Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Concentrated Mulberry Drink
2.2. Study Subjects and Design
2.3. Statistical Analysis
3. Results
3.1. Concentrated Mulberry Drink
3.2. Baseline Characteristics of Subjects
3.3. Nutrition and Energy Intake During Intervention
3.4. Effects of CMD Consumption on Body Composition
3.5. Effects of CMD Consumption on Changes in Blood Pressure, Heart Rate, and Mean Arterial Pressure in Subjects
3.6. Effects of CMD Consumption on Blood Lipid Profiles
3.7. Effects of CMD Consumption on Glucose Homeostasis
3.8. Effects of CMD Consumption on Inflammation Marker and Blood Coagulation Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melián-Fleitas, L.; Franco-Pérez, Á.; Sanz-Valero, J.; Wanden-Berghe, C. Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study. Nutrients 2023, 15, 3773. [Google Scholar] [CrossRef]
- Górczyńska-Kosiorz, S.; Kosiorz, M.; Dzięgielewska-Gęsiak, S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024, 16, 3562. [Google Scholar] [CrossRef] [PubMed]
- Alkhalidy, H.; Orabi, A.; Alnaser, K. Obesity Measures as Predictors of Type 2 Diabetes and Cardiovascular Diseases among the Jordanian Population: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 12187. [Google Scholar] [CrossRef]
- Sala, L.L.; Pontiroli, A.E. Prevention of Diabetes and Cardiovascular Disease in Obesity. Int. J. Mol. Sci. 2020, 21, 8178. [Google Scholar] [CrossRef] [PubMed]
- Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome: A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005, 111, 1448–1454. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- Strukova, S. Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front. Biosci. 2006, 11, 59–80. [Google Scholar] [CrossRef]
- Tracy, R.P. Thrombin, inflammation, and cardiovascular disease: An epidemiologic perspective. Chest 2003, 124, 49S–57S. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fuentes, C.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr. Neurosci. 2015, 18, 49–65. [Google Scholar] [CrossRef] [PubMed]
- AlAli, M.; Alqubaisy, M.; Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021, 26, 2540. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Segura-Carretero, A.; Del Mar Contreras, M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1212–1229. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit Polyphenols: A Review of Anti-inflammatory Effects in Humans. Crit. Rev. Food Sci. Nutr. 2016, 56, 419–444. [Google Scholar] [CrossRef]
- Ueno, T.; Torimura, T.; Nakamura, T.; Sivakumar, R.; Nakayama, H.; Otabe, S.; Yuan, X.; Yamada, K.; Hashimoto, O.; Inoue, K.; et al. Epigallocatechin-3-gallate improves nonalcoholic steatohepatitis model mice expressing nuclear sterol regulatory element binding protein-1c in adipose tissue. Int. J. Mol. Med. 2009, 24, 17–22. [Google Scholar] [CrossRef]
- Park, H.J.; Jung, U.J.; Lee, M.; Cho, S.; Jung, H.; Hong, J.H.; Park, Y.B.; Kim, S.R.; Shim, S.; Jung, J.; et al. Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Mol. Nutr. Food Res. 2013, 57, 360–364. [Google Scholar] [CrossRef]
- Alberdi, G.; Rodríguez, V.M.; Macarulla, M.T.; Miranda, J.; Churruca, I.; Portillo, M.P. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 2013, 29, 562–567. [Google Scholar] [CrossRef]
- Beltran-Debon, R.; Rull, A.; Rodríguez-Sanabria, F.; Iswaldi, I.; Herranz-López, M.; Aragonès, G.; Camps, J.; Alonso-Villaverde, C.; Menéndez, J.; Micol, V.; et al. Continuous administration of polyphenols from aqueous rooibos (Aspalathus linearis) extract ameliorates dietary-induced metabolic disturbances in hyperlipidemic mice. Phytomedicine 2011, 18, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Torronen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, N.; Ding, H. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int. 2008, 41, 363–370. [Google Scholar] [CrossRef]
- Kang, T.H.; Hur, J.Y.; Kim, H.B.; Ryu, J.H.; Kim, S.Y. Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 2016, 391, 122–126. [Google Scholar] [CrossRef]
- Kim, A.-J.; Park, S. Mulberry extract supplements ameliorate the inflammation-related hematological parameters in carrageenan-induced arthritic rats. J. Med. Food 2016, 9, 431–435. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Zhang, X.; Jin, Q.; Li, J. Phenolic profiles, antioxidant activities, and neuroprotective properties of mulberry (Morus atropurpurea Roxb.) fruit extracts from different ripening stages. J. Food Sci. 2016, 81, C2439–C2446. [Google Scholar] [CrossRef]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181. [Google Scholar] [CrossRef]
- Kammapana, L.; Mulalin, S.; Tangteerawattana, S. Effects of Exogenous Methyl Jasmonate Treatment with Polyethylene Bag Storage on Decay Reduction and Enhanced Total Ascorbic Acid, Total Phenolic, and Antioxidant Activities in ‘Kamphaeng Saen 42’ Mulberry Fruit. Trends Sci. 2022, 19, 3069. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Kaewkod, T.; Promputtha, I.; Desvaux, M.; Tragoolpua, Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants 2021, 10, 2736. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic composition and antioxidant activity of white mulberry (Morus alba L.) fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Bhosle, D.; Sayyed, A.; Bhagat, A. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) in the Diagnosis of Insulin Resistance and Prediabetes. J. Med. Sci. Clin. Res. 2016, 4, 12705–12710. [Google Scholar] [CrossRef]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef]
- Kojadinovic, M.I.; Arsic, A.C.; Debeljak-Martacic, J.D.; I Konic-Ristic, A.; Kardum, N.D.; Popovic, T.B.; Glibetic, M.D. Consumption of pomegranate juice decreases blood lipid peroxidation and levels of arachidonic acid in women with metabolic syndrome. J. Sci. Food Agric. 2017, 97, 1798–1804. [Google Scholar] [CrossRef]
- Amani, R.; Moazen, S.; Shahbazian, H.; Ahmadi, K.; Jalali, M.T. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J. Diabetes 2014, 5, 962–968. [Google Scholar] [CrossRef]
- Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123. [Google Scholar] [CrossRef]
- Hao, J.; Gao, Y.; Xue, J. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022, 11, 1170. [Google Scholar] [CrossRef]
- Ramis, E.S.; Hammoud, G.M.; ElSawy, K.M. In vitro and In vivo Studies on Mulberry Extracts: Evaluation of Chemical and Anticancer Activities and Attenuation of Lead Toxicity. Asian J. Res. Biochem. 2018, 2, 1–14. [Google Scholar] [CrossRef]
- Fatima, M.; Dar, M.A.; Dhanavade, M.J.; Abbas, S.Z.; Bukhari, M.N.; Arsalan, A.; Liao, Y.; Wan, J.; Bukhari, J.S.S.; Ouyang, Z. Biosynthesis and Pharmacological Activities of the Bioactive Compounds of White Mulberry (Morus alba): Current Paradigms and Future Challenges. Biology 2024, 13, 506. [Google Scholar] [CrossRef]
- Tolun, A.; Altintas, Z. Medicinal Properties and Functional Components of Beverages. Funct. Med. Beverages 2019, 11, 235–284. [Google Scholar] [CrossRef]
- Yu, J.S.; Lim, S.H.; Lee, S.R. Antioxidant and Anti-Inflammatory Effects of White Mulberry (Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Molecules 2021, 26, 920. [Google Scholar] [CrossRef]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant Activity of Mulberry Fruit Extracts. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef]
- Qin, C.; Yang, L.; Niu, W.; Ding, Y.; Zhang, R.; Shang, X. Analysis and characterisation of anthocyanins in mulberry fruit. Czech J. Food Sci. 2010, 28, 117–126. [Google Scholar] [CrossRef]
- Dobreva, V.; Hadjikinova, M.; Slavov, A. Functional properties of maltitol. Agric. Sci. Technol. 2013, 5, 168. [Google Scholar]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Maltitol: Analytical Determination Methods, Applications in the Food Industry, Metabolism and Health Impacts. Int. J. Environ. Res. Public Health 2020, 17, 5227. [Google Scholar] [CrossRef]
- Qiao, J.; Li, H.; Jinxiang, C.; Shi, Y.; Li, N.; Zhu, P.; Zhang, S.; Miao, M. Mulberry fruit repairs alcoholic liver injury by modulating lipid metabolism and the expression of miR-155 and PPARα in rats. Funct. Integr. Genom. 2023, 23, 261. [Google Scholar] [CrossRef]
- Jung, S.; Lee, M.-S.; Chang, E.; Kim, C.-T.; Kim, Y. Mulberry (Morus alba L.) Fruit Extract Ameliorates Inflammation via Regulating MicroRNA-21/132/143 Expression and Increases the Skeletal Muscle Mitochondrial Content and AMPK/SIRT Activities. Antioxidants 2021, 10, 1453. [Google Scholar] [CrossRef]
- Lown, M.; Fuller, R.; Lightowler, H.; Fraser, A.; Gallagher, A.; Stuart, B.; Byrne, C.; Lewith, G. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study. PLoS ONE 2017, 12, e0172239. [Google Scholar] [CrossRef]
- Sirikanchanarod, A.; Bumrungpert, A.; Kaewruang, W.; Senawong, T.; Pavadhgul, P. The Effect of Mulberry Fruits Consumption on Lipid Profiles in Hypercholesterolemic Subjects: A Randomized Controlled Trial. J. Pharm. Nutr. Sci. 2016, 6, 7–14. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Cheng, J.-W.; Zhang, X.-H.; Kan, J.-S.; Fang, Y.; Zhang, Y.-L. The compositional analysis and antihypertensive activity of polysaccharides from white mulberry fruit. Curr. Top. Nutraceut. Res. 2019, 17, 105–110. [Google Scholar]
- Hao, J.; Lu, M.; Li, J.; Guan, X.; Yang, W.; Sun, R.; Zhang, M.; Zhao, Y.; Jiang, T.; Li, C. Advances in the Study of Vascular Protective Effects and Molecular Mechanisms of Mulberry. Food Rev. Int. 2024, 1–21. [Google Scholar]
- Mohammadi, N.; Farrell, M.; O’Sullivan, L.; Langan, A.; Franchin, M.; Azevedo, L.; Granato, D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: A systematic review of animal and human interventions. Food Funct. 2024, 15, 3274–3299. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; A Welch, A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.-M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.C.V.S.; Maciel, M.G.; Nascimento, J.L.M.D.; Mafra, D.; Santos, A.F.; Padilha, C.S. Anthocyanins-rich interventions on oxidative stress, inflammation and lipid profile in patients undergoing hemodialysis: Meta-analysis and meta-regression. Eur. J. Clin. Nutr. 2023, 77, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Hsu, M.J.; Huang, H.P.; Chung, D.-J.; Chang, Y.-C.; Wang, C.-J. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agric. Food Chem. 2013, 61, 6069–6076. [Google Scholar] [CrossRef] [PubMed]
- Chaiwong, S.; Chatturong, U.; Chanasong, R.; Deetud, W.; To-On, K.; Puntheeranurak, S.; Chulikorn, E.; Kajsongkram, T.; Raksanoh, V.; Chinda, K.; et al. Dried mulberry fruit ameliorates cardiovascular and liver histopathological changes in high-fat diet-induced hyperlipidemic mice. J. Tradit. Complement. Med. 2021, 11, 356–368. [Google Scholar] [CrossRef]
- Peng, C.H.; Liu, L.K.; Chuang, C.M.; Chyau, C.-C.; Huang, C.-N.; Wang, C.-J. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J. Agric. Food Chem. 2021, 59, 2663–2671. [Google Scholar] [CrossRef]
- Yan, F.; Dai, G.; Zheng, X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem. 2016, 36, 68–80. [Google Scholar] [CrossRef]
- Wattanathorn, J.; Kawvised, S.; Thukham-Mee, W. Encapsulated mulberry fruit extract alleviates changes in an animal model of menopause with metabolic syndrome. Oxid. Med. Cell. Longev. 2019, 2019, 5360560. [Google Scholar] [CrossRef]
- Wiebe, N.; Muntner, P.; Tonelli, M. Associations of body mass index, fasting insulin, and inflammation with mortality: A prospective cohort study. Int. J. Obes. 2022, 46, 2107–2113. [Google Scholar] [CrossRef]
- Zheng, Y.-C.; He, H.; Wei, X.; Ge, S.; Lu, Y.-H. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress. J. Agric. Food Chem. 2016, 64, 8763–8772. [Google Scholar] [CrossRef]
- Kotchen, T.A. Obesity-related hypertension: Epidemiology, pathophysiology, and clinical management. Am. J. Hypertens. 2010, 23, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Tripathy, D.; Dandona, P. Insulin resistance as a proinflammatory state: Mechanisms, mediators, and therapeutic interventions. Curr. Drug Targets 2003, 4, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proc. Nutr. Soc. 2016, 75, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Adcock, D.M.; Gosselin, R.C. The danger of relying on the APTT and PT in patients on DOAC therapy, a potential patient safety issue. Int. J. Lab. Hematol. 2017, 39, 37–40. [Google Scholar] [CrossRef]
- Kyrou, I.; Randeva, H.S.; Tsigos, C.; Kaltsas, G.; Weickert, M.O. Clinical problems caused by obesity. In Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2018. [Google Scholar]
- Mandviwala, T.; Khalid, U.; Deswal, A. Obesity and Cardiovascular Disease: A Risk Factor or a Risk Marker? Curr. Atheroscler. Rep. 2016, 18, 21. [Google Scholar] [CrossRef]
- Lippi, G.; Franchini, M.; Targher, G.; Montagnana, M.; Salvagno, G.L.; Guidi, G.C.; Favaloro, E.J. Epidemiological association between fasting plasma glucose and shortened APTT. Clin. Biochem. 2009, 42, 118–120. [Google Scholar] [CrossRef]
- Vazzana, N.; Santilli, F.; Sestili, S.; Cuccurullo, C.; Davi, G. Determinants of increased cardiovascular disease in obesity and metabolic syndrome. Curr. Med. Chem. 2011, 18, 5267–5280. [Google Scholar] [CrossRef]
- Montilla, M.; Santi, M.J.; Carrozas, M.A.; Ruiz, F.A. Biomarkers of the prothrombotic state in abdominal obesity. Nutr. Hosp. 2014, 31, 1059–1066. [Google Scholar] [CrossRef]
Items | Amount per 100 g |
---|---|
Nutritional values | |
Ash (g) | 0.45 |
Fiber (g) | <0.10 |
Calories (Kcal) | 78.08 |
Calories from fat (Kcal) | 1.08 |
Carbohydrate (g) | 18.78 |
Fat (g) | 0.12 |
Moisture (g) | 80.18 |
Protein (%N × 6.25) (g) | 0.47 |
Starch (g) | 0.0035 |
Vitamin C (mg) | <0.015 |
Sugar profiles | |
Fructose (g) | 2.51 |
Glucose (g) | 3.07 |
Sucrose (g) | Not Detected |
Maltose (g) | 13.16 |
Lactose (g) | Not Detected |
Total sugar (g) | 18.74 |
Bioactive compounds | |
Total phenolic compounds (mg) | 1041.90 |
Total anthocyanins (mg) | 35.34 |
Physical Characteristics | Mean ± SD (n = 12) | Range |
---|---|---|
Age (years) | 46.57 ± 8.49 | 30–55 |
Body weight (kg) | 92.1 ± 15.55 | 74.2–123.2 |
Body mass index, BMI (kg/m2) | 32.1 ± 5.98 | 25.1–38.0 |
Muscle mass (kg) | 33.7 ± 6.45 | 25.5–43.0 |
Fat mass (kg) | 32.2 ± 12.26 | 13.3–50.5 |
Fat (%) | 34.4.2 ± 10.07 | 17.2–50.1 |
Visceral fat area (level) | 13.89 ± 5.06 | 5–20 |
Waist circumference, WC (cm) | ||
Male | 110.83 ± 16.80 | 90–141 |
Female | 110.00 ± 30.33 | 91–127 |
Hip circumference, HC (cm) | ||
Male | 112.25 ± 15.99 | 97–143 |
Female | 119.50 ± 31.17 | 106–129 |
Waist-to-hip ratio, WHR | ||
Male | 0.99 ± 0.03 | 0.93–1.02 |
Female | 0.98 ± 0.05 | 0.86–0.98 |
Heart rate (beats per min, bpm) | 80 ± 11.12 | 55–92 |
Systolic blood pressure, SBP (mmHg) | 137.4 ± 12.28 | 115–151 |
Diastolic blood pressure, DBP (mmHg) | 92.56 ± 10.45 | 73–106 |
Blood Chemistry Tests | Mean ± SD (n = 12) | Range | Reference Range |
---|---|---|---|
Triglyceride (mg/dL) | 215.00 ± 90.52 | 66–340 | <150 |
Cholesterol (mg/dL) | 220.67 ± 44.87 | 176–310 | <200 |
LDL-C (mg/dL) | 145.33 ± 36.35 | 99–202 | <130 |
HDL-C (mg/dL) | 42.89 ± 8.84 | 33–58 | >40 |
Fasting plasma glucose, FPG (mg/dL) | 108.89 ± 16.62 | 92–142 | 70–110 |
Fasting plasma insulin, FPI (IU/mL) | 11.38 ± 6.29 | 2.6–22.8 | 3–25 |
HOMA-IR | 2.97 ± 1.39 | 0.7–5.2 | 0.5–1.4 |
Blood urea nitrogen, BUN (mg/dL) | 13.38 ± 4.17 | 6–19 | Male 8–26 |
Female 7–20 | |||
Creatinine (mg/dL) | 0.93 ± 0.30 | 0.62–1.50 | Male 0.73–1.18 |
Female 0.55–1.02 |
Nutrients and Energy | Daily Nutrient Intake (Mean ± SD, n = 12) | ||
---|---|---|---|
Baseline | CMD nd1 | Placebo nd1, nd2 | |
Energy (Kcal) | 1647.73 ± 335.27 | 1721.19 ± 302.26 | 1669.83 ± 358.18 |
Carbohydrate (g) | 236.28 ± 76.20 | 236.71 ± 68.87 | 232.35 ± 73.04 |
Fat (g) | 49.38 ±7.61 | 55.95 ± 11.34 | 54.23 ± 13.07 |
Protein (g) | 64.55 ± 12.29 | 67.70 ± 14.14 | 63.08 ± 12.18 |
Vitamin A (µg RAE) | 214.93 ± 150.01 | 439.88 ± 482.26 | 307.70 ± 377.70 |
Vitamin B1 (mg) | 1.27 ± 0.97 | 1.64 ± 0.52 | 1.56 ± 0.71 |
Vitamin B2 (mg) | 0.87 ± 0.32 | 1.37 ± 1.30 | 1.27 ± 1.11 |
Vitamin C (mg) | 26.71 ± 14.51 | 37.04 ± 26.53 | 24.82 ± 18.40 |
Niacin (mg) | 14.05 ± 4.90 | 16.99 ± 7.53 | 16.35 ± 5.30 |
Calcium (mg) | 384.15 ± 182.25 | 363.25 ± 280.40 | 426.50 ± 36.034 |
Iron (mg) | 8.84 ± 3.52 | 9.1 ± 4.22 | 8.58 ± 3.03 |
Macronutrients | Percentage Distribution of Energy-Providing Nutrients (Mean ± SD, n = 12) | ||
---|---|---|---|
Baseline | CMD nd1 | Placebo nd1, nd2 | |
Carbohydrate | 56.91 ± 7.94 | 54.60 ± 7.35 | 55.13 ± 8.61 |
Fat | 27.14 ± 5.25 | 29.30 ± 6.33 | 29.51 ± 7.99 |
Protein | 15.94 ± 3.57 | 16.11 ± 3.49 | 15.37 ± 2.08 |
Variables | Body Composition (Mean ± SD, n = 12) | ||
---|---|---|---|
Baseline | CMD nd1 | Placebo nd1, nd2 | |
Body weight (kg) | 94.86 ± 16.54 | 95.54 ± 16.88 | 95.94 ± 15.87 |
Body mass index, BMI (kg/m2) | 33.51 ± 6.06 | 33.74 ± 6.12 | 33.87 ± 5.79 |
Muscle mass (kg) | 33.07 ± 7.31 | 32.84 ± 7.60 | 33.37 ± 7.59 |
Fat mass (kg) | 37.64 ± 8.25 | 37.94 ± 9.06 | 38.59 ± 9.18 |
Fat (%) | 35.93 ± 10.78 | 36.57 ± 11.05 | 37.10 ± 11.94 |
Visceral fat area (level) | 15.57 ± 4.04 | 15.57 ± 4.31 | 15.71 ± 4.39 |
Waist circumference, WC (cm) | |||
Male | 110.83 ± 16.80 | 108.50 ± 15.63 | 110.50 ± 17.37 |
Female | 110.00 ± 18.08 | 111.00 ± 15.00 | 117.00 ± 10.53 |
Hip circumference, HC (cm) | |||
Male | 112.33 ± 16.18 | 112.00 ± 15.17 | 113.33 ± 15.27 |
Female | 119.67 ± 12.09 | 119.00 ± 10.44 | 120.33 ± 10.78 |
Waist to hip ratio, WHR | |||
Male | 0.99 ± 0.03 | 0.96 ± 0.04 | 0.97 ± 0.04 |
Female | 0.91 ± 0.06 | 0.93 ± 0.05 | 0.97 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parklak, W.; Chottidao, M.; Munkong, N.; Komindr, S.; Monkhai, S.; Wanikorn, B.; Makaje, N.; Kulprachakarn, K.; Chuljerm, H.; Somnuk, S. Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial. Nutrients 2024, 16, 4336. https://doi.org/10.3390/nu16244336
Parklak W, Chottidao M, Munkong N, Komindr S, Monkhai S, Wanikorn B, Makaje N, Kulprachakarn K, Chuljerm H, Somnuk S. Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial. Nutrients. 2024; 16(24):4336. https://doi.org/10.3390/nu16244336
Chicago/Turabian StyleParklak, Wason, Monchai Chottidao, Narongsuk Munkong, Surat Komindr, Sudjai Monkhai, Bandhita Wanikorn, Niromlee Makaje, Kanokwan Kulprachakarn, Hataichanok Chuljerm, and Surasawadee Somnuk. 2024. "Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial" Nutrients 16, no. 24: 4336. https://doi.org/10.3390/nu16244336
APA StyleParklak, W., Chottidao, M., Munkong, N., Komindr, S., Monkhai, S., Wanikorn, B., Makaje, N., Kulprachakarn, K., Chuljerm, H., & Somnuk, S. (2024). Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial. Nutrients, 16(24), 4336. https://doi.org/10.3390/nu16244336