Development and Validation of a Method of Body Volume and Fat Mass Estimation Using Three-Dimensional Image Processing with a Mexican Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computer Estimation of Body Volume
2.2. Experimental Study
2.2.1. Objective
2.2.2. Recruitment
2.2.3. Procedure
2.2.4. Statistical Analysis
3. Results
3.1. Reliability and Precision of Fat Mass Prediction Using the Proposed Method
3.2. Validity of Fat Mass Prediction Using the Proposed Method
− 26.3 (height) + 0.4879 (fitted Kinect BV).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Nacional de Salud Pública. National Health and Nutrition Survey on COVID-19. 2021. Available online: https://ensanut.insp.mx/encuestas/ensanutcontinua2021/doctos/informes/220804_Ensa21_digital_4ago.pdf (accessed on 12 January 2022).
- Haua Navarro, K.; Surveza Fernández, A. El ABCD de la Evaluación del estado de Nutrición, 1st ed.; McGrawhill: Mexico City, Mexico, 2010. [Google Scholar]
- Ledesma Solano, J.Á.; Palafox López, M.E. Manual de Fórmulas y Tablas para la Intervención Nutriológica, 3rd ed.; McGrawhill: Mexico City, Mexico, 2015. [Google Scholar]
- Wadsworth, M.E.J. Growth, maturation and body composition: The Fels longitudinal study 1929–1991. J. Epidemiol. Community Health 1993, 47, 251. [Google Scholar] [CrossRef]
- ACSM. Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Heymsfield, S.B.; Lohman, T.G.; Wang, Z.; Going, S.B. Composición Corporal, 2nd ed.; McGrawhill: Mexico City, Mexico, 2007. [Google Scholar]
- Dempster, P.; Aitkens, S. A new air displacement method for the determination of human body composition. Med. Sci. Sports Exerc. 1995, 27, 1692–1697. [Google Scholar] [CrossRef]
- Siri, W.R. Body composition from fluid spaces and density; analysis of methods. In Techniques for Measuring Body Composition, 1st ed.; Brozek, J.H., Ed.; National Academy of Sciences: Washington, DC, USA, 1961; pp. 223–244. [Google Scholar]
- Heymsfield, S.B.; Wang, J.; Aulet, M.; Kehayias, J.; Lichtman, S.; Kamen, Y.; Dilmanian, F.A.; Lindsay, R.; Pierson, R.N., Jr. Dual Photon Absorptiometry: Validation of Mineral and Fat Measurements. In In Vivo Body Composition Studies; Yasumura, S., Harrison, J.E., McNeill, K.G., Woodhead, A.D., Dilmanian, F.A., Eds.; Springer: Boston, MA, USA, 1990; pp. 327–337. [Google Scholar] [CrossRef]
- Bacchi, E.; Cavedon, V.; Zancanaro, C.; Moghetti, P.; Milanese, C. Comparison between dual-energy X-ray absorptiometry and skinfold thickness in assessing body fat in overweigh/obese adult patients with type-2 diabetes. Sci. Rep. 2017, 7, 17424. [Google Scholar] [CrossRef]
- Taylor, A.E.; Kuper, H.; Varma, R.D.; Wells, J.C.; Bell, J.D.; Radhakrishna, K.V.; Kulkarni, B.; Kinra, S.; Timpson, N.J.; Ebrahim, S.; et al. Validation of Dual Energy X-ray Absorptiometry Measures of Abdominal Fat by Comparison with Magnetic Resonance Imaging in an Indian Population. PLoS ONE 2012, 7, e51042. [Google Scholar] [CrossRef]
- Fuller, N.J.; Jebb, S.A.; Laskey, M.A.; Coward, W.A.; Elia, M. Four-component model for the assessment of body composition in humans: Comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin. Sci. 1992, 82, 687–693. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Ebbeling, C.B.; Zheng, J.; Pietrobelli, A.; Strauss, B.J.; Silva, A.M.; Ludwig, D.S. Multi-component molecular-level body composition reference methods: Evolving concepts and future directions. Obes. Rev. 2015, 16, 282–294. [Google Scholar] [CrossRef]
- Cyberware. Scanner WBX Con Opcion de Software 2017. 2018. Available online: http://cyberware.com/products/scanners/wbx.html (accessed on 6 February 2018).
- CADAVSHMEIP. Scanner Einscan-Pro 2017. 2018. Available online: http://www.einscan.com/ (accessed on 1 March 2018).
- Microsoft. Kinect One Sensor for Xbox Specifications. 2018. Available online: https://msdn.microsoft.com/enus/library/jj131033.aspx (accessed on 2 October 2018).
- Giachetti, A.; Lovato, C.; Piscitelli, F.; Milanese, C.; Zancanaro, C. Robust Automatic Measurement of 3D Scanned Models for the Human Body Fat Estimation. IEEE J. Biomed. Health Inf. 2015, 19, 660–667. [Google Scholar] [CrossRef]
- Soileau, L.; Bautista, D.; Johnson, C.; Gao, C.; Zhang, K.; Li, X.; Heymsfield, S.B.; Thomas, D.; Zheng, J. Automated anthropometric phenotyping with novel Kinect-based three-dimensional imaging method: Comparison with a reference laser imaging system. Eur. J. Clin. Nutr. 2016, 70, 475–481. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, J.; Gao, C.; Thomas, D.; Li, X.; Heymsfield, S. Rapid-accurate anthropometric body shape assessment with low-cost novel 3D imaging system (391.2). FASEB J. 2014, 28, 391–392. [Google Scholar] [CrossRef]
- Adler, C.; Steinbrecher, A.; Jaeschke, L.; Mähler, A.; Boschmann, M.; Jeran, S.; Pischon, T. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner. PLoS ONE 2017, 12, e0180201. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Moore, M.L.; Dellinger, J.R.; Adamson, B.T.; Benavides, M.L. Digital anthropometry via three-dimensional optical scanning: Evaluation of four commercially available systems. Eur. J. Clin. Nutr. 2019, 74, 1054–1064. [Google Scholar] [CrossRef]
- Kennedy, S.; Hwaung, P.; Kelly, N.; Liu, Y.E.; Sobhiyeh, S.; Heo, M.; Shepherd, J.A.; Heymsfield, S.B. Optical imaging technology for body size and shape analysis: Evaluation of a system designed for personal use. Eur. J. Clin. Nutr. 2020, 74, 920–929. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Harty, P.S.; Siedler, M.R.; Stratton, M.T.; Rodriguez, C. Improved precision of 3-dimensional optical imaging for anthropometric measurement using non-rigid avatar reconstruction and parameterized body model fitting. Clin. Nutr. Open Sci. 2023, 50, 40–45. [Google Scholar] [CrossRef]
- Alves, S.S.; Ohata, E.F.; Sousa, P.C.; Barroso, C.B.; Nascimento, N.M.; Loureiro, L.L.; Bittencourt, V.Z.; Capistrano, V.L.M.; da Rocha, A.R.; Filho, P.P.R. Sex-based approach to estimate human body fat percentage from 2D camera images with deep learning and machine learning. Measurement 2023, 219, 113213. [Google Scholar] [CrossRef]
- Sullivan, K.; Hornikel, B.; Holmes, C.J.; Esco, M.R.; Fedewa, M.V. Validity of a 3-compartment body composition model using body volume derived from a novel 2-dimensional image analysis program. Eur. J. Clin. Nutr. 2022, 76, 111–118. [Google Scholar] [CrossRef]
- Graybeal, A.J.; Brandner, C.F.; Tinsley, G.M. Validity and reliability of a mobile digital imaging analysis trained by a four-compartment model. J. Hum. Nutr. Diet. 2022, 36, 905–911. [Google Scholar] [CrossRef]
- Hemke, R.; Buckless, C.G.; Tsao, A.; Wang, B.; Torriani, M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from C.T. studies for body composition assessment. Skelet. Radiol. 2020, 49, 387–395. [Google Scholar] [CrossRef]
- Stark, E.; Haffner, O.; Kučera, E. Low-Cost Method for 3D Body Measurement Based on Photogrammetry Using Smartphone. Electronics 2022, 11, 1048. [Google Scholar] [CrossRef]
- Davis, J.A.; Dorado, S.; Keays, K.A.; Reigel, K.A.; Valencia, K.S.; Pham, P.H. Reliability and validity of the lung volume measurement made by the BOD POD body composition system. Clin. Physiol. Funct. Imaging 2007, 27, 42–46. [Google Scholar] [CrossRef]
- Norman, G.R.; Streiner, D.L. Biostatistics, The Bare Essentials, 1st ed.; B.C. Decker Inc.: Hamilton, ON, Canada, 1998. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: New York, NY, USA, 2010. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Bunce, C. Correlation, Agreement, and Bland–Altman Analysis: Statistical Analysis of Method Comparison Studies. Am. J. Ophthalmol. 2009, 148, 4–6. [Google Scholar] [CrossRef]
- Cardemil, M.F. Comparison analysis and applications of the Bland-Altman method: Concordance or correlation? Medwave 2016, 16, e6852. [Google Scholar] [CrossRef]
- Xu, B.; Yu, W.; Yao, M.; Pepper, M.R.; Freeland-Graves, J.H. Three-dimensional surface imaging system for assessing human obesity. Opt Eng. 2009, 48, 107204. [Google Scholar] [CrossRef]
- Farina, G.L.; Spataro, F.; De Lorenzo, A.; Lukaski, H. Smartphone Application for Personal Assessments of Body Composition and Phenotyping. Sensors 2016, 16, 2163. [Google Scholar] [CrossRef]
- Esco, M.R.; Holmes, C.J.; Sullivan, K.; Hornikel, B.; Fedewa, M.V. Utilizing a Novel 2D Image Processing System for Relating Body Composition Metrics to Performance in Collegiate Female Rowers. Int. J. Environ. Res. Public Health 2021, 1, 2413. [Google Scholar] [CrossRef]
- Samejima, I.; Maki, K.; Kagami, S.; Kouchi, M.; Mizoguchi, H. A body dimensions estimation method of subject from a few measurement items using KINECT. In Proceedings of the 2012 IEEE International Conference on Systems, Man and Cybernetics (SMC), Seoul, Republic of Korea, 14–17 October 2012; IEEE: New York, NY, USA, 2012; pp. 3384–3389. [Google Scholar] [CrossRef]
- Nahavandi, D.; Abobakr, A.; Haggag, H.; Hossny, M.; Nahavandi, S.; Filippidis, D. A skeleton-free kinect system for body mass index assessment using deep neural networks. In Proceedings of the 2017 (ISSE), Vienna, Austria, 11–13 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
Total n = 28 Mean ± SD (Range) | Female n = 14 Mean ± SD (Range) | Male n = 14 Mean ± SD (Range) | ||
---|---|---|---|---|
Age | 28.3 ± 6 (20–42) | 28.4 ± 6 (20–42) | 28.3 ± 5 (20–37) | |
Physical activity (>150 min/week) n (%) | 16 (57%) | 10 (72%) | 7 (50%) | |
Height [m] | 1.65 ± 0.08 | 1.60 ± 0.07 | 1.72 ± 0.05 | |
Weight [kg] | 67.5 ± 12.2 | 61.2 ± 8.2 | 78.1 ± 12.9 | |
BMI (kg/m2) | 24.5 ± 3.7 (17.7–35.7) | 23.9 ± 2.9 (17.7–29.1) | 26.3 ± 4.6 (20.7–35.7) | |
Underweight (17–18.4) n (%) | 1 (3.5%) | 1 (7%) | - | |
Eutrophic (18.5–24.9) n (%) | 13 (46%) | 7 (50%) | 6 (42.8%) | |
Overweight (25–29.9) n (%) | 11 (39%) | 6 (42.8%) | 5 (35.7%) | |
Obesity (>30) n (%) | 3 (10%) | 3 (21%) | ||
BV- Bod Pod (L) | 66.5 ± 13.03 | 60.7 ± 13.2 | 69.7 ± 12.4 | |
Fat Mass-DXA (kg) | 19.63 ± 5.8 | 20.02 ± 6.1 | 19.3 ± 6.06 | |
Fat Mass- Kinect (kg) | 19.61 ± 5.5 | 20.00 ± 5.2 | 19.3 ± 6.1 |
BV Measurement Error | |
---|---|
Bod Pod | |
Raw Kinect | 5.28 L (7.8%) |
Fitted Kinect | 0.07 L (0.1%) |
Variation Coefficient of BV Measurements | |
Bod Pod | 0.19 |
Fitted Kinect | 0.20 |
Value | CI (95%) | ||
---|---|---|---|
Mean differences | 0.1670 | −1.2873 | 1.6120 |
SD differences | 3.7504 | ||
Mean − 1.96 SD | 7.1836 | −9.6689 | −4.6983 |
Mean + 1.96 SD | 7.5176 | 5.0322 | 10.0029 |
Value | CI (95%) | ||
---|---|---|---|
Mean differences | −0.2911 | −2.7582 | 2.1760 |
SD differences | 6.3625 | ||
Mean − 1.96 SD | −12.7613 | −16.9776 | −8.5449 |
Mean + 1.96 SD | 12.1791 | 7.9628 | 16.3954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Flores, F.I.; Klünder Klünder, M.; López Teros, M.T.; Muñoz Ibañez, C.A.; Padilla Castañeda, M.A. Development and Validation of a Method of Body Volume and Fat Mass Estimation Using Three-Dimensional Image Processing with a Mexican Sample. Nutrients 2024, 16, 384. https://doi.org/10.3390/nu16030384
García Flores FI, Klünder Klünder M, López Teros MT, Muñoz Ibañez CA, Padilla Castañeda MA. Development and Validation of a Method of Body Volume and Fat Mass Estimation Using Three-Dimensional Image Processing with a Mexican Sample. Nutrients. 2024; 16(3):384. https://doi.org/10.3390/nu16030384
Chicago/Turabian StyleGarcía Flores, Fabián Ituriel, Miguel Klünder Klünder, Miriam Teresa López Teros, Cristopher Antonio Muñoz Ibañez, and Miguel Angel Padilla Castañeda. 2024. "Development and Validation of a Method of Body Volume and Fat Mass Estimation Using Three-Dimensional Image Processing with a Mexican Sample" Nutrients 16, no. 3: 384. https://doi.org/10.3390/nu16030384
APA StyleGarcía Flores, F. I., Klünder Klünder, M., López Teros, M. T., Muñoz Ibañez, C. A., & Padilla Castañeda, M. A. (2024). Development and Validation of a Method of Body Volume and Fat Mass Estimation Using Three-Dimensional Image Processing with a Mexican Sample. Nutrients, 16(3), 384. https://doi.org/10.3390/nu16030384