Google Scholar] [CrossRef]
- Scarmeas, N.; Luchsinger, J.A.; Stern, Y.; Gu, Y.; He, J.; DeCarli, C.; Brown, T.; Brickman, A.M. Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann. Neurol. 2011, 69, 257–268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Francis, H.M.; Stevenson, R.J. Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav. Neurosci. 2011, 125, 943–955. [Google Scholar] [CrossRef]
- Munoz-Garcia, M.I.; Toledo, E.; Razquin, C.; Dominguez, L.J.; Maragarone, D.; Martinez-Gonzalez, J.; Martinez-Gonzalez, M.A. “A priori” dietary patterns and cognitive function in the SUN project. Neuroepidemiology 2020, 54, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Shakersain, B.; Santoni, G.; Larsson, S.C.; Faxén-Irving, G.; Fastbom, J.; Fratiglioni, L.; Xu, W. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimer’s Dement. 2016, 12, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Tangney, C.C.; Li, H.; Wang, Y.; Barnes, L.; Schneider, J.A.; Bennett, D.A.; Morris, M.C. Relation of DASH-and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 2014, 83, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; Singh-Manoux, A.; Marmot, M.G.; Brunner, E.J. Education attenuates the association between dietary patterns and cognition. Dement. Geriatr. Cogn. Disord. 2009, 27, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Gardener, S.L.; Rainey-Smith, S.R.; Barnes, M.B.; Sohrabi, H.R.; Weinborn, M.; Lim, Y.Y.; Harrington, K.; Taddei, K.; Gu, Y.; Rembach, A.; et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol. Psychiatry 2015, 20, 860–866. [Google Scholar] [CrossRef]
- Francis, H.; Stevenson, R. The longer-term impacts of Western diet on human cognition and the brain. Appetite 2013, 63, 119–128. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Sachdev, P.S.; Kochan, N.A.; O’Leary, F.; Brodaty, H. Dietary patterns and cognitive health in older adults: Findings from the Sydney Memory and Ageing Study. J. Nutr. Health Aging 2021, 25, 255–262. [Google Scholar] [CrossRef]
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Sachdev, P.; Butterworth, P. Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Med. 2015, 13, 215. [Google Scholar] [CrossRef]
- Taylor, Z.B.; Stevenson, R.J.; Ehrenfeld, L.; Francis, H.M. Francis The impact of saturated fat, added sugar and their combination on human hippocampal integrity and function: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 130, 91–106. [Google Scholar] [CrossRef]
- Hollands, C.; Bartolotti, N.; Lazarov, O. Alzheimer’s disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front. Neurosci. 2016, 10, 178. [Google Scholar] [CrossRef]
- Więckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 2021, 70, 101397. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Levin, S.; Barnard, N. Cardio-metabolic benefits of plant-based diets. Nutrients 2017, 9, 848. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Hu, F.B. Plant-based Diets and Cardiovascular Health. Trends Cardiovasc. Med. 2018, 7, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.M.; Haslam, R.L.; Herbert, J.; Whatnall, M.C.; Trijsburg, L.; de Vries, J.H.M.; Josefsson, M.S.; Koochek, A.; Nowicka, P.; Neuman, N.; et al. Diet quality and cardiovascular outcomes: A systematic review and meta-analysis of cohort studies. Nutr. Diet. 2023, 81, 35–50. [Google Scholar] [CrossRef]
- Wirt, A.; Collins, C.E. Diet quality—What is it and does it matter? Public Health Nutr. 2009, 12, 2473–2492. [Google Scholar] [CrossRef]
- North, B.J.; Sinclair, D.A. The intersection between aging and cardiovascular disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Helkala, E.L.; Laakso, M.P.; Hänninen, T.; Hallikainen, M.; Alhainen, K.; Soininen, H.; Tuomilehto, J.; Nissinen, A. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ 2001, 322, 1447–1451. [Google Scholar] [CrossRef]
- McGrath, E.R.; Beiser, A.S.; O’Donnell, A.; Himali, J.J.; Pase, M.P.; Satizabal, C.L.; Seshadri, S. Determining vascular risk factors for dementia and dementia risk prediction across mid-to later life: The Framingham Heart study. Neurology 2022, 99, e142–e153. [Google Scholar] [CrossRef]
- Yaffe, K.; Vittinghoff, E.; Hoang, T.; Matthews, K.; Golden, S.H.; Zeki Al Hazzouri, A. Cardiovascular risk factors across the life course and cognitive decline: A pooled cohort study. Neurology 2021, 96, e2212–e2219. [Google Scholar] [CrossRef]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R. The association between the Mediterranean dietary pattern and cognitive health: A systematic review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef]
- Limongi, F.; Siviero, P.; Bozanic, A.; Noale, M.; Veronese, N.; Maggi, S. The effect of adherence to the Mediterranean diet on late-life cognitive disorders: A systematic review. J. Am. Med. Dir. Assoc. 2020, 21, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Radd-Vagenas, S.; Duffy, S.L.; Naismith, S.L.; Brew, B.J.; Flood, V.M.; Singh, M.A. Effect of the Mediterranean diet on cognition and brain morphology and function: A systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2018, 107, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Parsaik, A.K.; Mielke, M.M.; Erwin, P.J.; Knopman, D.S.; Petersen, R.C.; Roberts, R.O. Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer’s Dis. 2014, 39, 271–282. [Google Scholar] [CrossRef]
- Wiley, J.F.; Carrington, M.J. A metabolic syndrome severity score: A tool to quantify cardio-metabolic risk factors. Prev. Med. 2016, 88, 189–195. [Google Scholar] [CrossRef]
- Smith, A.E.; Wade, A.T.; Olds, T.; Dumuid, D.; Breakspear, M.J.; Laver, K.; Goldsworthy, M.R.; Ridding, M.C.; Fabiani, M.; Dorrian, J.; et al. Characterising activity and diet compositions for dementia prevention: Protocol for the ACTIVate prospective longitudinal cohort study. BMJ Open 2022, 12, e047888. [Google Scholar] [CrossRef]
- AUSNUT. AusNut 1999 Nutrient Database (All Foods, Revision 17); Food Standards Australia New Zealand: Canberra, Australia, 1999. [Google Scholar]
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef]
- Burrows, T.L.; Hutchesson, M.J.; Rollo, M.E.; Boggess, M.M.; Guest, M.; Collins, C.E. Fruit and vegetable intake assessed by food frequency questionnaire and plasma carotenoids: A validation study in adults. Nutrients 2015, 7, 3240–3251. [Google Scholar] [CrossRef]
- Pezdirc, K.; Hutchesson, M.; Williams, R.; Rollo, M.; Burrows, T.; Wood, L.; Collins, C.E. Consuming high carotenoid fruit and vegetables influences skin yellowness and plasma carotenoids in young women; A Single Blind Randomized Cross-Over Trial. J. Acad. Nutr. Diet. 2016, 116, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Swierk, M.; Williams, P.G.; Wilcox, J.; Russell, K.G.; Meyer, B.J. Validation of an Australian electronic food frequency questionnaire to measure polyunsaturated fatty acid intake. Nutrition 2011, 27, 641–646. [Google Scholar] [CrossRef]
- Saunders, N.L.J.; Summers, M.J. Attention and working memory deficits in mild cognitive impairment. J. Clin. Exp. Neuropsychol. 2010, 32, 350–357. [Google Scholar] [CrossRef]
- Smith, P.J.; Need, A.C.; Cirulli, E.T.; Chiba-Falek, O.; Attix, D.K. A comparison of the Cambridge automated neuropsychological test battery (CANTAB) with “traditional” neuropsychological testing instruments. J. Clin. Exp. Neuropsychol. 2013, 35, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Cambridge Cognition. Test-Retest Reliabilities and Detecting Reliable Change; Cambridge Cognition: Cambridge, UK, 2008; pp. 1–4. [Google Scholar]
- Gonçalves, M.M.; Pinho, M.S.; Simões, M.R. Test–retest reliability analysis of the Cambridge neuropsychological automated tests for the assessment of dementia in older people living in retirement homes. Appl. Neuropsychol. 2016, 23, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Mellow, M.L.; Dumuid, D.; Wade, A.T.; Stanford, T.; Olds, T.S.; Karayanidis, F.; Hunter, M.; Keage, H.A.D.; Dorrian, J.; Goldsworthy, M.R.; et al. Twenty-four-hour time-use composition and cognitive function in older adults: Cross-sectional findings of the ACTIVate study. Front. Hum. Neurosci. 2022, 16, 1051793. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Masson, V.; Vehtari, A. Pscore: Standardizing Physiological Composite Risk Endpoints. R Package Version 1.0; Wiley: Hoboken, NJ, USA, 2021; Available online: https://CRAN.R-project.org/package=pscore (accessed on 1 July 2023).
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, H. ; International Society for advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; pp. 50–53. [Google Scholar]
- Anstey, K.J.; Cherbuin, N.; Herath, P.M.; Qiu, C.; Kuller, L.H.; Lopez, O.L.; Wilson, R.S.; Fratiglioni, L. A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: The ANU-ADRI. PLoS ONE 2014, 9, e86141. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research; Northwestern University: Evanston, IL, USA, 2023; Available online: https://CRAN.R-project.org/package=psych (accessed on 1 July 2023.).
- Akbaraly, T.; Singh-Manoux, A.; Dugravot, A.; Brunner, E.J.; Kivimäki, M.; Sabia, S. Association of midlife diet with subsequent risk for dementia. JAMA 2019, 321, 957. [Google Scholar] [CrossRef]
- Everitt, B.S.; Hothorn, T. An Introduction to Applied Multivariate Analysis with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Walton, J. Dietary assessment methodology for nutritional assessment. Top. Clin. Nutr. 2015, 30, 33–46. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 July 2023).
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Corley, J.; Cox, S.R.; Taylor, A.M.; Hernandez, M.V.; Maniega, S.M.; Ballerini, L.; Wiseman, S.; Meijboom, R.; Backhouse, E.V.; Bastin, M.E.; et al. Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Exp Gerontol. 2020, 142, 111117. [Google Scholar] [CrossRef] [PubMed]
- Valsta, L.; Tapanainen, H.; Männistö; S. Meat fats in nutrition. Meat fats in nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef]
- Eskelinen, M.H.; Ngandu, T.; Helkala, E.; Tuomilehto, J.; Nissinen, A.; Soininen, H.; Kivipelto, M. Fat intake at midlife and cognitive impairment later in life: A population-based CAIDE study. Int. J. Geriatr. Psychiatry 2008, 23, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Kalmijn, S.; van Boxtel, M.P.; Ocké, M.; Verschuren, W.M.; Kromhout, D.; Launer, L.J. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 2004, 62, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, M.; Ngandu, T.; Rovio, S.; Helkala, E.-L.; Uusitalo, U.; Viitanen, M.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study. Dement. Geriatr. Cogn. Disord. 2006, 22, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Schneider, J.; Wilson, R.S. Dietary fats and the risk of incident Alzheimer disease. Arch. Neurol. 2003, 60, 194. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Tangney, C.C.; Bienias, J.L.; Schneider, J.A.; Wilson, R.S.; Scherr, P.A. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch. Neurol. 2006, 63, 1085. [Google Scholar] [CrossRef]
- Okereke, O.I.; Rosner, B.A.; Kim, D.H.; Kang, J.H.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Willett, W.C.; Grodstein, F. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann. Neurol. 2012, 72, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.J.; Arnesen, E.K.; Rundblad, A.; Telle-Hansen, V.H.; Narverud, I.; Blomhoff, R.; Bogsrud, M.P.; Retterstøl, K.; Ulven, S.M.; Holven, K.B. Dietary fat quality, plasma atherogenic lipoproteins, and atherosclerotic cardiovascular disease: An overview of the rationale for dietary recommendations for fat intake. Atherosclerosis 2024, 389, 117433. [Google Scholar] [CrossRef]
- Ogonowski, N.S.; García-Marín, L.M.; Fernando, A.S.; Flores-Ocampo, V.; Rentería, M.E. Impact of genetic predisposition to late-onset neurodegenerative diseases on early life outcomes and brain structure. Transl. Psychiatry 2024, 14, 185. [Google Scholar] [CrossRef]
- Macpherson, H.; Roberstson, B.; Sünram-Lea, S.I.; Stough, C.; Kennedy, D.O.; Scholey, A. Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology 2014, 232, 1135–1142. [Google Scholar] [CrossRef]
- Scholey, A.; Harper, S.M.; Kennedy, D.O. Cognitive demand and blood glucose. Physiol. Behav. 2001, 73, 585–592. [Google Scholar] [CrossRef]
- Smith, M.A.; Riby, L.M.; van Eekelen, J.A.; Foster, J.K. Glucose enhancement of human memory: A comprehensive research review of the glucose memory facilitation effect. Neurosci. Biobehav. Rev. 2011, 35, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Mander, A.; Ames, D.; Carne, R.; Sanders, K.; Watters, D. Cognitive impairment and vitamin B12: A review. Int. Psychogeriatr. 2012, 24, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Feart, C.; Samieri, C.; Rondeau, V.; Amieva, H.; Portet, F.; Dartigues, J.F.; Scarmeas, N.; Barberger-Gateau, P. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 2009, 302, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Scarmeas, N.; Stern, Y.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch. Neurol. 2006, 63, 1709–1717. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 1–18. [Google Scholar] [CrossRef]
- Samieri, C.; Yassine, H.N.; van Lent, D.M.; Lefèvre-Arbogast, S.; van de Rest, O.; Bowman, G.L.; Scarmeas, N. Personalized nutrition for dementia prevention. Alzheimer’S Dement. 2021, 18, 1424–1437. [Google Scholar] [CrossRef]
Cognitive Domain | Task | Outcome Measures |
---|---|---|
Long-term memory | Verbal Recognition Memory | Delayed recognition—total correct |
Short-term memory | Verbal Recognition Memory | Immediate recognition—total correct Immediate free recall—total correct distinct words |
Paired Associates Learning | Total errors (adjusted) * First attempt memory score | |
Executive function | Multitasking test | Total incorrect responses * Median response latency multitasking cost * Median response latency incongruency cost * |
One Touch Stockings of Cambridge | Problems solved on first choice | |
Processing speed | Reaction time | Median latency to first choice * Median simple reaction time * Median 5-choice reaction time * Median simple movement time * Median 5-choice movement time * |
Indicator | Overall (SD) | Female (SD) | Male (SD) | p-value | Clinical Cut-Off |
---|---|---|---|---|---|
Age | 65.53 (2.96) | 65.37 (2.85) | 65.91 (3.19) | 0.106 | |
BMI (kg/m2) | 26.95 (5.07) | 26.7 (5.36) | 27.53 (4.26) | 0.099 | BMI > 25 = overweight BMI > 30 = obese |
LDL cholesterol (mmol/L) | 3.2 (0.99) | 3.27(0.99) | 3.02 (0.98) | 0.020 | ≥3.37 mmol/L = high |
HDL cholesterol (mmol/L) | 1.76 (0.51) | 1.88 (0.49) | 1.48 (0.44) | <0.001 | Males: <1.03 mmol/L = low Females: <1.29 mmol/L = low |
Total cholesterol (mmol/L) | 5.50 (1.06) | 5.68 (1.02) | 5.10 (1.03) | <0.001 | ≥5.5 mmol/L = high |
Glucose (mmol/L) | 5.10 (0.70) | 5.05 (0.69) | 5.22 (0.70) | 0.051 | Prediabetes: 5.6 to 6.9 mmol/L Diabetes: ≥7.0 mmol/L |
Triglycerides (mmol/L) | 1.18 (0.77) | 1.13 (0.52) | 1.29 (1.17) | 0.142 | >1.70 mmol/L = high |
Waist circumference (cm) | 89.70 (14.40) | 85.82 (13.63) | 98.86 (12.10) | <0.001 | High risk: ≥88 cm for women, ≥102 cm for men |
High sensitivity C-reactive protein (mg/L) | 1.76 (3.21) | 1.92 (3.54) | 1.38 (2.23) | 0.061 | >3 mg/L considered high |
Systolic blood pressure (mmHg) | 134 (18) | 131 (17.32) | 143 (16.48) | <0.001 | High ≥ 130 mmHg Hypertense > 140 mmHg |
Diastolic blood pressure (mmHg) | 81 (10) | 80 (10.17) | 82 (11) | 0.080 | High ≥ 90 mmHg Hypertense > 100 mmHg |
Food Groups | Plant-Dominant Diet | Meat-Dominant Diet | Western-Style Diet |
---|---|---|---|
Other vegetables | 0.75 | 0.1 | −0.11 |
Red–yellow vegetables | 0.72 | 0.03 | 0.15 |
Cruciferous vegetables | 0.66 | 0.01 | −0.1 |
Green leafy vegetables | 0.66 | 0.12 | −0.16 |
Legumes | 0.62 | −0.19 | 0.13 |
Nuts | 0.57 | −0.2 | 0.12 |
Avocado | 0.54 | 0.03 | −0.28 |
Fruit | 0.51 | −0.09 | 0.23 |
Seafood | 0.34 | 0.19 | −0.31 |
Dried fruit | 0.33 | −0.19 | 0.36 |
Dairy normal | 0.33 | 0.22 | 0.19 |
Water | 0.31 | −0.06 | −0.14 |
Eggs | 0.29 | 0.42 | −0.19 |
Olive oil | 0.25 | 0.24 | −0.21 |
Soup | 0.24 | −0.03 | 0.17 |
Condiments | 0.24 | 0.4 | 0.16 |
Whole grains | 0.2 | 0.12 | 0.11 |
Refined grains | 0.18 | 0.03 | 0.51 |
Other oils | 0.16 | 0.21 | 0.07 |
Chicken (served with veg) | 0.14 | 0.43 | −0.23 |
Tea/coffee | 0.09 | 0.03 | −0.13 |
Potato | 0.07 | 0.16 | 0.46 |
Butter | 0.06 | 0.38 | −0.05 |
Sweet snacks | 0.04 | 0.25 | 0.66 |
Chocolate | 0.04 | 0.02 | 0.41 |
Canned fruit | 0.03 | −0.06 | 0.25 |
Meat (served with vegetables) | 0 | 0.53 | −0.09 |
Margarine | −0.03 | 0.25 | 0.32 |
Discretionary dairy | −0.04 | 0.35 | 0.15 |
Processed meat | −0.05 | 0.54 | 0.25 |
Alcohol | −0.08 | 0.23 | −0.15 |
Savoury snacks | −0.11 | 0.38 | 0.35 |
Sugary beverages | −0.13 | 0.15 | 0.41 |
Chicken (without veg) | −0.13 | 0.47 | 0.11 |
Meat (without veg) | −0.14 | 0.66 | 0.21 |
Diet soft drink | −0.21 | 0.15 | 0.08 |
Fried protein | −0.27 | 0.4 | 0.31 |
Fast-fried food | −0.29 | 0.44 | 0.45 |
Diet | Mean (SD) | Females (SD) | Males (SD) | p-value |
---|---|---|---|---|
Plant-dominant diet | −0.10 (4.27) | 0.59 (4.26) | −1.70 (3.84) | <0.001 |
Meat-dominant diet | −0.08 (3.05) | −0.27 (2.9) | 0.37 (3.33) | 0.040 |
Western-style diet | −0.05 (2.79) | −0.35 (2.68) | 0.67 (2.93) | 0.001 |
Variable | Plant-Dominant Diet | Meat-Dominant Diet | Western-Style Diet | |
---|---|---|---|---|
Dietary patterns | ||||
Plant-dominant diet | r | −0.16 | −0.21 | |
p | 0.001 | <0.001 | ||
Meat-dominant diet | r | 0.49 | ||
p | <0.001 | |||
Demographics | ||||
Education | r | 0.06 | −0.04 | −0.07 |
p | 0.214 | 0.379 | 0.139 | |
Total MVPA | r | 0.15 | −0.14 | −0.07 |
p | 0.003 | 0.006 | 0.142 | |
Energy intake | r | 0.27 | 0.50 | 0.57 |
p | <0.001 | <0.001 | <0.001 | |
Cardiometabolic health | ||||
MetSSS | r | −0.27 | 0.29 | 0.21 |
p | <0.001 | <0.001 | <0.001 | |
BMI | r | −0.22 | 0.34 | 0.17 |
p | <0.001 | <0.001 | <0.001 | |
LDL | r | 0.04 | 0.00 | −0.09 |
p | 0.396 | 0.985 | 0.090 | |
HDL | r | 0.26 | −0.11 | −0.21 |
p | <0.001 | 0.024 | <0.001 | |
Total cholesterol | r | 0.10 | −0.02 | −0.16 |
p | 0.028 | 0.658 | 0.002 | |
Triglycerides | r | −0.12 | 0.16 | 0.16 |
p | 0.016 | 0.001 | 0.002 | |
Waist | r | −0.33 | 0.32 | 0.23 |
p | <0.001 | <0.001 | <0.001 | |
Glucose | r | −0.08 | 0.17 | 0.07 |
p | 0.112 | 0.001 | 0.166 | |
hsCRP | r | −0.10 | 0.15 | 0.19 |
p | 0.047 | 0.003 | <0.001 | |
Systolic blood pressure | r | −0.15 | 0.15 | 0.13 |
p | 0.003 | 0.002 | 0.009 | |
Diastolic blood pressure | r | −0.02 | 0.13 | 0.09 |
p | 0.632 | 0.007 | 0.061 | |
Cognitive Composites | ||||
Long-term memory | r | 0.06 | −0.08 | 0.04 |
p | 0.208 | 0.114 | 0.482 | |
Short-term memory | r | 0.05 | 0.03 | 0.06 |
p | 0.400 | 0.562 | 0.240 | |
Processing speed | r | 0.06 | −0.07 | 0.03 |
p | 0.242 | 0.160 | 0.560 | |
Executive function | r | −0.05 | −0.05 | 0.04 |
p | 0.289 | 0.306 | 0.467 |
Plant-Dominant Diet | Meat-Dominant Diet | Western-Style Diet | Age | Sex | Education | Energy Intake | MVPA | |||
---|---|---|---|---|---|---|---|---|---|---|
Long-term Memory | Model 1 | β | 0.02 | −0.04 | 0.04 | |||||
T | 1.28 | −2.22 | 2.04 | |||||||
p | 0.202 | 0.028 | 0.042 | |||||||
95% CI | [−0.01, 0.04] | [−0.08, −0.00] | [0.00, 0.08] | |||||||
Model 2 | β | 0.01 | −0.04 | 0.05 | −0.02 | 0.18 | 0.03 | |||
T | 0.85 | −2.19 | 2.27 | −1.00 | 1.54 | 1.98 | ||||
p | 0.396 | 0.030 | 0.024 | 0.320 | 0.124 | 0.050 | ||||
95% CI | [−0.01, 0.04] | [−0.08, −0.00] | [0.01, 0.09] | [−0.05, 0.02] | [−0.05, 0.41] | [−0.00, 0.06] | ||||
Model 3 | β | 0.00 | −0.04 | 0.04 | −0.02 | 0.24 | 0.03 | 0.00 | 0.00 | |
T | 0.23 | −1.98 | 1.58 | −0.89 | 1.66 | 1.95 | 0.93 | 0.40 | ||
p | 0.815 | 0.049 | 0.114 | 0.374 | 0.099 | 0.053 | 0.355 | 0.691 | ||
95% CI | [−0.03, 0.04] | [−0.09, −0.00] | [−0.01, 0.09] | [−0.05, 0.02] | [−0.05, 0.53] | [−0.00, 0.06] | [−0.00, 0.00] | [−0.00, 0.00] | ||
Short-term memory | Model 1 | β | 0.01 | −0.01 | 0.02 | |||||
T | 1.15 | −0.44 | 1.52 | |||||||
p | 0.260 | 0.669 | 0.133 | |||||||
95% CI | [−0.01, 0.03] | [−0.04, 0.02] | [−0.01, 0.05] | |||||||
Model 2 | β | 0.01 | −0.01 | 0.02 | −0.02 | 0.04 | 0.02 | |||
T | 1.01 | −0.41 | 1.61 | −1.87 | 0.56 | 1.69 | ||||
p | 0.319 | 0.689 | 0.112 | 0.068 | 0.573 | 0.098 | ||||
95% CI | [−0.01, 0.03] | [−0.04, 0.03] | [−0.01, 0.05] | [−0.04, 0.00] | [−0.10, 0.18] | [−0.00, 0.04] | ||||
Model 3 | β | 0.01 | 0.00 | 0.03 | −0.02 | 0.01 | 0.02 | 0.00 | 0.00 | |
T | 1.10 | −0.27 | 1.47 | −1.90 | 0.11 | 1.69 | −0.47 | −0.39 | ||
p | 0.277 | 0.792 | 0.147 | 0.063 | 0.909 | 0.100 | 0.640 | 0.700 | ||
95% CI | [−0.01, 0.03] | [−0.04, 0.03] | [−0.01, 0.06] | [−0.05, 0.00] | [−0.17, 0.19] | [−0.00, 0.04] | [−0.00, 0.00] | [−0.00, 0.00] | ||
Executive function | Model 1 | β | −0.01 | −0.01 | 0.01 | − | − | − | − | − |
T | −1.04 | −1.43 | 0.97 | − | − | − | − | − | ||
p | 0.300 | 0.154 | 0.332 | − | − | − | − | − | ||
95% CI | [−0.02, 0.01] | [−0.03, 0.01] | [−0.01, 0.03] | − | − | − | − | − | ||
Model 2 | β | 0.00 | −0.01 | 0.01 | −0.04 | −0.21 | 0.01 | − | − | |
T | −0.18 | −1.50 | 0.59 | −5.19 | −3.65 | 1.82 | − | − | ||
p | 0.856 | 0.135 | 0.558 | <0.001 | <0.001 | 0.073 | − | − | ||
95% CI | [−0.01, 0.01] | [−0.03, 0.00] | [−0.01, 0.03] | [−0.06, −0.03] | [−0.32, −0.09] | [−0.00, 0.03] | − | − | ||
Model 3 | β | −0.01 | −0.02 | 0.00 | −0.04 | −0.17 | 0.01 | 0.00 | 0.00 | |
T | −0.76 | −1.88 | −0.19 | −5.15 | −2.40 | 1.77 | 1.09 | −0.84 | ||
p | 0.448 | 0.060 | 0.847 | <0.001 | 0.017 | 0.080 | 0.278 | 0.402 | ||
95% CI | [−0.02, 0.01] | [−0.04, 0.00] | [−0.03, 0.02] | [−0.06, −0.03] | [−0.31, −0.03] | [−0.00, 0.03] | [−0.00, 0.00] | [−0.00, 0.00] | ||
Processing speed | Model 1 | β | 0.01 | −0.02 | 0.02 | |||||
T | 1.10 | −1.67 | 1.51 | |||||||
p | 0.273 | 0.097 | 0.131 | |||||||
95% CI | [−0.01, 0.03] | [−0.05, 0.00] | [−0.01, 0.06] | |||||||
Model 2 | β | 0.01 | −0.02 | 0.02 | −0.03 | −0.12 | 0.00 | |||
T | 1.47 | −1.67 | 1.28 | −2.72 | −1.36 | −0.11 | ||||
p | 0.143 | 0.095 | 0.201 | 0.007 | 0.174 | 0.913 | ||||
95% CI | [−0.00, 0.03] | [−0.05, 0.00] | [−0.01, 0.05] | [−0.06, −0.01] | [−0.28, 0.05] | [−0.02, 0.02] | ||||
Model 3 | β | 0.02 | −0.01 | 0.04 | −0.03 | −0.14 | 0.00 | 0.00 | 0.00 | |
T | 1.62 | −0.50 | 1.94 | −2.58 | −1.28 | −0.04 | −1.48 | 3.24 | ||
p | 0.107 | 0.619 | 0.054 | 0.010 | 0.201 | 0.971 | 0.139 | 0.001 | ||
95% CI | [−0.00, 0.05] | [−0.04, 0.02] | [−0.00, 0.08] | [−0.06, −0.01] | [−0.35, 0.07] | [−0.02, 0.02] | [−0.00, 0.00] | [0.00, 0.00] |
Plant Diet | Meat Diet | Western Diet | MetSSS | Plant *MetSSS | Meat *MetSSS | Western *MetSSS | Age | Sex | Education | Energy Intake | MVPA | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Long-term Memory | Model 1 | β | 0.00 | 0.02 | 0.02 | −0.03 | 0.01 | −0.03 | 0.01 | |||||
T | 0.08 | 0.70 | 0.59 | −1.08 | 1.01 | −2.56 | 1.23 | |||||||
p | 0.938 | 0.482 | 0.557 | 0.280 | 0.314 | 0.011 | 0.220 | |||||||
95% CI | [−0.03, 0.04] | [−0.04, 0.08] | [−0.04, 0.08] | [−0.09, 0.03] | [−0.01, 0.02] | [−0.05, −0.01] | [−0.01, 0.04] | |||||||
Model 2 | β | 0.00 | 0.02 | 0.02 | −0.02 | 0.01 | −0.03 | 0.01 | −0.02 | 0.16 | 0.03 | |||
T | −0.11 | 0.66 | 0.69 | −0.81 | 0.98 | −2.52 | 1.26 | −1.15 | 1.35 | 1.77 | ||||
p | 0.915 | 0.511 | 0.493 | 0.418 | 0.329 | 0.012 | 0.208 | 0.251 | 0.179 | 0.078 | ||||
95% CI | [−0.04, 0.03] | [−0.04, 0.08] | [−0.04, 0.08] | [−0.09, 0.04] | [−0.01, 0.02] | [−0.05, −0.01] | [−0.01, 0.04] | [−0.05, 0.01] | [−0.07, 0.38] | [−0.00, 0.06] | ||||
Model 3 | β | 0.00 | 0.02 | 0.02 | −0.02 | 0.01 | −0.03 | 0.01 | −0.02 | 0.18 | 0.03 | 0.00 | 0.00 | |
T | −0.19 | 0.57 | 0.61 | −0.65 | 0.96 | −2.45 | 1.18 | −1.10 | 1.22 | 1.78 | 0.07 | 0.61 | ||
p | 0.853 | 0.571 | 0.544 | 0.513 | 0.336 | 0.015 | 0.238 | 0.274 | 0.222 | 0.078 | 0.941 | 0.544 | ||
95% CI | [−0.05, 0.04] | [−0.05, 0.08] | [−0.05, 0.09] | [−0.08, 0.04] | [−0.01, 0.02] | [−0.05, −0.01] | [−0.01, 0.04] | [−0.05, 0.02] | [−0.11, 0.48] | [−0.00, 0.06] | [−0.00, 0.00] | [0.00, 0.00] | ||
Short-term memory | Model 1 | β | 0.00 | 0.00 | 0.03 | −0.03 | 0.00 | 0.00 | 0.00 | |||||
T | 0.18 | 0.02 | 1.23 | −1.63 | 0.71 | −0.10 | −0.32 | |||||||
p | 0.860 | 0.987 | 0.227 | 0.111 | 0.479 | 0.923 | 0.750 | |||||||
95% CI | [−0.02, 0.02] | [−0.04, 0.04] | [−0.02, 0.07] | [−0.07, 0.01] | [−0.01, 0.01] | [−0.01, 0.01] | [−0.02, 0.01] | |||||||
Model 2 | β | 0.00 | 0.00 | 0.03 | −0.03 | 0.00 | 0.00 | 0.00 | −0.02 | 0.03 | 0.02 | |||
T | 0.07 | 0.02 | 1.21 | −1.39 | 0.80 | −0.13 | −0.23 | −1.79 | 0.42 | 1.54 | ||||
p | 0.948 | 0.984 | 0.232 | 0.172 | 0.425 | 0.894 | 0.816 | 0.081 | 0.676 | 0.132 | ||||
95% CI | [−0.02, 0.02] | [−0.04, 0.04] | [−0.02, 0.07] | [−0.07, 0.01] | [−0.01, 0.01] | [−0.01, 0.01] | [−0.02, 0.01] | [−0.04, 0.00] | [−0.11, 0.17] | [−0.01, 0.04] | ||||
Model 3 | β | 0.01 | 0.01 | 0.03 | −0.03 | 0.00 | 0.00 | 0.00 | −0.02 | −0.02 | 0.02 | 0.00 | 0.00 | |
T | 0.45 | 0.27 | 1.27 | −1.50 | 0.86 | −0.24 | −0.18 | −1.86 | −0.24 | 1.53 | −0.76 | 0.00 | ||
p | 0.650 | 0.785 | 0.209 | 0.143 | 0.391 | 0.813 | 0.854 | 0.070 | 0.813 | 0.134 | 0.450 | 0.538 | ||
95% CI | [−0.02, 0.03] | [−0.04, 0.05] | [−0.02, 0.08] | [−0.08, 0.01] | [−0.01, 0.01] | [−0.02, 0.01] | [−0.02, 0.01] | [−0.05, 0.00] | [−0.21, 0.16] | [−0.01, 0.04] | [−0.00, 0.00] | [0.00, 0.00] | ||
Executive Function | Model 1 | β | −0.02 | −0.01 | 0.00 | −0.01 | 0.01 | 0.00 | 0.00 | |||||
T | −1.90 | −0.87 | 0.10 | −0.51 | 1.54 | 0.00 | 0.70 | |||||||
p | 0.059 | 0.383 | 0.921 | 0.613 | 0.124 | 0.999 | 0.483 | |||||||
95% CI | [−0.04, 0.00] | [−0.04, 0.02] | [−0.03, 0.03] | [−0.04, 0.03] | [−0.00, 0.01] | [−0.01, 0.01] | [−0.01, 0.02] | |||||||
Model 2 | β | −0.02 | −0.01 | −0.01 | 0.00 | 0.01 | 0.00 | 0.01 | −0.04 | −0.22 | 0.01 | |||
T | −1.77 | −0.74 | −0.49 | −0.24 | 2.19 | −0.31 | 1.14 | −5.29 | −3.83 | 1.78 | ||||
p | 0.078 | 0.458 | 0.622 | 0.811 | 0.029 | 0.756 | 0.253 | <0.001 | <0.001 | 0.078 | ||||
95% CI | [−0.03, 0.00] | [−0.04, 0.02] | [−0.04, 0.02] | [−0.04, 0.03] | [0.00, 0.01] | [−0.01, 0.01] | [−0.00, 0.02] | [−0.06, −0.03] | [−0.33, −0.11] | [−0.00, 0.03] | ||||
Model 3 | β | −0.02 | −0.02 | −0.02 | −0.01 | 0.01 | 0.00 | 0.01 | −0.04 | −0.19 | 0.01 | 0.00 | 0.00 | |
T | −1.94 | −1.04 | −1.01 | −0.37 | 2.10 | −0.33 | 1.31 | −5.26 | −2.61 | 1.75 | 1.00 | −1.07 | ||
p | 0.054 | 0.298 | 0.312 | 0.711 | 0.037 | 0.741 | 0.191 | <0.001 | 0.009 | 0.084 | 0.316 | 0.285 | ||
95% CI | [−0.04, 0.00] | [−0.05, 0.02] | [−0.05, 0.02] | [−0.04, 0.03] | [0.00, 0.01] | [−0.01, 0.01] | [−0.00, 0.02] | [−0.06, −0.03] | [−0.33, −0.05] | [−0.00, 0.03] | [−0.00, 0.00] | [−0.00, 0.00] | ||
Processing speed | Model 1 | β | 0.00 | −0.02 | 0.02 | −0.04 | 0.00 | 0.00 | 0.00 | |||||
T | 0.23 | −1.02 | 0.67 | −1.55 | 0.38 | 0.15 | 0.43 | |||||||
p | 0.815 | 0.308 | 0.502 | 0.123 | 0.703 | 0.884 | 0.667 | |||||||
95% CI | [−0.02, 0.03] | [−0.07, 0.02] | [0.00, 0.07] | [−0.08, 0.01] | [−0.01, 0.01] | [−0.01, 0.02] | [−0.01, 0.02] | |||||||
Model 2 | β | 0.00 | −0.02 | 0.01 | −0.03 | 0.00 | 0.00 | 0.00 | −0.03 | −0.13 | 0.02 | |||
T | 0.33 | −0.90 | 0.41 | −1.42 | 0.80 | −0.13 | −0.23 | −2.64 | −1.52 | 1.54 | ||||
p | 0.745 | 0.37 | 0.679 | 0.158 | 0.425 | 0.894 | 0.816 | 0.009 | 0.129 | 0.132 | ||||
95% CI | [−0.02, 0.03] | [−0.06, 0.02] | [−0.04, 0.06] | [−0.08, 0.01] | [−0.01, 0.01] | [−0.01, 0.01] | [−0.02, 0.01] | [−0.06, −0.01] | [−0.30, 0.04] | [−0.03, 0.04] | ||||
Model 3 | β | 0.01 | −0.01 | 0.04 | −0.02 | 0.00 | 0.00 | 0.00 | −0.03 | −0.16 | 0.00 | 0.00 | 0.00 | |
T | 0.80 | −0.28 | 1.36 | −0.91 | 0.86 | −0.24 | −0.18 | −2.56 | −1.45 | −0.08 | −1.54 | 0.00 | ||
p | 0.425 | 0.783 | 0.173 | 0.364 | 0.391 | 0.813 | 0.854 | 0.011 | 0.148 | 0.936 | 0.450 | 0.538 | ||
95% CI | [−0.02, 0.04] | [−0.05, 0.04] | [−0.02, 0.09] | [−0.07, 0.02] | [−0.01, 0.01] | [−0.02, 0.01] | [−0.02, 0.01] | [−0.06, −0.01] | [−0.38, 0.06] | [−0.02, 0.02] | [−0.00, 0.00] | [0.00, 0.00] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, F.M.; Wade, A.; Stanford, T.; Mellow, M.L.; Collins, C.E.; Murphy, K.J.; Keage, H.A.D.; Hunter, M.; Ware, N.; Barker, D.; et al. The Relationship Between Dietary Patterns, Cognition, and Cardiometabolic Health in Healthy, Older Adults. Nutrients 2024, 16, 3890. https://doi.org/10.3390/nu16223890
Simpson FM, Wade A, Stanford T, Mellow ML, Collins CE, Murphy KJ, Keage HAD, Hunter M, Ware N, Barker D, et al. The Relationship Between Dietary Patterns, Cognition, and Cardiometabolic Health in Healthy, Older Adults. Nutrients. 2024; 16(22):3890. https://doi.org/10.3390/nu16223890
Chicago/Turabian StyleSimpson, Felicity M., Alexandra Wade, Ty Stanford, Maddison L. Mellow, Clare E. Collins, Karen J. Murphy, Hannah A. D. Keage, Montana Hunter, Nicholas Ware, Daniel Barker, and et al. 2024. "The Relationship Between Dietary Patterns, Cognition, and Cardiometabolic Health in Healthy, Older Adults" Nutrients 16, no. 22: 3890. https://doi.org/10.3390/nu16223890
APA StyleSimpson, F. M., Wade, A., Stanford, T., Mellow, M. L., Collins, C. E., Murphy, K. J., Keage, H. A. D., Hunter, M., Ware, N., Barker, D., Smith, A. E., & Karayanidis, F. (2024). The Relationship Between Dietary Patterns, Cognition, and Cardiometabolic Health in Healthy, Older Adults. Nutrients, 16(22), 3890. https://doi.org/10.3390/nu16223890