Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Cohorts
2.2. Sample Collection
2.3. Microbial Sequencing—16S rRNA
2.4. Microbiome Data Processing
2.5. Statistical Analysis
3. Results
3.1. Cohort Description
3.2. Nutritional Assessment
3.3. Gut Microbiota Composition in PKU and Control Children
3.4. Oral Microbiota Composition in PKU and Control
3.5. Gut and Oral Microbiome Composition
Alpha and Beta Diversity Analysis of Microbial Composition
3.6. PERMANOVA and Dispersion Analysis
3.7. Analysis of Differential Bacterial Abundance in PKU and Controls
4. Discussion
4.1. Analysis of Dietary Intake and Nutritional Requirements
4.2. Impact of Therapeutic Diet and Nutritional Deficiencies in PKU
4.3. Comparative Analysis of Gut Microbiota in PKU and Control Groups
4.4. Comparison of PKU Microbiome in Different Populations
4.5. Influence of Nutrition and Short-Chain Fatty Acid (SCFA) Production in PKU
4.6. Impact of Diet on Microbiome Composition in Children with Phenylketonuria
4.7. Differences in Alpha and Beta Diversity Metrics in PKU and Control Gut Microbiome
4.8. Comparative Analysis of Oral Microbiota in PKU and Control Groups
4.9. Alpha and Beta Diversity Within Oral Microbiota
4.10. Clinical Implications for Dietary Management and Monitoring
4.11. Implications for Microbiome-Targeted Therapies
4.12. Health Policy Implications: Support for Nutritional and Microbiome Research in PKU
5. Conclusions: Impact of PKU and Dietary Management on Microbiota Composition
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillert, A.; Anikster, Y.; Belanger-Quintana, A.; Burlina, A.; Burton, B.K.; Carducci, C.; Chiesa, A.E.; Christodoulou, J.; Đorđević, M.; Desviat, L.R.; et al. The Genetic Landscape and Epidemiology of Phenylketonuria. Am. J. Hum. Genet. 2020, 107, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Cabalska, B. (Ed.) Wybrane Choroby Metaboliczne u Dzieci, 1st ed.; Wydawn. Lekarskie PZWL: Warszawa, Poland, 2002; ISBN 9788320026450. [Google Scholar]
- Montanari, C.; Ceccarani, C.; Corsello, A.; Zuvadelli, J.; Ottaviano, E.; Dei Cas, M.; Banderali, G.; Zuccotti, G.; Borghi, E.; Verduci, E. Glycomacropeptide Safety and Its Effect on Gut Microbiota in Patients with Phenylketonuria: A Pilot Study. Nutrients 2022, 14, 1883. [Google Scholar] [CrossRef]
- Singh, R.H.; Rohr, F.; Frazier, D.; Cunningham, A.; Mofidi, S.; Ogata, B.; Splett, P.L.; Moseley, K.; Huntington, K.; Acosta, P.B.; et al. Recommendations for the Nutrition Management of Phenylalanine Hydroxylase Deficiency. Genet. Med. 2014, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Vockley, J.; Sondheimer, N.; Puurunen, M.; Diaz, G.A.; Ginevic, I.; Grange, D.K.; Harding, C.; Northrup, H.; Phillips, J.A.; Searle, S.; et al. Efficacy and Safety of a Synthetic Biotic for Treatment of Phenylketonuria: A Phase 2 Clinical Trial. Nat. Metab. 2023, 5, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU Dietary Handbook to Accompany PKU Guidelines. Orphanet J. Rare Dis. 2020, 15, 230. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro de Oliveira, F.; Mendes, R.H.; Dobbler, P.T.; Mai, V.; Pylro, V.S.; Waugh, S.G.; Vairo, F.; Refosco, L.F.; Roesch, L.F.W.; Schwartz, I.V.D. Phenylketonuria and Gut Microbiota: A Controlled Study Based on Next-Generation Sequencing. PLoS ONE 2016, 11, e0157513. [Google Scholar] [CrossRef]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verduci, E.; Borghi, E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front. Cell. Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef]
- Su, Y.; Shadike, Q.; Wang, M.; Jiang, H.; Liu, W.; Liu, J.; Tuerdi, R.; Zhou, W.; Li, L. A Low Abundance of Genus Bacteroides in Gut Microbiota Is Negatively Correlated with Blood Phenylalanine Levels in Uygur Patients with Phenylketonuria. Transl. Pediatr. 2021, 10, 2521–2532. [Google Scholar] [CrossRef]
- Verduci, E.; Carbone, M.T.; Borghi, E.; Ottaviano, E.; Burlina, A.; Biasucci, G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020, 12, 3319. [Google Scholar] [CrossRef]
- Xu, H.; Tian, J.; Hao, W.; Zhang, Q.; Zhou, Q.; Shi, W.; Qin, M.; He, X.; Chen, F. Oral Microbiome Shifts from Caries-Free to Caries-Affected Status in 3-Year-Old Chinese Children: A Longitudinal Study. Front. Microbiol. 2018, 9, 2009. [Google Scholar] [CrossRef]
- Anbalagan, R.; Srikanth, P.; Mani, M.; Barani, R.; Seshadri, K.G.; Janarthanan, R. Next Generation Sequencing of Oral Microbiota in Type 2 Diabetes Mellitus Prior to and after Neem Stick Usage and Correlation with Serum Monocyte Chemoattractant-1. Diabetes Res. Clin. Pract. 2017, 130, 204–210. [Google Scholar] [CrossRef]
- Tam, J.; Hoffmann, T.; Fischer, S.; Bornstein, S.; Gräler, J.; Noack, B. Obesity Alters Composition and Diversity of the Oral Microbiota in Patients with Type 2 Diabetes Mellitus Independently of Glycemic Control. PLoS ONE 2018, 13, e0204724. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, N.; Burke, L.M.; Vlahovich, N.; Charlesson, B.; O’neill, H.M.; Ross, M.L.; Campbell, K.L.; Krause, L.; Morrison, M. Analysis of the Effects of Dietary Pattern on the Oral Microbiome of Elite Endurance Athletes. Nutrients 2019, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Pietrangelo, L.; Magnifico, I.; Petronio Petronio, G.; Cutuli, M.A.; Venditti, N.; Nicolosi, D.; Perna, A.; Guerra, G.; Di Marco, R. A Potential “Vitaminic Strategy” against Caries and Halitosis. Appl. Sci. 2022, 12, 2457. [Google Scholar] [CrossRef]
- Parolisi, S.; Montanari, C.; Borghi, E.; Cazzorla, C.; Zuvadelli, J.; Tosi, M.; Barone, R.; Bensi, G.; Bonfanti, C.; Dionisi Vici, C.; et al. Possible Role of Tryptophan Metabolism along the Microbiota-Gut-Brain Axis on Cognitive & Behavioral Aspects in Phenylketonuria. Pharmacol. Res. 2023, 197, 106952. [Google Scholar] [CrossRef] [PubMed]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every Base Matters: Assessing Small Subunit RRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor Revision to V4 Region SSU RRNA 806R Geneprimer Greatly Increases Detection of SAR11 Bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonzalez, A.; Morton, J.T.; Nicolaou, G.; Parks, D.H.; Karst, S.M.; et al. Greengenes2 Unifies Microbial Data in a Single Reference Tree. Nat. Biotechnol. 2023, 42, 715–718. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Reid, J.N.S.; Macklaim, J.M.; McMurrough, T.A.; Edgell, D.R.; Gloor, G.B. Unifying the Analysis of High-Throughput Sequencing Datasets: Characterizing RNA-Seq, 16S RRNA Gene Sequencing and Selective Growth Experiments by Compositional Data Analysis. Microbiome 2014, 2, 15. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Bisanz, J.E. Qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions. 2018. 13. Available online: https://github.com/jbisanz/qiime2R (accessed on 29 January 2024).
- Lahti, L.; Shetty, S. Microbiome R Package 2012–2019. Available online: https://www.bioconductor.org/packages/release/bioc/html/microbiome.html (accessed on 29 January 2024).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Community Ecology Package 2022. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3732185 (accessed on 29 January 2024).
- Shetty, S.; Lahti, L. Microbiomeutilities: Microbiomeutilities: Utilities for Microbiome Analytics. 2024. Available online: https://microsud.github.io/microbiomeutilities/ (accessed on 29 January 2024).
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2016, 174, 245–246. [Google Scholar]
- Neuwirth, E. ColorBrewer Palettes 2022. Available online: https://cran.r-project.org/web/packages/RColorBrewer/RColorBrewer.pdf (accessed on 29 January 2024).
- Slowikowski, K. Ggrepel: Automatically Position Non-Overlapping Text Labels with “Ggplot2” 2024. Available online: https://slowkow.r-universe.dev/ggrepel#:~:text=6.9999-,ggrepel%3A%20Automatically%20Position%20Non%2DOverlapping%20Text%20Labels%20with%20'ggplot2,away%20from%20the%20data%20points (accessed on 29 January 2024).
- EFSA (European Food Safety Authority). Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
- Levy, H.; Lamppu, D.; Anastosoaie, V.; Baker, J.L.; DiBona, K.; Hawthorne, S.; Lindenberger, J.; Kinch, D.; Seymour, A.; McIlduff, M.; et al. 5-Year Retrospective Analysis of Patients with Phenylketonuria (PKU) and Hyperphenylalaninemia Treated at Two Specialized Clinics. Mol. Genet. Metab. 2020, 129, 177–185. [Google Scholar] [CrossRef]
- Shah, T.J.; Baria, D.; Brahmbhatt, S.; Ramavataram, D.V.S.S. Management of Phenylketonuria: Current and Future Perspectives. Indian J. Forensic Med. Toxicol. 2021, 15, 347–352. [Google Scholar] [CrossRef]
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- Rodrigues, C.; Pinto, A.; Faria, A.; Teixeira, D.; van Wegberg, A.M.J.; Ahring, K.; Feillet, F.; Calhau, C.; Macdonald, A.; Moreira-Rosário, A.; et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (Pku)? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3443. [Google Scholar] [CrossRef]
- Luis, A.S.; Briggs, J.; Zhang, X.; Farnell, B.; Ndeh, D.; Labourel, A.; Baslé, A.; Cartmell, A.; Terrapon, N.; Stott, K.; et al. Dietary Pectic Glycans Are Degraded by Coordinated Enzyme Pathways in Human Colonic Bacteroides. Nat. Microbiol. 2017, 3, 210–219. [Google Scholar] [CrossRef]
- Keller, D.; van Dinter, R.; Cash, H.; Farmer, S.; Venema, K. Bacillus Coagulans GBI-30, 6086 Increases Plant Protein Digestion in a Dynamic, Computer-Controlled in Vitro Model of the Small Intestine (TIM-1). Benef. Microbes 2017, 8, 491–496. [Google Scholar] [CrossRef]
- Venegas, D.P.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Vernocchi, P.; Del Chierico, F.; Putignani, L. Gut Microbiota Metabolism and Interaction with Food Components. Int. J. Mol. Sci. 2020, 21, 3688. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A.R. Regulation of Immune Cell Function by Short-Chain Fatty Acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, L.; Yang, L.; Chu, H. The Critical Role of Gut Microbiota in Obesity. Front. Endocrinol. 2022, 13, 1025706. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Verduci, E.; Moretti, F.; Bassanini, G.; Banderali, G.; Rovelli, V.; Casiraghi, M.C.; Morace, G.; Borgo, F.; Borghi, E. Phenylketonuric Diet Negatively Impacts on Butyrate Production. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 385–392. [Google Scholar] [CrossRef]
- Tuovinen, E.; Keto, J.; Nikkilä, J.; Mättö, J.; Lähteenmäki, K. Cytokine Response of Human Mononuclear Cells Induced by Intestinal Clostridium Species. Anaerobe 2013, 19, 70–76. [Google Scholar] [CrossRef]
- Mancilla, V.J.; Mann, A.E.; Zhang, Y.; Allen, M.S. The Adult Phenylketonuria (PKU) Gut Microbiome. Microorganisms 2021, 9, 530. [Google Scholar] [CrossRef]
- Moretti, F.; Pellegrini, N.; Salvatici, E.; Rovelli, V.; Banderali, G.; Radaelli, G.; Scazzina, F.; Giovannini, M.; Verduci, E. Dietary Glycemic Index, Glycemic Load and Metabolic Profile in Children with Phenylketonuria. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 176–182. [Google Scholar] [CrossRef]
- Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated with Aging in Mice. Front. Immunol. 2018, 9, 1832. [Google Scholar] [CrossRef] [PubMed]
- Breyner, N.M.; Michon, C.; de Sousa, C.S.; Vilas Boas, P.B.; Chain, F.; Azevedo, V.A.; Langella, P.; Chatel, J.M. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium Prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-ΚB Pathway. Front. Microbiol. 2017, 8, 114. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Rossi, O.; Bermúdez-Humarán, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P. Faecalibacterium Prausnitzii and Human Intestinal Health. Curr. Opin. Microbiol. 2013, 16, 255–261. [Google Scholar] [CrossRef]
- Fujimoto, T.; Imaeda, H.; Takahashi, K.; Kasumi, E.; Bamba, S.; Fujiyama, Y.; Andoh, A. Decreased Abundance of Faecalibacterium Prausnitzii in the Gut Microbiota of Crohn’s Disease. J. Gastroenterol. Hepatol. 2013, 28, 613–619. [Google Scholar] [CrossRef]
- Schirmer, M.; Franzosa, E.A.; Lloyd-Price, J.; McIver, L.J.; Schwager, R.; Poon, T.W.; Ananthakrishnan, A.N.; Andrews, E.; Barron, G.; Lake, K.; et al. Dynamics of Metatranscription in the Inflammatory Bowel Disease Gut Microbiome. Nat. Microbiol. 2018, 3, 337–346. [Google Scholar] [CrossRef]
- Timmer, C.; Davids, M.; Nieuwdorp, M.; Levels, J.H.M.; Langendonk, J.G.; Breederveld, M.; Ahmadi Mozafari, N.; Langeveld, M. Differences in Faecal Microbiome Composition between Adult Patients with UCD and PKU and Healthy Control Subjects. Mol. Genet. Metab. Rep. 2021, 29, 100794. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Tett, A.; Pasolli, E.; Masetti, G.; Ercolini, D.; Segata, N. Prevotella Diversity, Niches and Interactions with the Human Host. Nat. Rev. Microbiol. 2021, 19, 585–599. [Google Scholar] [CrossRef]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H.A.; et al. Microbiome Connections with Host Metabolism and Habitual Diet from 1,098 Deeply Phenotyped Individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, E.J.C.; Iljazovic, A.; Amend, L.; Lesker, T.R.; Renault, T.; Thiemann, S.; Hao, L.; Roy, U.; Gronow, A.; Charpentier, E.; et al. Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe 2020, 28, 838–852.e6. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.L.; Peña, N.; Kawar, N.; Zhang, A.; Callahan, N.; Robles, S.J.; Griebel, A.; Adami, G.R. Old Age and Other Factors Associated with Salivary Microbiome Variation. BMC Oral Health 2021, 21, 490. [Google Scholar] [CrossRef]
- Bingöl, M.; Cardilli, A.; Bingöl, A.C.; Löber, U.; Bang, C.; Franke, A.; Bartzela, T.; Beblo, S.; Mönch, E.; Stolz, S.; et al. Oral Microbiota of Patients with Phenylketonuria: A Nation-Based Cross-Sectional Study. J. Clin. Periodontol. 2024, 51, 1081–1092. [Google Scholar] [CrossRef]
- Abola, I.; Gudra, D.; Ustinova, M.; Fridmanis, D.; Emulina, D.E.; Skadins, I.; Brinkmane, A.; Lauga-Tunina, U.; Gailite, L.; Auzenbaha, M. Oral Microbiome Traits of Type 1 Diabetes and Phenylketonuria Patients in Latvia. Microorganisms 2023, 11, 1471. [Google Scholar] [CrossRef]
- Dianawati, N.; Setyarini, W.; Widjiastuti, I.; Ridwan, R.D.; Kuntaman, K. The Distribution of Streptococcus Mutans and Streptococcus Sobrinus in Children with Dental Caries Severity Level. Dent. J. 2020, 53, 36–39. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takeshita, T. The Oral Microbiome and Human Health. J. Oral Sci. 2017, 59, 201–206. [Google Scholar] [CrossRef]
- Bloch, S.; Hager-Mair, F.F.; Andrukhov, O.; Schäffer, C. Oral Streptococci: Modulators of Health and Disease. Front. Cell Infect. Microbiol. 2024, 14, 1357631. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Zeng, H.; Chang, B.; Cui, Y.; Zhang, J.; Wang, R.; Ding, T. Unique Microbial Landscape in the Human Oropharynx during Different Types of Acute Respiratory Tract Infections. Microbiome 2023, 11, 157. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Wang, Y.; Zhang, J.; Zhao, C.; Shen, N.; Yang, J.; Gai, Z.; Zhang, L. Oral Microbiota Dysbiosis and Its Association with Henoch-Schönlein Purpura in Children. Int. Immunopharmacol. 2018, 65, 295–302. [Google Scholar] [CrossRef]
- Idate, U.; Bhat, K.; Kotrashetti, V.; Kugaji, M.; Kumbar, V. Molecular Identification of Capnocytophaga Species from the Oral Cavity of Patients with Chronic Periodontitis and Healthy Individuals. J. Oral Maxillofac. Pathol. 2020, 24, 397. [Google Scholar] [CrossRef] [PubMed]
- Thukral, R.; Shrivastav, K.; Mathur, V.; Barodiya, A.; Shrivastav, S. Actinomyces: A Deceptive Infection of Oral Cavity. J. Korean Assoc. Oral Maxillofac. Surg. 2017, 43, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Sizova, M.V.; Muller, P.A.; Stancyk, D.; Panikov, N.S.; Mandalakis, M.; Hazen, A.; Hohmann, T.; Doerfert, S.N.; Fowle, W.; Earl, A.M.; et al. Oribacterium Parvum Sp. Nov. and Oribacterium Asaccharolyticum Sp. Nov., Obligately Anaerobic Bacteria from the Human Oral Cavity, and Emended Description of the Genus Oribacterium. Int. J. Syst. Evol. Microbiol. 2014, 64, 2642–2649. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, C.; Granata, I.; D’argenio, V.; Tramontano, S.; Compare, D.; Guarracino, M.R.; Nardone, G.; Pilone, V.; Sacchetti, L. Characterization of the Duodenal Mucosal Microbiome in Obese Adult Subjects by 16S RRNA Sequencing. Microorganisms 2020, 8, 485. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.O.; Ochoa-Reparaz, J.; Roullet, J.B.; Gibson, K.M. Dysbiosis of the Intestinal Microbiome as a Component of Pathophysiology in the Inborn Errors of Metabolism. Mol. Genet. Metab. 2021, 132, 1–10. [Google Scholar] [CrossRef]
- Dong, T.S.; Gupta, A. Influence of Early Life, Diet, and the Environment on the Microbiome. Clin. Gastroenterol. Hepatol. 2019, 17, 231–242. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Carvalho, A.S.E.S.; Alves, J.D.S.; Egea, M.B. Next-Generation Probiotics as a Therapeutic Strategy for the Treatment of Phenylketonuria: A Review. Nutr. Rev. 2022, 80, 2100–2112. [Google Scholar] [CrossRef]
- Farzi, A.; Fröhlich, E.E.; Holzer, P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics 2018, 15, 5–22. [Google Scholar] [CrossRef]
- Rizowy, G.M.; Poloni, S.; Colonetti, K.; Donis, K.C.; Dobbler, P.T.; Leistner-Segal, S.; Roesch, L.F.W.; Schwartz, I.V.D. Is the Gut Microbiota Dysbiotic in Patients with Classical Homocystinuria? Biochimie 2020, 173, 3–11. [Google Scholar] [CrossRef]
Control | PKU Patient | p-Value | |||
---|---|---|---|---|---|
Average | SD | Average | SD | ||
Energy (kcal) | 1494 | 262 | 1684 | 748 | 0.6968 |
Total proteins (g) | 61.43 | 17.88 | 41.28 | 5.83 | 0.2159 |
Plant proteins (g) | 17.03 | 3.22 | 4.28 | 3.07 | 0.0013 * |
Animal proteins (g) | 35.30 | 16.43 | 4.28 | 6.55 | 0.0688 |
Fat (g) | 43.43 | 12.01 | 61.00 | 32.15 | 0.4147 |
MUFA (g) | 17.70 | 3.38 | 16.18 | 7.41 | 0.7576 |
PUFA(g) | 7.93 | 2.68 | 12.58 | 15.89 | 0.5959 |
n-3 | 0.93 | 0.55 | 0.78 | 1.03 | 0.8213 |
n-6 | 3.40 | 2.31 | 2.60 | 2.20 | 0.6599 |
SFA (g) | 16.83 | 3.16 | 19.48 | 4.27 | 0.4117 |
Cholesterol (mg) | 209.70 | 176.34 | 74.33 | 66.78 | 0.2159 |
Digestible carbohydrates (g) | 206.07 | 27.66 | 208.10 | 106.16 | 0.9760 |
Fibre (g) | 22.67 | 2.88 | 20.25 | 7.54 | 0.6271 |
Starch (g) | 79.00 | 31.83 | 75.10 | 87.01 | 0.5959 |
Phenylalanine | 2608.70 | 720.98 | 739.83 | 445.61 | 0.0079 * |
Glycaemic index | 32 | 11 | 36 | 15 | 0.7280 |
Sodium (mg) | 1483.60 | 450.22 | 1092.83 | 1082.39 | 0.8597 |
Potassium (mg) | 2438.85 | 1159.52 | 3515.57 | 1541.71 | 0.3362 |
Calcium (mg) | 189.63 | 101.41 | 664.73 | 378.10 | 0.0564 |
Magnesium (mg) | 181.58 | 42.75 | 275.33 | 99.92 | 0.2159 |
Iron (mg) | 6.43 | 2.33 | 10.97 | 3.35 | 0.0856 |
Copper (mg) | 0.58 | 0.29 | 0.90 | 0.44 | 0.5925 |
Zinc (mg) | 3.03 | 1.32 | 7.93 | 3.20 | 0.0518 |
Vitamin B1 (mg) | 1.03 | 0.67 | 0.50 | 0.38 | 0.5925 |
Vitamin B2 (mg) | 1.27 | 0.76 | 0.40 | 0.16 | 0.0718 |
Vitamin B3 (mg) | 15.13 | 4.31 | 7.68 | 6.47 | 0.1476 |
Folates (µg) | 387.87 | 66.16 | 153.65 | 51.70 | 0.0013 * |
Vitamin B12 (µg) | 2.30 | 1.35 | 0.40 | 0.42 | 0.0518 |
Vitamin B6 (mg) | 2.07 | 1.17 | 1.18 | 0.68 | 0.2060 |
Vitamin A (µg) | 2495.93 | 2908.79 | 371.45 | 243.91 | 0.5959 |
Vitamin C (mg) | 164.37 | 95.66 | 92.80 | 54.89 | 0.2609 |
Vitamin D (µg) | 1.77 | 1.19 | 0.33 | 0.28 | 0.0518 |
Vitamin E (mg) | 10.03 | 8.53 | 6.23 | 2.50 | 0.7188 |
Β-carotene (µg) | 19,673.77 | 26,976.52 | 1859.60 | 1469.60 | 0.2159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, M.; Nowosad, K.; Mikoluc, B.; Szczerba, H.; Komon-Janczara, E. Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study. Nutrients 2024, 16, 3915. https://doi.org/10.3390/nu16223915
Ostrowska M, Nowosad K, Mikoluc B, Szczerba H, Komon-Janczara E. Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study. Nutrients. 2024; 16(22):3915. https://doi.org/10.3390/nu16223915
Chicago/Turabian StyleOstrowska, Malgorzata, Karolina Nowosad, Bozena Mikoluc, Hubert Szczerba, and Elwira Komon-Janczara. 2024. "Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study" Nutrients 16, no. 22: 3915. https://doi.org/10.3390/nu16223915
APA StyleOstrowska, M., Nowosad, K., Mikoluc, B., Szczerba, H., & Komon-Janczara, E. (2024). Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study. Nutrients, 16(22), 3915. https://doi.org/10.3390/nu16223915