Possible Interaction Between Physical Exercise and Leptin and Ghrelin Changes Following Roux-en-Y Gastric Bypass in Sarcopenic Obesity Patients—A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Sample Size and Randomization
2.4. Intervention
2.5. Outcomes
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentham, J.; Di Cesare, M.; BIlano, V.; Boddy, L.M. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Hämäläinen, R.-M.; Breda, J.; Gomes, F.d.S.; Gongal, G.; Khan, W.; Mendes, R.; Nederveen, L.; Ramanandraibe, N.; Sako, B.; Whiting, S. New global physical activity guidelines for a more active and healthier world: The WHO Regional Offices perspective. Br. J. Sports Med. 2020, 54, 1449–1450. [Google Scholar] [CrossRef] [PubMed]
- Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown, W.; et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. Obes. Surg. 2018, 29, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef] [PubMed]
- Ethgen, O.; Beaudart, C.; Buckinx, F.; Bruyère, O.; Reginster, J.Y. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif. Tissue Int. 2017, 100, 229–234. [Google Scholar] [CrossRef]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Ionut, V.; Burch, M.; Youdim, A.; Bergman, R.N. Gastrointestinal Hormones and Bariatric Surgery-induced Weight Loss. Obesity 2013, 21, 1093–1103. [Google Scholar] [CrossRef]
- Rios, I.N.M.S.; Lamarca, F.; Vieira, F.T.; de Melo, H.A.B.; Magalhães, K.G.; de Carvalho, K.M.B.; Pizato, N. The Positive Impact of Resistance Training on Muscle Mass and Serum Leptin Levels in Patients 2–7 Years Post-Roux-en-Y Gastric Bypass: A Controlled Clinical Trial. Obes. Surg. 2021, 31, 3758–3767. [Google Scholar] [CrossRef]
- Dorling, J.L.; Clayton, D.J.; Jones, J.; Carter, W.G.; E Thackray, A.; A King, J.; Pucci, A.; Batterham, R.L.; Stensel, D.J. A randomized crossover trial assessing the effects of acute exercise on appetite, circulating ghrelin concentrations, and butyrylcholinesterase activity in normal-weight males with variants of the obesity-linked FTO rs9939609 polymorphism. Am. J. Clin. Nutr. 2019, 110, 1055–1066. [Google Scholar] [CrossRef]
- Matei, B.; Winters-Stone, K.M.; Raber, J. Examining the Mechanisms behind Exercise’s Multifaceted Impacts on Body Composition, Cognition, and the Gut Microbiome in Cancer Survivors: Exploring the Links to Oxidative Stress and Inflammation. Antioxidants 2023, 12, 1423. [Google Scholar] [CrossRef]
- Serna-Gutiérrez, A.; Castro-Juarez, A.A.; Romero-Martínez, M.; Alemán-Mateo, H.; Díaz-Zavala, R.G.; Quihui-Cota, L.; Álvarez-Hernández, G.; Gallegos-Aguilar, A.C.; Esparza-Romero, J. Prevalence of overweight, obesity and central obesity and factors associated with BMI in indigenous yaqui people: A probabilistic cross-sectional survey. BMC Public Health 2022, 22, 308. [Google Scholar] [CrossRef] [PubMed]
- Kubik, J.F.; Gill, R.S.; Laffin, M.; Karmali, S. The impact of bariatric surgery on psychological health. J. Obes. 2013, 2013, 837989. [Google Scholar] [CrossRef] [PubMed]
- Coleman, K.J.; Caparosa, S.L.; Nichols, J.F.; Fujioka, K.; Koebnick, C.; McCloskey, K.N.; Xiang, A.H.; Ngor, E.W.; Levy, S.S. Understanding the Capacity for Exercise in Post-Bariatric Patients. Obes. Surg. 2017, 27, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Balaguera-Cortes, L.; Wallman, K.E.; Fairchild, T.J.; Guelfi, K.J. Energy intake and appetite-related hormones following acute aerobic and resistance exercise. Appl. Physiol. Nutr. Metab. 2011, 36, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Ekici, E.; Özden, F.; Özkeskin, M. The Effect of Aerobic and Resistance Exercise after Bariatric Surgery: A Systematic Review. Surgeries 2023, 4, 367–380. [Google Scholar] [CrossRef]
- Thackray, A.E.; Stensel, D.J. The impact of acute exercise on appetite control: Current insights and future perspectives. Appetite 2023, 186, 106557. [Google Scholar] [CrossRef]
- Bellicha, A.; van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of exercise training before and after bariatric surgery: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13296. [Google Scholar] [CrossRef]
- Cornejo-Pareja, I.; Clemente-Postigo, M.; Tinahones, F.J. Metabolic and Endocrine Consequences of Bariatric Surgery. Front. Endocrinol. 2019, 10, 626. [Google Scholar] [CrossRef]
- Casimiro, I.; Sam, S.; Brady, M.J. Endocrine implications of bariatric surgery: A review on the intersection between incretins, bone, and sex hormones. Physiol. Rep. 2019, 7, e14111. [Google Scholar] [CrossRef]
- Greenway, F.L. Physiological adaptations to weight loss and factors favouring weight regain. Int. J. Obes. 2015, 39, 1188–1196. [Google Scholar] [CrossRef]
- Santos, C.A.; Cinza, A.M.; Laranjeira, Â.; Amaro, M.; Carvalho, M.; Martins, S.; Bravo, J.; Raimundo, A. The impact of exercise on prevention of sarcopenia after bariatric surgery: The study protocol of the EXPOBAR randomized controlled trial. Contemp. Clin. Trials Commun. 2023, 31, 101048. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.; Cinza, A.M.; Laranjeira, Â.; Amaro, M.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. A dataset on skeletal muscle mass index, body composition and strength to determinate sarcopenia in bariatric patients. Data Brief 2023, 46, 108881. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.; Cinza, A.M.; Laranjeira, Â.; Amaro, M.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. Effects of physical exercise in sarcopenia on patients undergoing bariatric surgery: A protocol for a randomized clinical trial. MethodsX 2023, 10, 102043. [Google Scholar] [CrossRef]
- Hopewell, S.; Boutron, I.; Chan, A.-W.; Collins, G.S.; de Beyer, J.A.; Hróbjartsson, A.; Nejstgaard, C.H.; Østengaard, L.; Schulz, K.F.; Tunn, R.; et al. An update to SPIRIT and CONSORT reporting guidelines to enhance transparency in randomized trials. Nat. Med. 2022, 28, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Song, Y.; Li, T.; Chen, X.; Zhou, J.; Pan, Q.; Jiang, W.; Wang, M.; Jia, H. Effects of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Older Adults with Sarcopenia: A Randomized, Double-Blind, Placebo-Controlled Study. J. Nutr. Health Aging 2023, 27, 329–339. [Google Scholar] [CrossRef]
- Pekař, M.; Pekařová, A.; Bužga, M.; Holéczy, P.; Soltes, M. The risk of sarcopenia 24 months after bariatric surgery—Assessment by dual energy X-ray absorptiometry (DEXA): A prospective study. Videosurgery Other Miniinvasive Tech. 2020, 15, 583–587. [Google Scholar] [CrossRef]
- Bushman, B.A. Determining the I (Intensity) for a FITT-VP aerobic exercise prescription. Curr. Sports Med. Rep. 2014, 18, 4–7. [Google Scholar] [CrossRef]
- Burke, L.M.; Slater, G.J.; Matthews, J.J.; Langan-Evans, C.; Horswill, C.A. ACSM Expert Consensus Statement on Weight Loss in Weight-Category Sports. Curr. Sports Med. Rep. 2021, 20, 199–217. [Google Scholar] [CrossRef]
- ACSM’s Guidelines for Exercise Testing and Prescription. Available online: https://shop.lww.com/ACSM-s-Guidelines-for-Exercise-Testing-and-Prescription/p/9781975150181 (accessed on 11 July 2024).
- Mendes, C.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. Exercise Interventions for the Prevention of Sarcopenia After Bariatric Surgery: A Systematic Review. J. Sci. Sport Exerc. 2024, 1–19. [Google Scholar] [CrossRef]
- Santos, C.; Carvalho, M.; Oliveira, L.; Palmeira, A.; Rodrigues, L.M.; Gregório, J. The Long-Term Association between Physical Activity and Weight Regain, Metabolic Risk Factors, Quality of Life and Sleep after Bariatric Surgery. Int. J. Environ. Res. Public Health 2022, 19, 8328. [Google Scholar] [CrossRef] [PubMed]
- Castello, V.; Simões, R.P.; Bassi, D.; Catai, A.M.; Arena, R.; Borghi-Silva, A. Impact of aerobic exercise training on heart rate variability and functional capacity in obese women after gastric bypass surgery. Obes. Surg. 2011, 21, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Kritchevsky, S.B.; Newman, A.B.; Simonsick, E.M.; Harris, T.B.; Penninx, B.W.; Brach, J.S.; Tylavsky, F.A.; Satterfield, D.S.; Bauer, D.C.; et al. Added value of physical performance measures in predicting adverse health-related events: Results from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2009, 57, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Hainer, V.; Basdevant, A.; Finer, N.; Mathus-Vliegen, E.; Micic, D.; Maislos, M.; Roman, G.; Schutz, Y.; Toplak, H.; et al. Criteria for EASO-Collaborating Centres for Obesity Management. Obes. Facts 2011, 4, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- van de Laar, A.W.; van Rijswijk, A.S.; Kakar, H.; Bruin, S.C. Sensitivity and Specificity of 50% Excess Weight Loss (50%EWL) and Twelve Other Bariatric Criteria for Weight Loss Success. Obes. Surg. 2018, 28, 2297–2304. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Saniee, N.; Borzoo, T.; Radmanesh, E. Osteoporosis and Leptin: A Systematic Review. Iran J. Public Health 2024, 53, 93–103. Available online: https://creativecommons.org/licenses/by-nc/4.0/ (accessed on 23 July 2024). [CrossRef]
- Mendes, C. Effects of exercise for the prevention of sarcopenia after bariatric surgery: A Systematic Review. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Mendes, C.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. Impact of Bariatric Surgery on Sarcopenia Related Parameters and Diagnosis—The Preliminary Results of EXPOBAR Study. Preprints 2024. [Google Scholar] [CrossRef]
- Min, T.; Prior, S.L.; Dunseath, G.; Churm, R.; Barry, J.D.; Stephens, J.W. Temporal Effects of Bariatric Surgery on Adipokines, Inflammation and Oxidative Stress in Subjects with Impaired Glucose Homeostasis at 4 Years of Follow-up. Obes. Surg. 2020, 30, 1712–1718. [Google Scholar] [CrossRef]
- de Assis, G.G.; Murawska-Ciałowicz, E. Exercise and Weight Management: The Role of Leptin—A Systematic Review and Update of Clinical Data from 2000–2022. J. Clin. Med. 2023, 12, 4490. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Frühbeck, G.; Diez-Caballero, A.; Gil, M.J.; Montero, I.; Gómez-Ambrosi, J.; Salvador, J.; Cienfuegos, J.A. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes. Surg. 2004, 14, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Frühbeck, G.; Rotellar, F.; Hernández-Lizoain, J.L.; Gil, M.J.; Gómez-Ambrosi, J.; Salvador, J.; Cienfuegos, J.A. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes. Surg. 2004, 14, 1208–1215. [Google Scholar] [CrossRef]
- Kruljac, I.; Mirošević, G.; Kirigin, L.S.; Nikolić, M.; Ljubičić, N.; Budimir, I.; Bešlin, M.B.; Vrkljan, M. Changes in metabolic hormones after bariatric surgery and their predictive impact on weight loss. Clin. Endocrinol. 2016, 85, 852–860. [Google Scholar] [CrossRef]
- Karamanakos, S.N.; Vagenas, K.; Kalfarentzos, F.; Alexandrides, T.K. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: A prospective, double blind study. Ann. Surg. 2008, 247, 401–407. [Google Scholar] [CrossRef]
- Ghrelin and Adipose Tissue Regulatory Peptides: Effect of Gastric Bypass Surgery in Obese Humans|Oxford Academic. Available online: https://oxfordjournals.org/view-large/53351672 (accessed on 7 August 2024).
- Alamuddin, N.; Vetter, M.L.; Ahima, R.S.; Hesson, L.; Ritter, S.; Minnick, A.; Faulconbridge, L.F.; Allison, K.C.; Sarwer, D.B.; Chittams, J.; et al. Changes in Fasting and Prandial Gut and Adiposity Hormones Following Vertical Sleeve Gastrectomy or Roux-en-Y-Gastric Bypass: An 18-Month Prospective Study. Obes. Surg. 2017, 27, 1563–1572. [Google Scholar] [CrossRef]
- Tsouristakis, A.I.; Febres, G.; McMahon, D.J.; Tchang, B.; Conwell, I.M.; Tsang, A.J.; Ahmed, L.; Bessler, M.; Korner, J. Long-Term Modulation of Appetitive Hormones and Sweet Cravings After Adjustable Gastric Banding and Roux-en-Y Gastric Bypass. Obes. Surg. 2019, 29, 3698–3705. [Google Scholar] [CrossRef]
- Ouerghi, N.; Feki, M.; Bragazzi, N.L.; Knechtle, B.; Hill, L.; Nikolaidis, P.T.; Bouassida, A. Ghrelin Response to Acute and Chronic Exercise: Insights and Implications from a Systematic Review of the Literature. Sports Med. 2021, 51, 2389–2410. [Google Scholar] [CrossRef]
- Malin, S.K.; Heiston, E.M.; Gilbertson, N.M.; Eichner, N.Z. Short-term interval exercise suppresses acylated ghrelin and hunger during caloric restriction in women with obesity. Physiol. Behav. 2020, 223, 112978. [Google Scholar] [CrossRef]
- Gunton, J.E.; Girgis, C.M. Vitamin D and muscle. Bone Rep. 2018, 8, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, J.; Qin, Y.; Zhang, Y.; Wu, Y.; Xu, H. Systemic immune-inflammation index is associated with decreased bone mass density and osteoporosis in postmenopausal women but not in premenopausal women. Endocr. Connect. 2023, 12, e220461. [Google Scholar] [CrossRef] [PubMed]
- Matos, O.; Ruthes, E.M.P.; Malinowski, A.K.C.; Lima, A.L.; Veiga, M.S.; Krause, M.P.; Farah, L.; Souza, C.J.F.; Lass, A.D.; Castelo-Branco, C. Changes in bone mass and body composition after bariatric surgery. Gynecol. Endocrinol. 2020, 36, 578–581. [Google Scholar] [CrossRef] [PubMed]
Parameter (Mean ± SD) | Intervention Group n = 12 | Control Group n = 10 | p Value |
---|---|---|---|
Sex (% female) | 75% | 90% | 0.388 |
Age (years) | 44.08 ± 13.2 | 50.4 ± 11.1 | 0.240 |
Weight (kg) | 117.1 ± 15.8 | 103.6 ± 16.9 | 0.067 |
BMI (kg/m2) | 43.1 ± 5.2 | 41.8 ± 3.4 | 0.388 |
Leptin (ng/mL) | 54.6 ± 29.8 | 50.9 ± 28.5 | 0.355 |
Ghrelin (pg/mL) | 811 ± 763 | 1261 ± 1424 | 0.773 |
Baseline | 6 Months | Sig. | d | |||
---|---|---|---|---|---|---|
CG | IG | CG | IG | |||
Weight (kg) | 103.55 ± 16.86 | 117.08 ± 15.79 | 73.5 ± 13.2 a | 83.0 ± 12.4 a | p = 0.099 | 0.425 |
BMI (kg/m2) | 41.8 ± 3.40 | 43.10 ± 5.17 | 29.4 ± 2.62 a | 30.6 ± 4.37 a | p = 0.821 | 0.067 |
Leptin (ng/mL) | 50.9 ± 28.47 | 54.6 ± 29.75 | 17.0 ± 18.0 a | 42.5 ± 44.1 | p = 0.050 | 0.013 |
Ghrelin (pg/mL) | 1261 ± 1424 | 811 ± 762.72 | 2870 ± 2230 | 1311 ± 968 | p = 0.175 | 0.067 |
Body fat (%) | 46.60 ± 3.23 | 46.7 ± 6.47 | 39.5 ± 5.91 a | 37.2 ± 8.02 a | p = 0.107 | 0.417 |
Handgrip (kg) | 20.60 ± 7.18 | 25.5 ± 6.87 | 16.4 ± 5.79 a | 22.2 ± 7.09 | p = 0.050 | 0.500 |
Lean mass (kg) | 53.45 ± 12.48 | 58.19 ± 8.02 | 45.23 ± 11.47 a | 43.38 ± 9.07 a | p = 0.456 | 0.200 |
BMC (kg) | 2.33 ± 0.44 | 2.50 ± 0.37 | 1.96 ± 0.17 a | 2.42 ± 0.37 | p = 0.004 | 0.733 |
BMD (g/cm2) | 1.14 ± 0.13 | 1.21 ± 0.17 | 1.10 ± 0.08 | 1.16 ± 0.12 | p = 0.276 | 0.283 |
Total body t-score | 0.43 ± 1.51 | 0.54 ± 1.51 | −0.07 ± 0.68 | 0.76 ± 1.23 | p = 0.306 | 0.267 |
Total body z-score | 0.55 ± 1.14 | 0.49 ± 1.22 | 0.15 ± 0.46 | 0.49 ± 1.23 | p = 0.842 | 0.058 |
Leptin (ng/mL) | Ghrelin (pg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
CG | IG | CG | IG | |||||
r | p Value | r | p Value | r | p Value | r | p Value | |
%TWL (%) | −0.518 | 0.937 | 0.194 | 0.273 | 0.353 | 0.159 | 0.314 | 0.160 |
Weight (kg) | 0.475 | 0.009 | 0.102 | 0.376 | 0.356 | 0.156 | −0.145 | 0.673 |
BMI (kg/m2) | 0.625 | 0.022 | 0.051 | 0.431 | 0.137 | 0.353 | −0.167 | 0.716 |
Body fat (%) | 0.359 | 0.154 | 0.225 | 0.241 | 0.230 | 0.205 | 0.040 | 0.245 |
Handgrip (kg) | 0.689 | 0.014 | −0.068 | 0.658 | 0.027 | 0.470 | −0.097 | 0.618 |
Lean mass (kg) | 0.718 | 0.010 | −0.316 | 0.841 | 0.502 | 0.028 | −0.151 | 0.680 |
BMC (g) | 0.144 | 0.304 | −0.094 | 0.561 | 0.348 | 0.162 | −0.084 | 0.612 |
BMD (g/cm2) | 0.709 | 0.011 | −0.008 | 0.510 | 0.341 | 0.167 | 0.208 | 0.258 |
Total body t-score | 0.171 | 0.319 | 0.510 | 0.045 | 0.578 | 0.040 | 0.640 | 0.012 |
Total body z-score | 0.197 | 0.293 | 0.283 | 0.186 | 0.673 | 0.016 | 0.628 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, C.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. Possible Interaction Between Physical Exercise and Leptin and Ghrelin Changes Following Roux-en-Y Gastric Bypass in Sarcopenic Obesity Patients—A Pilot Study. Nutrients 2024, 16, 3913. https://doi.org/10.3390/nu16223913
Mendes C, Carvalho M, Bravo J, Martins S, Raimundo A. Possible Interaction Between Physical Exercise and Leptin and Ghrelin Changes Following Roux-en-Y Gastric Bypass in Sarcopenic Obesity Patients—A Pilot Study. Nutrients. 2024; 16(22):3913. https://doi.org/10.3390/nu16223913
Chicago/Turabian StyleMendes, Cláudia, Manuel Carvalho, Jorge Bravo, Sandra Martins, and Armando Raimundo. 2024. "Possible Interaction Between Physical Exercise and Leptin and Ghrelin Changes Following Roux-en-Y Gastric Bypass in Sarcopenic Obesity Patients—A Pilot Study" Nutrients 16, no. 22: 3913. https://doi.org/10.3390/nu16223913
APA StyleMendes, C., Carvalho, M., Bravo, J., Martins, S., & Raimundo, A. (2024). Possible Interaction Between Physical Exercise and Leptin and Ghrelin Changes Following Roux-en-Y Gastric Bypass in Sarcopenic Obesity Patients—A Pilot Study. Nutrients, 16(22), 3913. https://doi.org/10.3390/nu16223913