Beneficial Effects of Cocoa Flavanols on Microvascular Responses in Young Men May Be Dependent on Ethnicity and Lifestyle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Experimental Protocols
2.3. Data Analysis
3. Results
3.1. Group 1
3.1.1. Cutaneous Circulation
3.1.2. Forearm Circulation
3.2. Group 2
3.2.1. Reactive Hyperaemia in Cutaneous Circulation
3.2.2. Effect of Chocolate and NOS Inhibition on ACh-Evoked Responses
4. Discussion
4.1. Reactive Hyperaemia in the Forearm
4.2. Forearm Vascular Response in Acute Mental Stress
4.3. Reactive Hyperaemia in Forearm Cutaneous Circulation
4.4. ACh-Evoked Cutaneous Vasodilatation
4.5. Limitations of Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crowe-White, K.M.; Evans, L.W.; Kuhnle, G.G.C.; Milenkovic, D.; Stote, K.; Wallace, T.; Handu, D.; Senkus, K.E. Flavan-3-ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline. Adv. Nutr. 2022, 13, 2070–2083. [Google Scholar] [CrossRef] [PubMed]
- Grassi, D.; Desideri, G.; Necozione, S.; di Giosia, P.; Barnabei, R.; Allegaert, L.; Bernaert, H.; Ferri, C. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J. Hypertens. 2015, 33, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.; Finis, D.; Kleinbongard, P.; Hoffmann, A.; Rassaf, T.; Kelm, M.; Sies, H. Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 1 week. J. Cardiovasc. Pharmacol. 2007, 49, 74–80. [Google Scholar] [CrossRef]
- Heiss, C.; Sansone, R.; Karimi, H.; Krabbe, M.; Schuler, D.; Rodriguez-Mateos, A.; Kraemer, T.; Cortese-Krott, M.M.; Kuhnle, G.G.; Spencer, J.P.; et al. FLAVIOLA Consortium, European Union 7th Framework Program. Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: A randomized, controlled, double-masked trial. Age 2015, 37, 9794. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Black, M.A.; Pyke, K.; Padilla, J.; Atkinson, G.A.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of flow mediated dilation (FMD) in humans: A methodological and physiological guideline. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2–H12. [Google Scholar] [CrossRef]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef]
- Schnall, R.P.; Sheffy, J.K.; Penzel, T. Peripheral arterial tonometry-PAT technology. Sleep Med. Rev. 2022, 61, 101566. [Google Scholar] [CrossRef]
- Fisher, N.D.; Hughes, M.; Gerhard-Herman, M.; Hollenberg, N.K. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens. 2003, 21, 2281–2286. [Google Scholar] [CrossRef]
- Hirst, A.; Marshall, J.M. Endothelium-dependent and cyclooxygenase-dependent cutaneous vasodilatation is blunted in young men with hypertensive parents. J. Hypertens. 2018, 36, 2140–2147. [Google Scholar] [CrossRef]
- Rosenberry, R.; Nelson, M.D. Reactive Hyperemia: A Review of Methods, Mechanisms, and Considerations. Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef]
- Baynham, R.; Veldhuijzen van Zanten, J.J.C.S.; Johns, P.W.; Pham, Q.S.; Rendeiro, C. Cocoa Flavanols Improve Vascular Responses to Acute Mental Stress in Young Healthy Adults. Nutrients 2021, 13, 1103. [Google Scholar] [CrossRef]
- Dietz, N.; Rivera, J.M.; Eggener, S.E.; Fix, R.T.; Warner, D.O.; Joyner, M.J. Nitric oxide contributes to the rise in forearm blood flow during mental stress in humans. J. Physiol. 1994, 480, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Seddon, M.D.; Chowienczyk, P.J.; Brett, S.E.; Casadei, B.; Shah, A.M. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation 2008, 117, 1991–1996. [Google Scholar] [CrossRef]
- Ormshaw, N.G.; Junejo, R.T.; Marshall, J.M. Forearm vasodilator responses to environmental stress and reactive hyperaemia are impaired in young South Asian men. Eur. J. Appl. Physiol. 2018, 118, 979–988. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, Z.; Marshall, J.M. Young South Asian women in the United Kingdom show evidence of blunted endothelium-dependent dilatation: Implications for future cardiovascular disease. J. Hypertens. 2022, 40, 2438–2448. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics. Guidance and Methodology: Ethnic Group (Online). 2018. Available online: https://www.ons.gov.uk/methodology/classificationsandstandards/measuringequality/ethnicgroupnationalidentityandreligion (accessed on 21 May 2024).
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.F.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Niki, M.; Dietz, N.; Shepherd, J.T. From Belfast to Mayo and beyond: The use and future of plethysmography to study blood flow in human limbs. J. Appl. Physiol. 2001, 91, 2431–2441. [Google Scholar] [CrossRef]
- Junejo, R.T.; Ray, C.J.; Marshall, J.M. Cuff inflation time significantly affects blood flow recorded with venous occlusion plethysmography. Eur. J. Appl. Physiol. 2019, 119, 665–674. [Google Scholar] [CrossRef]
- Langer, S.; Marshall, L.J.; Day, A.J.; Morgan, M.R. Flavanols and methylxanthines in commercially available dark chocolate: A study of the correlation with nonfat cocoa solids. J. Agric. Food Chem. 2011, 59, 8435–8441. [Google Scholar] [CrossRef]
- Halliwill, J.R.; Lawler, L.A.; Eickhoff, T.J.; Dietz, N.M.; Nauss, L.A.; Joyner, M.J. Forearm sympathetic withdrawal and vasodilatation during mental stress in humans. J. Physiol. 1997, 504, 211–220. [Google Scholar] [CrossRef]
- Crompton, R.; Clifton, V.L.; Bisits, A.T.; Read, M.A.; Smith, R.; Wright, I.M. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J. Clin. Endocrinol. Metab. 2003, 8, 5427–5432. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Melanaphy, D.; Purse, A.; Stokesberry, S.A.; Dickson, P.; Zholos, A.V. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am. J. Physio.-Heart Circ. Physiol. 2009, 296, H1868–H1877. [Google Scholar] [CrossRef] [PubMed]
- NICE Guidance [LGB13]. Body Mass Index Thresholds for Intervening to Prevent Ill Health among Black, Asian and Other Minority Ethnic Groups. 2014. Available online: https://www.nice.org.uk/advice/lgb13 (accessed on 21 May 2024).
- EFSA Scientific opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to article 13(5) of regulation (EC) no 1924/2006. EFSA J. 2012, 10, 2809.
- Tagawa, T.; Imaizumi, T.; Endo, T.; Shiramoto, M.; Harasawa, Y.; Takeshita, A. Role of nitric oxide in reactive hyperemia inhuman forearm vessels. Circulation 1994, 90, 2285–2290. [Google Scholar] [CrossRef]
- Engelke, K.A.; Halliwill, J.R.; Proctor, D.N.; Dietz, N.M.; Joyner, M.J. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm. J. Appl. Physiol. 1996, 81, 1807–1814. [Google Scholar] [CrossRef]
- Crecelius, A.R.; Richards, J.C.; Luckasen, G.J.; Larson, D.G.; Dinenno, F.A. Reactive hyperemia occurs via activation of inwardly rectifying potassium channels and Na+/K+-ATPase in humans. Circ. Res. 2013, 113, 1023–1032. [Google Scholar] [CrossRef]
- Carlsson, I.; Sollevi, A.; Wennmalm, A. The role of myogenic relaxation, adenosine and prostaglandins in human forearm reactive hyperaemia. J. Physiol. 1987, 389, 147–161. [Google Scholar] [CrossRef]
- Carter, J.R.; Ray, C.A. Sympathetic neural responses to mental stress: Responders, nonresponders and sex differences. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H847–H853. [Google Scholar] [CrossRef]
- Fonkoue, I.T.; Carter, J.R. Sympathetic neural reactivity to mental stress in humans: Test-retest reproducibility. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1380–R1386. [Google Scholar] [CrossRef]
- Green, D.J.; Bilsborough, W.; Naylor, L.H.; Reed, C.; Wright, J.; O’Driscoll, G.; Walsh, J.H. Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: Relative contribution of nitric oxide. J. Physiol. 2005, 562, 617–628. [Google Scholar] [CrossRef]
- Pike, T.L.; Elvebak, R.L.; Jegede, M.; Gleich, S.J.; Eisenach, J.H. Forearm vascular conductance during mental stress is related to the heart rate response. Clin. Auton. Res. 2009, 19, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.M.; Jacobs, D.W.; Gevirtz, R.N.; O’Connor, D.T. Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: Evidence of enhanced reactivity, blunted adaptation and delayed recovery. J. Hum. Hypertens. 2003, 17, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.E.; Durocher, J.J.; Carter, J.R. Neurovascular responses to mental stress in prehypertensive humans. J. Appl. Physiol. 2011, 110, 76–82. [Google Scholar] [CrossRef]
- Khan, S.G.; Geer, A.; Fok, H.W.; Shabeeh, H.; Brett, S.E.; Shah, A.M.; Chowienczyk, P.J. Impaired neuronal nitric oxide synthase–mediated vasodilator responses to mental stress in essential hypertension. Hypertension 2015, 65, 903–909. [Google Scholar] [CrossRef]
- Cardillo, C.; Kilcoyne, C.M.; Cannon, R.O., III; Panza, J.A. Racial differences in the nitric oxide–mediated vasodilator response to mental stress in the forearm circulation. Hypertension 1998, 31, 1235–1239. [Google Scholar] [CrossRef]
- Cardillo, C.; Kilcoyne, C.M.; Cannon, R.O., III; Panza, J.A. Impairment of the nitric oxide–mediated vasodilator response to mental stress in hypertensive but not in hypercholesterolemic patients. J. Am. Coll. Cardiol. 1998, 32, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Chida, Y.; Steptoe, A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: A meta-analysis of prospective evidence. Hypertension 2010, 55, 1026–1032. [Google Scholar] [CrossRef]
- Murphy, C.; Kanaganayagam, G.S.; Jiang, B.; Chowienczyk, P.J.; Zbinden, R.; Saha, M.; Rahman, S.; Shah, A.M.; Marber, M.S.; Kearney, M.T. Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 936–942. [Google Scholar] [CrossRef]
- Carlsson, I.; Linde, B.; Wennmalm, A. Arachidonic acid metabolism and regulation of blood flow: Effect of indomethacin on cutaneous and subcutaneous reactive hyperaemia in humans. Clin. Physiol. 1983, 3, 365–373. [Google Scholar] [CrossRef]
- Binggeli, C.; Spieker, L.E.; Corti, R.; Sudano, I.; Stojanovic, V.; Hayoz, D.; Luscher, T.F.; Noll, G. Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: A monitoring test of endothelial dysfunction for clinical practice? J. Am. Coll. Cardiol. 2003, 42, 71–77. [Google Scholar] [CrossRef]
- Dalle-Ave, A.; Kubli, S.; Golay, S.; Delachaux, A.; Liaudet, L.; Waeber, B.; Feihl, F. Acetylcholine-induced vasodilation and reactive hyperemia are not affected by acute COX inhibition in human skin. Microcirculation 2004, 11, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Medow, M.S.; Taneja, I.; Stewart, J.M. COX and nitric oxide synthase dependence of cutaneous reactive hyperemia in humans. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H425–H432. [Google Scholar] [CrossRef]
- Schramm, D.D.; Wang, J.F.; Holt, R.R.; Ensunsa, J.L.; Gonsalves, J.L.; Lazarus, S.A.; Schmitz, H.H.; German, J.B.; Keen, C.L. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells. Am. J. Clin. Nutr. 2001, 73, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar]
- Kellogg, D.L.; Zhao, J.L.; Coey, U.; Green, J.V. Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J. Appl. Physiol. 2005, 98, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Boutsiouki, P.; Georgiou, S.; Clough, G.F. Recovery of nitric oxide from acetylcholine-mediated vasodilatation in human skin in vivo. Microcirculation 2004, 11, 249–259. [Google Scholar] [CrossRef]
- Khan, F.; Davidson, N.C.; Littleford, R.C.; Litchfield, S.J.; Struthers, A.D.; Belch, J.J. Cutaneous vascular responses to acetylcholine are mediated by a prostanoid-dependent mechanism in man. Vasc. Med. 1997, 2, 82–86. [Google Scholar] [CrossRef]
- Noon, J.P.; Walker, B.R.; Hand, M.F.; Webb, D.J. Studies with iontophoretic administration of drugs to human dermal vessels in vivo: Cholinergic vasodilatation is mediated by dilator prostanoids rather than nitric oxide. Brit. J. Clin. Pharmacol. 1998, 45, 545–550. [Google Scholar] [CrossRef]
- Holowatz, L.A.; Thompson, C.S.; Minson, C.T.; Kenney, W.L. Mechanisms of acetylcholine-mediated vasodilatation in young and aged human skin. J. Physiol. 2005, 563, 965–973. [Google Scholar] [CrossRef]
- Niiranen, T.J.; McCabe, E.L.; Larson, M.G.; Henglin, M.; Lakdawala, N.K.; Vasan, R.S.; Cheng, S. Heritability and risks associated with early onset hypertension: Multigenerational, prospective analysis in the Framingham Heart Study. BMJ 2017, 357, j1949. [Google Scholar] [CrossRef]
- Berghoff, M.; Kathpal, M.; Kilo, S.; Hilz, M.J.; Freeman, R. Vascular and neural mechanisms of ACh-mediated vasodilation in the forearm cutaneous microcirculation. J. Appl. Physiol. 2002, 92, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Brunt, V.E.; Fujii, N.; Minson, C.T. Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose- dependent manner. J. Appl. Physiol. 2015, 119, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Newton, D.J.; Davies, J.; Belch, J.J.; Khan, F. Role of endothelium-derived hyperpolarising factor in acetylcholine-mediated vasodilatation in skin. Int. Angiol. 2013, 32, 312–318. [Google Scholar] [PubMed]
- Osanai, T.; Norio, F.; Naoto, F.; Takao, N.; Koki, T.; Weiping, G.; Ken, O. Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H233–H238. [Google Scholar] [CrossRef]
- Medow, M.S.; Glover, J.L.; Stewart, J.M. Nitric oxide and prostaglandin inhibition during acetylcholine mediated cutaneous vasodilation in humans. Microcirculation 2008, 15, 569–579. [Google Scholar] [CrossRef]
- Bauersachs, J.; Popp, R.; Hecker, M.; Sauer, E.; Fleming, I.; Busse, R. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation 1996, 94, 3341–3347. [Google Scholar] [CrossRef]
- Gupta, M.; Brister, S. Is South Asian ethnicity an independent cardiovascular risk factor? Can. J. Cardiol. 2006, 22, 193–197. [Google Scholar] [CrossRef]
- Orshal, J.M.; Khalil, R.A. Gender, sex hormones, and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R233–R249. [Google Scholar] [CrossRef]
- Cecil, J.E.; Barton, K.L. Inter-individual differences in the nutrition response: From research to recommendations. Proc. Nutr. Soc. 2020, 79, 171–173. [Google Scholar] [CrossRef]
- Ghiadoni, L.; Donald, A.E.; Cropley, M.; Mullen, M.J.; Oakley, G.; Taylor, M.; O’Connor, G.; Betteridge, J.; Klein, N.; Steptoe, A.; et al. Mental Stress Induces Transient Endothelial Dysfunction in Humans. Circulation 2000, 102, 2473–2478. [Google Scholar] [CrossRef]
- IJzerman, R.G.; de Jongh, R.T.; Beijk, M.A.; van Weissenbruch, M.M.; Delemarre-van de Waal, H.A.; Serné, E.H.; Stehouwer, C.D. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur. J. Clin. Investig. 2003, 33, 536–542. [Google Scholar] [CrossRef] [PubMed]
WEs | SAs | All | |
---|---|---|---|
Age (years) | 21.0 ± 0.63 | 21.6 ± 2.4 | 21.30 ± 1.8 |
BMI (kg/m2) | 24.30 ± 3.05 | 27.1 ± 4.1 | 25.70 ± 3.9 |
Alcohol intake (units/week) | 9.8 ± 6.18 | 1.0 ± 2.0 | 5.40 ± 2.12 |
Caffeine (cups/day) | 0.50 ± 0.7 | 1.0 ± 1.26 | 0.75 ± 0.3 |
Fruit/vegetable consumption (portions/day) | 2.83 ± 1.16 | 2.44 ± 0.84 | 2.61 ± 1.04 |
Oily fish portions/week | 2.0 ± 1.0 | 1.2 ± 0.3 | 1.7 ± 0.9 |
Physical Activity level (score/week) * | 8.30 ± 5.17 | 9.0 ± 6.51 | 8.65 ± 5.88 |
Parent/s with hypertension (number) | 1 | 1 | 2 |
Parent/s with T2D (number) | 3 | 3 |
Variable | Control | After Chocolate | p Value |
---|---|---|---|
SBP (mmHg) | 122.0 ± 10.7 | 120.9 ± 7.1 | 0.638 |
DBP (mmHg) | 71.5 ± 6.2 | 69.6 ± 7.2 | 0.155 |
MABP (mmHg) | 88.3 ± 6.4 | 86.7 ± 5.5 | 0.126 |
HR (beats/min) | 66.9 ± 8.49 | 69.02 ± 10.1 | 0.380 |
cRCF (PU) | 23.33 ± 9.87 | 26.01 ± 3.53 | 0.645 |
FBF (mL·100 g−1·min−1) | 4.45 ± 1.92 | 4.33 ± 1.02 | 0.835 |
FVC (AU) | 0.061 ± 0.021 | 0.057 ± 0.012 | 0.622 |
WEs | SAs | All | |
---|---|---|---|
Age (years) | 21.0 ± 0.6 | 20.8 ± 0.4 | 20.9 ± 1.1 |
BMI (kg/m2) | 21.6 ± 0.8 | 23.2 ± 0.6 | 22.5 ± 1.6 |
Alcohol intake (units/week) | 11.8 ± 2.5 | 9.7 ± 2.6 | 10.8 ± 5.8 |
Caffeine (cups/day) | 1.8 ± 1.1 | 0.4 ± 0.2 | 1.1 ± 1.9 |
Fruit/vegetable (portions/ day) | 3.8 ± 1.0 | 4.3 ± 0.8 | 4.1 ± 2.0 |
Oily fish portions /week | 1.8 ± 1.1 | 1.6 ± 0.6 | 1.6 ± 2.1 |
Physical Activity (MET min/week) * | 3042 ± 321 | 2579. ± 293 | 2811 ± 2094 |
Parent/s with hypertension (n) | 0 | 1 | 1 |
Parent/s with T2D (n) | 0 | 0 | 0 |
Variable | Control | After Chocolate | p Value |
---|---|---|---|
SBP (mmHg) | 122.1 ± 7.8 | 119.3 ± 7.5 | 0.138 |
DBP (mmHg) | 76.5 ± 5.4 | 74.1 ± 4.5 | 0.355 |
MABP (mmHg) | 91.7 ± 5.7 | 89.0 ± 6.3 | 0.126 |
HR (beats/min) | 77.4 ± 6.5 | 73.4 ± 6.4 | 0.680 |
RCF (PU) | 14.33 ± 7.87 | 11.7 ± 6.25 | 0.445 |
FBF (mL·100 g−1·min−1) | 6.75 ± 2.42 | 6.33 ± 2.42 | 0.435 |
FVC (AU) | 0.092 ± 0.031 | 0.084 ± 0.027 | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, H.M.; Richardson, S.R.; Marshall, J.M. Beneficial Effects of Cocoa Flavanols on Microvascular Responses in Young Men May Be Dependent on Ethnicity and Lifestyle. Nutrients 2024, 16, 2911. https://doi.org/10.3390/nu16172911
Latif HM, Richardson SR, Marshall JM. Beneficial Effects of Cocoa Flavanols on Microvascular Responses in Young Men May Be Dependent on Ethnicity and Lifestyle. Nutrients. 2024; 16(17):2911. https://doi.org/10.3390/nu16172911
Chicago/Turabian StyleLatif, Hassan M., Sophie R. Richardson, and Janice M. Marshall. 2024. "Beneficial Effects of Cocoa Flavanols on Microvascular Responses in Young Men May Be Dependent on Ethnicity and Lifestyle" Nutrients 16, no. 17: 2911. https://doi.org/10.3390/nu16172911
APA StyleLatif, H. M., Richardson, S. R., & Marshall, J. M. (2024). Beneficial Effects of Cocoa Flavanols on Microvascular Responses in Young Men May Be Dependent on Ethnicity and Lifestyle. Nutrients, 16(17), 2911. https://doi.org/10.3390/nu16172911