Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants
2.3. HB05P and Placebo Capsules
2.4. Analysis of Muscle-Related Factors
2.5. Safety Assessment
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Baseline Characteristics of Participants
3.3. Effect of HB05P on Isokinetic Muscular Strength
3.4. Effect of HB05P on Grip Strength
3.5. Effect of HB05P on Follistatin and Myostatin Levels
3.6. Assessment of the Safety of HB05P
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, S.V.; Faulkner, J.A. Skeletal muscle weakness in old age: Underlying mechanisms. Med. Sci. Sports Exerc. 1994, 26, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Montero-Fernandez, N.; Serra-Rexach, J.A. Role of exercise on sarcopenia in the elderly. Eur. J. Phys. Rehabil. Med. 2013, 49, 131–143. [Google Scholar] [PubMed]
- Glass, D.J. Molecular mechanisms modulating muscle mass. Trends Mol. Med. 2003, 9, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.; Dennison, E. Measuring the musculoskeletal aging phenotype. Maturitas 2016, 93, 13–17. [Google Scholar] [CrossRef]
- Rolland, Y.; Dray, C.; Vellas, B.; Barreto, P.D.S. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023, 149, 155597. [Google Scholar] [CrossRef] [PubMed]
- Yarasheski, K.E. Exercise, aging, and muscle protein metabolism. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M918–M922. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Park, S.D.; Shim, J.J.; Lee, J.L. Lactobacillus plantarum HY7715 ameliorates sarcopenia by improving skeletal muscle mass and function in aged Balb/c mice. Int. J. Mol. Sci. 2021, 22, 10023. [Google Scholar] [CrossRef]
- Chen, Y.M.; Wei, L.; Chiu, Y.S.; Hsu, Y.J.; Tsai, T.Y.; Benabdallah, M.F.; Huang, C.C. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients 2016, 8, 205. [Google Scholar] [CrossRef]
- Toda, K.; Yamauchi, Y.; Tanaka, A.; Kuhara, T.; Odamaki, T.; Yoshimoto, S.; Xiao, J.Z. Heat-killed Bifidobacterium breve B-3 Enhances Muscle Functions: Possible involvement of increases in muscle mass and mitochondrial biogenesis. Nutrients 2020, 12, 219. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, J.; Lim, H.; Kim, H.Y.; Koo, Y.S.; Lim, J.S.; Yoon, Y. Lactobacillus gasseri BNR17 ameliorates dexamethasone-induced muscle loss in BALB/c mice and C2C12 myotubes. J. Med. Food 2024, 27, 385–395. [Google Scholar] [CrossRef]
- Leitner, L.M.; Wilson, R.J.; Yan, Z.; Godecke, A. Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases. Antioxid. Redox Signal. 2017, 26, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.D.; Lecker, S.H.; Jagoe, R.T.; Navon, A.; Goldberg, A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 2001, 98, 14440–14445. [Google Scholar] [CrossRef] [PubMed]
- Egerman, M.A.; Glass, D.J. Signaling pathways controlling skeletal muscle mass signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Fainsod, A.; Deissler, K.; Yelin, R.; Marom, K.; Epstein, M.; Pillemer, G.; Steinbeisser, H.; Blum, M. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech. Dev. 1997, 63, 39–50. [Google Scholar] [CrossRef]
- Gamer, L.W.; Wolfman, N.M.; Celeste, A.J.; Hattersley, G.; Hewick, R.; Rosen, V. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev. Biol. 1999, 208, 222–232. [Google Scholar] [CrossRef]
- Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S. The structure of the follistatin: Activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 2005, 9, 535–543. [Google Scholar] [CrossRef]
- Amthor, H.; Nicholas, G.; McKinnell, I.; Kemp, C.F.; Sharma, M.; Kambadur, R.; Patel, K. Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis. Dev. Biol. 2004, 270, 19–30. [Google Scholar] [CrossRef]
- Lee, S.J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 2001, 98, 9306–9311. [Google Scholar] [CrossRef]
- Nakatani, M.; Takehara, Y.; Sugino, H.; Matsumoto, M.; Hashimoto, O.; Hasegawa, Y.; Murakami, T.; Uezumi, A.; Takeda, S.; Noji, S.; et al. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J. 2008, 22, 477–487. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019, 12, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Sheng, L.; Li, H. Akkermansia muciniphila: Is it the Holy Grail for ameliorating metabolic diseases? Gut Microbes 2021, 13, 1984104. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; deVos, W.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, L.; Feng, Y.; Zhao, S.; Han, M.; Zhang, C.; Yuan, G.; Zhu, J.; Cao, S.; Wu, Q.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 2020, 69, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, S.; Xia, H.; Han, S.; Wang, Q.; Wu, Z.; Zhuge, A.; Li, S.; Chen, H.; Lv, L.; et al. Akkermansia muciniphila attenuated lipopolysaccharide-induced acute lung injury by modulating the gut microbiota and SCFAs in mice. Food Funct. 2023, 14, 10401–10417. [Google Scholar] [CrossRef]
- Glover, J.S.; Ticer, T.D.; Engevik, M.A. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci. Rep. 2022, 12, 8456. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, W.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Liu, R.; Hong, J. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J. Mol. Endocrinol. 2017, 58, 1–14. [Google Scholar] [CrossRef]
- Yoon, S.A.; Lim, Y.; Byeon, H.R.; Jung, J.; Ma, S.; Hong, M.G.; Kim, D.; Song, E.J.; Nam, Y.D.; Seo, J.G.; et al. Heat-killed Akkermansia muciniphila ameliorates allergic airway inflammation in mice. Front. Microbiol. 2024, 15, 1386428. [Google Scholar] [CrossRef]
- Keshavarz Azizi Raftar, S.; Abdollahiyan, S.; Azimirad, M.; Yadegar, A.; Vaziri, F.; Moshiri, A.; Siadat, S.D.; Zali, M.R. The anti-fibrotic effects of heat-killed Akkermansia muciniphila MucT on liver fibrosis markers and activation of hepatic stellate cells. Probiotics Antimicrob. Proteins 2021, 13, 776–787. [Google Scholar] [CrossRef]
- Iwaza, R.; Wasfy, R.M.; Dubourg, G.; Raoult, D.; Lagier, J.C. Akkermansia muciniphila: The state of the art, 18 years after its first discovery. Front. Gastroenterol. 2022, 1, 1024393. [Google Scholar] [CrossRef]
- Abot, A.; Brochot, A.; Pomié, N.; Astre, G.; Druart, C.; de Vos, W.M.; Knauf, C.; Cani, P.D. Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release. Heliyon 2023, 9, e18196. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.Y.; Song, D.Y.; Kim, B.C. Effectiveness of Akkermansia muciniphila HB05P in improving muscle strength and mass in the dexamethasone-induced skeletal muscle atrophy rat model. Korean J. Food Sci. Technol. 2024, 56, 102–112. [Google Scholar] [CrossRef]
- Li, W.; Moylan, J.S.; Chambers, M.A.; Smith, J.; Reid, M.B. Interleukin-1 stimulates catabolism in C2C12 myotubes. Am. J. Physiol.-Cell Physiol. 2009, 297, C706–C714. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.; Kim, H.; Garcia-Perez, I.; Reza, M.M.; Martin, K.A.; Kundu, P.; Cox, L.M.; Selkrig, J.; Posma, J.M.; Zhang, H.; et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med. 2019, 11, eaan5662. [Google Scholar] [CrossRef] [PubMed]
- Maruta, H.; Yoshimura, Y.; Araki, A.; Kimoto, M.; Takahashi, Y.; Yamashita, H. Activation of AMP-activated protein kinase and stimulation of energy metabolism by acetic acid in L6 myotube cells. PLoS ONE 2016, 11, e0158055. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of pasteurised Akkermansia muciniphila as a novelfood pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 6780. [Google Scholar]
- Benabdallah, B.F.; Bouchentouf, M.; Rousseau, J.; Tremblay, J.P. Overexpression of follistatin in human myoblasts increases their proliferation and differentiation, and improves the graft success in SCID mice. Cell Transplant. 2009, 18, 709–718. [Google Scholar] [CrossRef]
- Gao, X.; Hu, H.; Zhu, J.; Xu, Z. Identification and characterization of follistatin as a novel angiogenin-binding protein. FEBS Lett. 2007, 581, 5505–5510. [Google Scholar] [CrossRef]
- Lin, S.Y.; Craythorn, R.G.; O’Connor, A.E.; Matzuk, M.M.; Girling, J.E.; Morrison, J.R.; de Kretser, D.M. Female infertility and disrupted angiogenesis are actions of specific follistatin isoforms. Mol. Endocrinol. 2008, 22, 415–429. [Google Scholar] [CrossRef]
Placebo | Treatment | ||
---|---|---|---|
Ingredients and content (%) | HB05P | - | 11.63 |
Microcrystalline cellulose | 98.00 | 86.37 | |
Silicon dioxide | 1.00 | 1.00 | |
Magnesium stearate | 1.00 | 1.00 | |
Packing | One capsule (430 mg) individually packed |
Variable | HB05P (n = 50) | Placebo (n = 50) | p-Value (1) |
---|---|---|---|
Male (n, %) | 5 (10.0) | 7 (14.0) | 0.5383 (2) |
Female (n, %) | 45 (90.0) | 43 (86.0) | |
Age (year) | 64.80 ± 4.25 | 65.26 ± 3.38 | 0.5507 |
Height (cm) | 156.44 ± 6.71 | 157.68 ± 5.80 | 0.3256 |
Weight (kg) | 59.87 ± 7.43 | 59.41 ± 7.80 | 0.7623 |
BMI (kg/m2) | 24.44 ± 2.33 | 23.89 ± 2.86 | 0.2959 |
SBP (mmHg) | 126.76 ± 12.84 | 129.82 ± 14.76 | 0.2714 |
DBP (mmHg) | 74.70 ± 9.52 | 77.48 ± 11.15 | 0.1830 |
Pulse (bpm) | 72.06 ± 7.57 | 70.20 ± 9.24 | 0.2735 |
SARC-Calf | 2.84 ± 4.32 | 3.02 ± 4.43 | 0.8374 |
Alcohol (n, %) | 8 (16.0) | 10 (20.0) | 0.6027 (2) |
Alcohol (unit, week) | 2.23 ± 3.78 | 3.82 ± 6.24 | 0.5353 |
Current smoker (n, %) | 0 (0.0) | 1 (2.0) | >0.999 (3) |
Amount smoked (pieces/days) | - | 12.00 |
Treatment Group (n = 47) | Placebo Group (n = 45) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | p-Value | Baseline | 12 Weeks | p-Value | ||||
Peak Torque (N·m) | Left | Flexor | 31.37 ± 17.12 | 31.33 ± 16.20 | 0.9869 | 34.68 ± 13.05 | 34.68 ± 15.92 | 0.9992 | 0.9892 |
Extensor | 68.72 ± 23.90 | 71.44 ± 21.70 | 0.0608 | 73.24 ± 21.05 | 70.24 ± 20.03 | 0.0794 | 0.0103 | ||
Right | Flexor | 32.62 ± 17.47 | 32.95 ± 16.62 | 0.8801 | 34.37 ± 16.97 | 36.08 ± 20.50 | 0.5009 | 0.6779 | |
Extensor | 71.47 ± 23.88 | 71.74 ± 21.30 | 0.8750 | 75.70 ± 21.32 | 74.04 ± 24.69 | 0.4117 | 0.4627 | ||
Peak TQ/BW (%) | Left | Flexor | 52.29 ± 28.05 | 52.60 ± 25.66 | 0.9426 | 59.02 ± 22.34 | 59.08 ± 27.03 | 0.9866 | 0.9642 |
Extensor | 115.06 ± 38.20 | 120.30 ± 35.85 | 0.0354 | 124.72 ± 35.56 | 119.40 ± 33.94 | 0.0635 | 0.0052 | ||
Right | Flexor | 54.15 ± 27.49 | 55.41 ± 27.01 | 0.7225 | 58.30 ± 28.92 | 60.84 ± 32.40 | 0.5433 | 0.8144 | |
Extensor | 119.12 ± 36.19 | 120.51 ± 33.82 | 0.6078 | 128.79 ± 36.41 | 127.49 ± 36.00 | 0.5995 | 0.4634 |
Treatment Group (n = 47) | Control Group (n = 45) | p-Value (2) | ||||||
---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | p-Value (1) | Baseline | 12 Weeks | p-Value (1) | |||
Hand grip (kg) | Left | 23.50 ± 4.94 | 23.12 ± 5.46 | 0.3405 | 23.55 ± 6.41 | 23.96 ± 6.26 | 0.2644 | 0.1450 |
Right | 24.36 ± 5.03 | 23.94 ± 5.03 | 0.2651 | 24.33 ± 6.12 | 24.14 ± 5.78 | 0.6585 | 0.6861 |
Treatment Group (n = 47) | Control Group (n = 45) | p-Value (2) | |||||
---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | p-Value (1) | Baseline | 12 Weeks | p-Value (1) | ||
Follistatin (pg/mL) | 1475.99 ± 424.63 | 1549.80 ± 506.44 | 0.3653 | 1591.14 ± 623.56 | 1345.89 ± 315.23 | 0.0039 | 0.0063 |
Myostatin (pg/mL) | 13.37 ± 25.50 | 12.98 ± 26.50 | 0.5151 | 8.40 ± 19.86 | 9.03 ± 20.04 | 0.4430 | 0.3145 |
Treatment Group (n = 50) | Control Group (n = 50) | p-Value (2) | |||||
---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | p-Value (1) | Baseline | 12 Weeks | p-Value (1) | ||
WBC | 5.23 ± 1.10 | 5.14 ± 1.31 | 0.5406 | 4.94 ± 1.32 | 4.99 ± 1.58 | 0.7270 | 0.4937 |
RBC | 4.37 ± 0.32 | 4.39 ± 0.28 | 0.4764 | 4.32 ± 0.37 | 4.29 ± 0.37 | 0.1961 | 0.1456 |
Hemoglobin | 13.39 ± 1.01 | 13.54 ± 0.88 | 0.0231 | 13.27 ± 0.93 | 13.26 ± 0.99 | 0.8460 | 0.0890 |
Hematocrit | 41.45 ± 2.78 | 41.00 ± 2.32 | 0.0638 | 41.08 ± 2.76 | 40.39 ± 3.03 | 0.0282 | 0.5241 |
Platelet | 240.68 ± 49.72 | 239.96 ± 49.14 | 0.8283 | 239.58 ± 44.26 | 244.80 ± 54.46 | 0.1567 | 0.2289 |
ALP | 73.18 ± 15.90 | 75.94 ± 16.44 | 0.0124 | 76.82 ± 21.90 | 75.42 ± 21.30 | 0.2806 | 0.0142 |
Gamma-GTP | 19.14 ± 9.10 | 18.06 ± 7.91 | 0.0197 | 21.28 ± 11.00 | 21.14 ± 11.55 | 0.8865 | 0.3845 |
AST | 22.58 ± 6.65 | 22.36 ± 5.19 | 0.7636 | 22.94 ± 6.01 | 22.90 ± 6.40 | 0.9579 | 0.8640 |
ALT | 18.88 ± 9.03 | 18.34 ± 7.21 | 0.5598 | 19.68 ± 8.69 | 19.86 ± 9.72 | 0.8684 | 0.6130 |
Total bilirubin | 0.61 ± 0.23 | 0.65 ± 0.28 | 0.2051 | 0.64 ± 0.23 | 0.59 ± 0.17 | 0.0271 | 0.0247 |
Total protein | 7.20 ± 0.32 | 7.24 ± 0.34 | 0.2738 | 7.21 ± 0.36 | 7.16 ± 0.33 | 0.1966 | 0.0898 |
Albumin | 4.56 ± 0.22 | 4.58 ± 0.21 | 0.5741 | 4.58 ± 0.21 | 4.58 ± 0.20 | 0.7275 | 0.5150 |
BUN | 15.76 ± 4.25 | 14.66 ± 4.32 | 0.0216 | 15.00 ± 4.43 | 14.96 ± 4.23 | 0.9423 | 0.1436 |
Creatinine | 0.68 ± 0.15 | 0.68 ± 0.14 | 0.8872 | 0.67 ± 0.11 | 0.67 ± 0.12 | 0.6591 | 0.6742 |
Glucose | 87.10 ± 7.72 | 86.56 ± 6.98 | 0.6348 | 89.86 ± 11.23 | 90.88 ± 9.43 | 0.3639 | 0.3277 |
CK | 107.38 ± 51.68 | 100.56 ± 42.89 | 0.3693 | 94.12 ± 39.38 | 100.38 ± 56.39 | 0.4130 | 0.2237 |
LD | 205.28 ± 28.37 | 204.12 ± 25.98 | 0.6999 | 196.04 ± 23.84 | 202.54 ± 24.49 | 0.0125 | 0.0525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-H.; Jung, E.-S.; Jung, S.-J.; Han, Y.-H.; Chae, S.-W.; Jeong, D.Y.; Kim, B.-C.; Lee, S.-O.; Yoon, S.-J. Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024, 16, 4037. https://doi.org/10.3390/nu16234037
Kang C-H, Jung E-S, Jung S-J, Han Y-H, Chae S-W, Jeong DY, Kim B-C, Lee S-O, Yoon S-J. Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2024; 16(23):4037. https://doi.org/10.3390/nu16234037
Chicago/Turabian StyleKang, Chang-Ho, Eun-Soo Jung, Su-Jin Jung, Yeon-Hee Han, Soo-Wan Chae, Do Yeun Jeong, Byoung-Chan Kim, Seung-Ok Lee, and Sun-Jung Yoon. 2024. "Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial" Nutrients 16, no. 23: 4037. https://doi.org/10.3390/nu16234037
APA StyleKang, C. -H., Jung, E. -S., Jung, S. -J., Han, Y. -H., Chae, S. -W., Jeong, D. Y., Kim, B. -C., Lee, S. -O., & Yoon, S. -J. (2024). Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients, 16(23), 4037. https://doi.org/10.3390/nu16234037