The Association between Obesity and Reduced Weight-Adjusted Bone Mineral Content in Older Adults: A New Paradigm That Contrasts with the Obesity Paradox
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design of the Study
2.2. Body Weight and Height
2.3. Body Composition
- (a)
- Body fat (BF) = total body fat expressed in kg;
- (b)
- BF% (BF as a percentage of the total mass) = (BF ÷ body weight) ∗ 100;
- (c)
- Trunk fat = total trunk fat expressed in kg;
- (d)
- Trunk fat% = (trunk fat ÷ BF) ∗ 100;
- (e)
- Lean mass (LM) = total lean mass, bone excluded, expressed in kg;
- (f)
- LM% (LM as a percentage of the total mass) = (LM ÷ body weight) ∗ 100;
- (g)
- Appendicular lean mass (ALM) = total lean in arms and legs with bone excluded, expressed in kg);
- (h)
- Total bone mineral content (BMC) = total amount of minerals in bone expressed in kg;
- (i)
- w-BMC% (BMC adjusted by body weight expressed as a percentage) = (BMC ÷ body weight) ∗ 100. As BMC varies with weight, BMC% serves as a standardized index accounting for between-subject weight variability [24];
- (j)
- Trunk fat/appendicular lean mass ratio: trunk fat ÷ appendicular lean mass, to create a combined variable that expresses the central fat distribution and muscle mass in the extremities.
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Findings and Concordance with Previous Studies
4.2. Study Strengths and Limitations
4.3. Potential Clinical Implications and New Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Ghoch, M.; Fakhoury, R. Challenges and new directions in obesity management: Lifestyle modification programs, pharmacotherapy and Bariatric surgery. J Popul. Ther. Clin. Pharmacol. 2019, 26, e1–e4. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Lifshitz, F.; Lifshitz, J.Z. Globesity: The root causes of the obesity epidemic in the USA and now worldwide. Pediatr. Endocrinol. Rev. 2014, 12, 17–34. [Google Scholar]
- Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef]
- Dalle Grave, R.; Calugi, S.; El Ghoch, M.; Marzocchi, R.; Marchesini, G. Personality Traits in Obesity Associated with Binge Eating and/or Night Eating. Curr. Obes. Rep. 2014, 3, 120–126. [Google Scholar] [CrossRef]
- Itani, L.; Calugi, S.; Kreidieh, D.; El Kassas, G.; El Masri, D.; Tannir, H.; Dalle Grave, R.; Harfoush, A.; El Ghoch, M. Validation of an Arabic Version of the Obesity-Related Wellbeing (ORWELL 97) Questionnaire in Adults with Obesity. Curr. Diabetes Rev. 2019, 15, 127–132. [Google Scholar] [CrossRef]
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017, 5, 161. [Google Scholar] [CrossRef]
- El Ghoch, M.; Calugi, S.; Dalle Grave, R. Weight cycling in adults with severe obesity: A longitudinal study. Nutr. Diet. 2018, 75, 256–262. [Google Scholar] [CrossRef]
- Muscogiuri, G.; El Ghoch, M.; Colao, A.; Hassapidou, M.; Yumuk, V.; Busetto, L. Obesity Management Task Force (OMTF) of the European Association for the Study of Obesity (EASO). European Guidelines for Obesity Management in Adults with a Very Low-Calorie Ketogenic Diet: A Systematic Review and Meta-Analysis. Obes. Facts 2021, 14, 222–245. [Google Scholar] [CrossRef] [PubMed]
- Durrer Schutz, D.; Busetto, L.; Dicker, D.; Farpour-Lambert, N.; Pryke, R.; Toplak, H.; Widmer, D.; Yumuk, V.; Schutz, Y. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obes. Facts 2019, 12, 40–66. [Google Scholar] [CrossRef]
- Guglielmi, V.; Bettini, S.; Sbraccia, P.; Busetto, L.; Pellegrini, M.; Yumuk, V.; Colao, A.M.; El Ghoch, M.; Muscogiuri, G. Beyond Weight Loss: Added Benefits Could Guide the Choice of Anti-Obesity Medications. Curr. Obes. Rep. 2023, 12, 127–146. [Google Scholar] [CrossRef]
- Coughlan, T.; Dockery, F. Osteoporosis and fracture risk in older people. Clin. Med. 2014, 14, 187–191. [Google Scholar] [CrossRef]
- Gregson, C.L.; Armstrong, D.J.; Bowden, J.; Cooper, C.; Edwards, J.; Gittoes, N.J.L.; Harvey, N.; Kanis, J.; Leyland, S.; Low, R.; et al. Correction: UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 2022, 17, 80. [Google Scholar] [CrossRef]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.R.; Deng, H.W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef]
- Mendonça, F.M.; Soares, R.; Carvalho, D.; Freitas, P. The impact of obesity on bone health: An overview. Endokrynol. Polska 2022, 73, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, A.F.; O’Connor, S.; Morin, S.N.; Gibbs, J.C.; Willie, B.M.; Jean, S.; Gagnon, C. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0252487. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J. Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 2011, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Fassio, A.; Idolazzi, L.; Rossini, M.; Gatti, D.; Adami, G.; Giollo, A.; Viapiana, O. The obesity paradox and osteoporosis. Eat. Weight. Disord. 2018, 23, 293–302. [Google Scholar] [CrossRef]
- Hainer, V.; Aldhoon-Hainerová, I. Obesity paradox does exist. Diabetes Care 2013, 36 (Suppl. S2), S276–S281. [Google Scholar] [CrossRef]
- Oreopoulos, A.; Kalantar-Zadeh, K.; Sharma, A.M.; Fonarow, G.C. The obesity paradox in the elderly: Potential mechanisms and clinical implications. Clin. Geriatr. Med. 2009, 25, 643–659. [Google Scholar] [CrossRef]
- Luo, J.; Lee, R.Y. How Does Obesity Influence the Risk of Vertebral Fracture? Findings from the UK Biobank Participants. JBMR Plus 2020, 4, e10358. [Google Scholar] [CrossRef] [PubMed]
- Gonnelli, S.; Caffarelli, C.; Nuti, R. Obesity and fracture risk. Clin. Cases Min. Bone Metab. 2014, 11, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Piñar-Gutierrez, A.; García-Fontana, C.; García-Fontana, B.; Muñoz-Torres, M. Obesity and Bone Health: A Complex Relationship. Int. J. Mol. Sci. 2022, 23, 8303. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Li, X.D.; Wang, W.Z.; Zhang, J.G.; Yang, D.Z. Efficacy of weight adjusted bone mineral content in osteoporosis diagnosis in Chinese female population. Chin. Med. J. 2019, 132, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.J.; Petit, M.A.; Wu, G.; LeBoff, M.S.; Cauley, J.A.; Chen, Z. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J. Bone Min. Res. 2009, 24, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Rico, H.; Revilla, M.; Villa, L.F.; del Buergo, M.A.; Ruiz-Contreras, D. Determinants of total-body and regional bone mineral content and density in postpubertal normal women. Metabolism 1994, 43, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Mussi, C.; Malavolti, M.; Borghi, A.; Poli, M.; Battistini, N.; Salvioli, G. Relationship between body composition and bone mineral content in young and elderly women. Ann. Hum. Biol. 2002, 29, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, D.Z.; Ma, J.F.; Wang, W.Z.; Zhang, J.Y. Effect of bone mechanical load on peak bone mass and exploration on the way of standardization for bone mass. Mod. Prev. Med. 2010, 37, 1306–1309. (In Chinese) [Google Scholar]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points. In StatPearls; Statpearls Publishing: Tampa, FL, USA, 2020. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; Version 26.0; IBM Corp: Armonk, NY, USA, 2019. [Google Scholar]
- Rexhepi, S.; Bahtiri, E.; Rexhepi, M.; Sahatciu-Meka, V.; Rexhepi, B. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo. Mater. Sociomed. 2015, 27, 259–262. [Google Scholar] [CrossRef]
- Zhou, L.; Peng, F.L. Extension of weight-standardized bone mineral content in osteoporosis diagnosis. Chin. Med. J. 2019, 132, 2501–2502. [Google Scholar] [CrossRef]
- Jain, R.K.; Vokes, T. Fat Mass Has Negative Effects on Bone, Especially in Men: A Cross-sectional Analysis of NHANES 2011–2018. J.Clin. Endocrinol. Metab. 2022, 107, e2545–e2552. [Google Scholar] [CrossRef] [PubMed]
- Niwczyk, O.; Grymowicz, M.; Szczęsnowicz, A.; Hajbos, M.; Kostrzak, A.; Budzik, M.; Maciejewska-Jeske, M.; Bala, G.; Smolarczyk, R.; Męczekalski, B. Bones and Hormones: Interaction between Hormones of the Hypothalamus, Pituitary, Adipose Tissue and Bone. Int. J. Mol. Sci. 2023, 24, 6840. [Google Scholar] [CrossRef] [PubMed]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, H.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Buechler, C.; Wanninger, J.; Neumeier, M. Adiponectin, a key adipokine in obesity related liver diseases. World J. Gastroenterol. 2011, 17, 2801–2811. [Google Scholar] [PubMed]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.V.; Soelaiman, I.N.; Chin, K.Y. A concise review of testosterone and bone health. Clin. Interv. Aging. 2016, 11, 1317–1324. [Google Scholar] [CrossRef]
- Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Testosterone and Bone Health in Men: A Narrative Review. J. Clin. Med. 2021, 10, 530. [Google Scholar] [CrossRef]
- Barone, B.; Napolitano, L.; Abate, M.; Cirillo, L.; Reccia, P.; Passaro, F.; Turco, C.; Morra, S.; Mastrangelo, F.; Scarpato, A.; et al. The Role of Testosterone in the Elderly: What Do We Know? Int. J. Mol. Sci. 2022, 23, 3535. [Google Scholar] [CrossRef]
- Fui, M.N.; Dupuis, P.; Grossmann, M. Lowered testosterone in male obesity: Mechanisms, morbidity and management. Asian J. Androl. 2014, 16, 223–231. [Google Scholar]
- Corina, M.; Vulpoi, C.; Branisteanu, D. Relationship between bone mineral density, weight, and estrogen levels in pre and postmenopausal women. Rev. Med. Chir. Soc. Med. Nat. Lasi. 2012, 116, 946–950. [Google Scholar]
- Li, L.; Zhong, H.; Shao, Y.; Zhou, X.; Hua, Y.; Chen, M. Association between lean body mass to visceral fat mass ratio and bone mineral density in United States population: A cross-sectional study. Arch. Public Health 2023, 81, 180. [Google Scholar] [CrossRef]
- da Cruz, G.F.; Lunz, T.M.; de Jesus, T.R.; Costa, M.B.; Vidigal, C.V.; Albergaria, B.H.; Marques-Rocha, J.L.; Guandalini, V.R. Influence of the appendicular skeletal muscle mass index on the bone mineral density of postmenopausal women. BMC Musculoskelet. Disord. 2021, 22, 861. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef] [PubMed]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Park, C.H.; Do, J.G.; Lee, Y.T.; Yoon, K.J. Sarcopenic obesity associated with high-sensitivity C-reactive protein in age and sex comparison: A two-center study in South Korea. BMJ Open 2018, 8, e021232. [Google Scholar] [CrossRef] [PubMed]
- Epsley, S.; Tadros, S.; Farid, A.; Kargilis, D.; Mehta, S.; Rajapakse, C.S. The Effect of Inflammation on Bone. Front. Physiol. 2021, 11, 511799. [Google Scholar] [CrossRef]
- Lorente Ramos, R.M.; Azpeitia Armán, J.; Arévalo Galeano, N.; Muñoz Hernández, A.; García Gómez, J.M.; Gredilla Molinero, J. Dual energy X-ray absorptimetry: Fundamentals, methodology, and clinical applications. Radiologia 2012, 54, 410–423. [Google Scholar] [CrossRef]
- Micklesfield, L.K.; Goedecke, J.H.; Punyanitya, M.; Wilson, K.E.; Kelly, T.L. Dual-energy X-ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity 2012, 20, 1109–1114. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Andreoli, A.; Candeloro, N. Within-subject variability in body composition using dual-energy X-ray absorptiometry. Clin. Physiol. 1995, 17, 383–388. [Google Scholar] [CrossRef]
- Curtis, E.M.; Harvey, N.C.; D’Angelo, S.; Cooper, C.S.; Ward, K.A.; Taylor, P.; Pearson, G.; Cooper, C. Bone mineral content and areal density, but not bone area, predict an incident fracture risk: A comparative study in a UK prospective cohort. Arch. Osteoporos. 2016, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Curtis, E.; Harvey, N.; D’Angelo, S.; Cooper, C.; Taylor, P.; Pearson, G.; Cooper, C. Assessment of bone mineral content and fracture risk: A UK prospective cohort study. Lancet 2016, 387, S32. [Google Scholar] [CrossRef]
- Patino, C.M.; Ferreira, J.C. Internal and external validity: Can you apply research study results to your patients? J. Bras. Pneumol. 2018, 44, 183. [Google Scholar] [CrossRef] [PubMed]
- Akobeng, A.K. Assessing the validity of clinical trials. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Z. Cross-Sectional Studies: Strengths, Weaknesses, and Recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef]
- Lindstrom Johnson, S. Research and statistics: A question of time: Cross-sectional versus longitudinal study designs. Pediatr. Rev. 2010, 31, 250–251. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Barrile, G.C.; Cavioni, A.; Mansueto, F.; Mazzola, G.; Oberto, L.; Patelli, Z.; Pirola, M.; Tartara, A.; et al. Nutrition, Physical Activity, and Dietary Supplementation to Prevent Bone Mineral Density Loss: A Food Pyramid. Nutrients 2021, 14, 74. [Google Scholar] [CrossRef]
- Germolec, D.R.; Shipkowski, K.A.; Frawley, R.P.; Evans, E. Markers of Inflammation. Methods Mol. Biol. 2018, 1803, 57–79. [Google Scholar]
Total (1404) | Male (n = 608) | Female (n = 796) | Significance | |
---|---|---|---|---|
Age (years) | 67.64 (6.32) | 67.77 (6.30) | 67.53 (6.33) | p = 0.477 |
Weight (kg) | 76.46 (14.78) | 83.28 (14.22) | 71.25 (12.98) | p < 0.0001 |
Height (m) | 1.62 (0.09) | 1.69 (0.07) | 1.56 (0.07) | p < 0.0001 |
BMI (kg/m2) | 29.09 (4.71) | 28.96 (4.29) | 29.20 (5.01) | p = 0.333 |
X2 = 0.461; p = 0.794 | ||||
Normal | 277 (19.7) | 116 (19.1) | 161 (20.2) | |
Overweight | 567 (40.4) | 251 (41.3) | 316 (39.7) | |
Obesity | 560 (39.9) | 241 (39.6) | 319 (40.1) | |
BF (kg) | 29.88 (9.49) | 27.89 (9.05) | 31.40 (9.53) | p < 0.0001 |
BF (%) | 38.71 (8.56) | 32.77 (6.78) | 43.25 (6.84) | p < 0.0001 |
Trunk fat (kg) | 17.14 (5.73) | 17.49(5.86) | 16.87 (5.60) | p = 0.048 |
Trunk fat (%) | 57.33 (7.40) | 62.42 (5.39) | 53.45 (6.30) | p < 0.0001 |
LM (kg) | 44.19 (9.53) | 52.56 (7.12) | 37.79 (5.19) | p < 0.0001 |
LM (%) | 58.13 (8.18) | 63.77 (6.46) | 53.82 (6.57) | p < 0.0001 |
ALM (kg) | 19.19 (4.71) | 23.12 (3.86) | 16.20 (2.64) | p < 0.0001 |
Trunk fat/ALM | 0.92 (0.32) | 0.76 (0.24) | 1.05 (0.31) | p < 0.0001 |
BMC (kg) | 2.39 (0.55) | 2.83 (0.45) | 2.05 (0.33) | p < 0.0001 |
w-BMC (%) | 3.15 (0.58) | 3.46 (0.57) | 2.93 (0.50) | p < 0.0001 |
Total (608) | NW (n = 116) | OW (n = 251) | OB (n = 241) | Significance | |
---|---|---|---|---|---|
Age (years) | 67.77 (6.30) | 69.74 (6.99) a | 67.51 (6.27) b | 67.11 (5.79) b | p = 0.001 |
Weight (kg) | 83.28 (14.22) | 66.35 (7.31) a | 79.21 (7.67) b | 95.68 (10.68) c | p < 0.0001 |
Height (m) | 1.69 (0.07) | 1.69 (0.07) a | 1.69 (0.07) a | 1.70 (0.07) a | p = 0.956 |
BMI (kg/m2) | 28.96 (4.29) | 23.06 (1.58) a | 27.57 (1.42) b | 33.23 (2.48) c | p < 0.0001 |
BF (kg) | 27.89 (9.05) | 16.81 (5.47) a | 25.45 (4.98) b | 35.76 (6.28) c | p < 0.0001 |
BF (%) | 32.77 (6.78) | 24.99 (6.89) a | 32.05 (4.98) b | 37.27 (4.17) c | p < 0.0001 |
Trunk fat (kg) | 17.49 (5.86) | 10.19 (3.72) a | 15.98 (3.28) b | 22.56 (3.89) c | p < 0.0001 |
Trunk fat (%) | 62.42 (5.39) | 59.84 (7.71) a | 62.81 (4.79) b | 63.26 (4.12) b | p < 0.0001 |
LM (kg) | 52.56 (7.12) | 46.92 (5.04) a | 50.90 (5.64) b | 57.00 (6.70) c | p < 0.0001 |
LM (%) | 63.77 (6.46) | 71.06 (6.73) a | 64.35 (4.82) b | 59.66 (4.07) c | p < 0.0001 |
ALM (kg) | 23.12 (3.86) | 20.14 (3.11) a | 22.48 (3.27) b | 25.22 (3.58) c | p < 0.0001 |
Trunk fat/ALM | 0.76 (0.24) | 0.52 (0.21) a | 0.73 (0.19) b | 0.91 (0.19) c | p < 0.0001 |
BMC (kg) | 2.83 (0.45) | 2.61 (0.42) a | 2.85 (0.42) b | 2.92 (0.46) b | p < 0.0001 |
w-BMC (%) | 3.46 (0.57) | 3.95 (0.54) a | 3.60 (0.42) b | 3.06 (0.44) c | p < 0.0001 |
Total (n = 796) | NW (n = 161) | OW (n = 316) | OB (n = 319) | Significance | |
---|---|---|---|---|---|
Age (years) | 67.53 (6.33) | 67.76 (7.03) a | 67.18 (6.20) a | 67.78 (6.09) a | p = 0.438 |
Weight (kg) | 71.25 (12.98) | 56.35 (5.61) a | 67.05 (6.43) b | 82.93 (9.89) c | p < 0.0001 |
Height (m) | 1.56 (0.07) | 1.58 (0.07) a | 1.57 (0.07) b | 1.55 (0.06) b | p = 0.001 |
BMI (kg/m2) | 29.20 (5.01) | 22.69 (1.59) a | 27.34 (1.40) b | 34.32 (2.90) c | p < 0.0001 |
BF (kg) | 31.40 (9.53) | 19.88 (4.47) a | 28.70 (4.75) b | 39.89 (6.93) c | p < 0.0001 |
BF (%) | 43.25(6.84) | 35.06 (5.97) a | 42.71 (4.90) b | 47.92 (4.36) c | p < 0.0001 |
Trunk Fat (kg) | 16.87 (5.61) | 10.11(2.93) a | 15.43 (2.89) b | 21.71 (4.16) c | p < 0.0001 |
Trunk Fat (%) | 53.45 (6.29) | 50.39(7.25) a | 53.87 (5.82) b | 54.58 (5.72) b | p < 0.0001 |
LM (kg) | 37.79 (5.19) | 34.56(3.83) a | 36.31(4.26) b | 40.90 (4.99) c | p < 0.0001 |
LM (%) | 53.82 (6.57) | 61.55(5.82) a | 54.26 (4.85) b | 49.48 (4.29) c | p < 0.0001 |
ALM (kg) | 16.20 (2.64) | 14.58 (2.01) a | 15.65 (2.30) b | 17.56 (2.60) c | p < 0.0001 |
Trunk fat/ALM | 1.05 (0.31) | 0.71 (0.24) a | 1.01 (0.23) b | 1.25 (0.25) c | p < 0.0001 |
BMC (kg) | 2.05 (0.33) | 1.91 (0.33) a | 2.04 (0.32) b | 2.14 (0.33) c | p < 0.0001 |
w-BMC (%) | 2.93 (0.50) | 3.38 (0.48) a | 3.04 (0.37) b | 2.60 (0.37) c | p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lorenzo, A.; Pellegrini, M.; Gualtieri, P.; Itani, L.; Frank, G.; El Ghoch, M.; Di Renzo, L. The Association between Obesity and Reduced Weight-Adjusted Bone Mineral Content in Older Adults: A New Paradigm That Contrasts with the Obesity Paradox. Nutrients 2024, 16, 352. https://doi.org/10.3390/nu16030352
De Lorenzo A, Pellegrini M, Gualtieri P, Itani L, Frank G, El Ghoch M, Di Renzo L. The Association between Obesity and Reduced Weight-Adjusted Bone Mineral Content in Older Adults: A New Paradigm That Contrasts with the Obesity Paradox. Nutrients. 2024; 16(3):352. https://doi.org/10.3390/nu16030352
Chicago/Turabian StyleDe Lorenzo, Antonino, Massimo Pellegrini, Paola Gualtieri, Leila Itani, Giulia Frank, Marwan El Ghoch, and Laura Di Renzo. 2024. "The Association between Obesity and Reduced Weight-Adjusted Bone Mineral Content in Older Adults: A New Paradigm That Contrasts with the Obesity Paradox" Nutrients 16, no. 3: 352. https://doi.org/10.3390/nu16030352
APA StyleDe Lorenzo, A., Pellegrini, M., Gualtieri, P., Itani, L., Frank, G., El Ghoch, M., & Di Renzo, L. (2024). The Association between Obesity and Reduced Weight-Adjusted Bone Mineral Content in Older Adults: A New Paradigm That Contrasts with the Obesity Paradox. Nutrients, 16(3), 352. https://doi.org/10.3390/nu16030352