Odimet®: A Pioneering Tele-Health Tool to Empower Dietary Treatment and the Acute Management of Inborn Errors of Metabolism—An Assessment of Its Effectiveness during the COVID Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Odimet® Characteristics
2.2. Metabolic Control Assessment
2.3. Website Traffic Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Metabolic Control
3.3. Website Traffic Analysis
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J. ICIMD Advisory Group. 2021. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2021, 44, 164–177. [Google Scholar] [CrossRef]
- Waters, D.; Adeloye, D.; Woolham, D.; Wastnedge, E.; Patel, S.; Rudan, I. Global birth prevalence and mortality from inborn errors of metabolism: A systematic analysis of the evidence. J. Glob. Health 2018, 8, 021102. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pintos, P.; Cocho de Juan, J.A.; Bóveda, M.D.; Castiñeiras, D.E.; Colón, C.; Iglesias-Rodríguez, A.J.; López, C.; Fernández, A.; Bermúdez, F.; Pico, C. Evaluation and perspective of 20 years of neonatal screening in Galicia. Program results. Rev. Esp. Salud Publica 2020, 94, e202012161. [Google Scholar]
- Sanderson, S.; Green, A.; Preece, M.A.; Burton, H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch. Dis. Child 2006, 91, 896–899. [Google Scholar] [CrossRef]
- Boyer, S.W.; Barclay, L.J.; Burrage, L.C. Inherited Metabolic Disorders: Aspects of Chronic Nutrition Management. Nutr. Clin. Pract. 2015, 30, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Frazier, D.M.; Allgeier, C.; Homer, C.; Marriage, B.J.; Ogata, B.; Rohr, F.; Splett, P.L.; Stembridge, A.; Singh, R.H. Nutrition management guideline for maple syrup urine disease: An evidence- and consensus-based approach. Mol. Genet. Metab. 2014, 112, 210–217. [Google Scholar] [CrossRef]
- van Spronsen, F.J.; van Wegberg, A.M.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, P.J.; Feillet, P.F.; Giżewska, M.; et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017, 5, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Boy, N.; Mühlhausen, C.; Maier, E.M.; Heringer, J.; Assmann, B.; Burgard, P.; Dixon, M.; Fleissner, S.; Greenberg, C.R.; Harting, I.; et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J. Inherit. Metab. Dis. 2017, 40, 75–101. [Google Scholar] [CrossRef]
- Häberle, J.; Burlina, A.; Chakrapani, A.; Dixon, M.; Karall, D.; Lindner, M.; Mandel, H.; Martinelli, D.; Pintos-Morell, G.; Santer, R.; et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J. Inherit. Metab. Dis. 2019, 42, 1192–1230. [Google Scholar] [CrossRef]
- Van Calcar, S.C.; Sowa, M.; Rohr, F.; Beazer, J.; Setlock, T.; Weihe, T.U.; Pendyal, S.; Wallace, L.; Hansen, J.; Stembridge, A.; et al. Nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD): An evidence- and consensus-based approach. Mol. Genet. Metab. 2020, 131, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Welling, L.; Bernstein, L.E.; Berry, G.T.; Burlina, A.B.; Eyskens, F.; Gautschi, M.; Grünewald, S.; Gubbels, C.S.; Knerr, I.; Labrune, P.; et al. International clinical guideline for the management of classical galactosemia: Diagnosis, treatment, and follow-up. J. Inherit. Metab. Dis. 2017, 40, 171–176. [Google Scholar] [CrossRef]
- Schiergens, K.A.; Weiß, K.J.; Dokoupil, K.; Fleissner, S.; Maier, E.M. Dietary treatment of inborn errors of metabolism-a balancing act between indulgence and therapy. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020, 63, 864–871. [Google Scholar] [CrossRef]
- MacDonald, A. Diet and compliance in phenylketonuria. Eur. J. Pediatr. 2000, 159 (Suppl. S2), S136–S141. [Google Scholar] [CrossRef] [PubMed]
- Kemper, A.R.; Brewer, C.A.; Singh, R.H. Perspectives on dietary adherence among women with inborn errors of metabolism. J. Am. Diet. Assoc. 2010, 110, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Başer, E.; Mollaoğlu, M. The effect of a hemodialysis patient education program on fluid control and dietary compliance. Hemodial. Int. 2019, 23, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Arad, M.; Goli, R.; Parizad, N.; Vahabzadeh, D.; Baghaei, R. Do the patient education program and nurse-led telephone follow-up improve treatment adherence in hemodialysis patients? A randomized controlled trial. BMC Nephrol. 2021, 22, 119. [Google Scholar] [CrossRef]
- Ji, H.; Chen, R.; Huang, Y.; Li, W.; Shi, C.; Zhou, J. Effect of simulation education and case management on glycemic control in type 2 diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3112. [Google Scholar] [CrossRef]
- Jurecki, E.R.; Cederbaum, S.; Kopesky, J.; Perry, K.; Rohr, F.; Sanchez-Valle, A.; Viau, K.; Sheinin, M.; Cohen-Pfeffer, J. Adherence to clinic recommendations among patients with phenylketonuria in the United States. Mol. Genet. Metab. 2017, 120, 190–197. [Google Scholar] [CrossRef]
- Kenneson, A.; Singh, R.H. Natural history of children and adults with phenylketonuria in the NBS-PKU Connect registry. Mol. Genet. Metab. 2021, 134, 243–249. [Google Scholar] [CrossRef]
- González-Lamuño, D.; Sánchez-Pintos, P.; Andrade, F.; Couce, M.L.; Aldámiz-Echevarría, L. Treatment adherence in tyrosinemia type 1 patients. Orphanet J. Rare Dis. 2021, 16, 256. [Google Scholar] [CrossRef]
- Ali, R.; Nagalli, S. Hyperammonemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef] [PubMed]
- Jensen, U.G.; Brandt, N.J.; Cristensen, E.; Skoubye, F.; Norgrard-Pedersen, B.; Simonsen, H. Neonatal screening for galactosemias by quantitative analysis of hexose monophosphates using tandem mass spectrometry. A retrospective study. Clin. Chem. 2001, 47, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Juggling Care and Daily Life. The Balancing Act of the Rare Disease Community. A Rare Barometer Survey; EURORDIS—Plateforme Maladies Rares: Paris, France, 2017.
- Durham-Shearer, S.J.; Judd, P.A.; Whelan, K.; Thomas, J.E. Knowledge, compliance and serum phenylalanine concentrations in adolescents and adults with phenylketonuria and the effect of a patient-focused educational resource. J. Hum. Nutr. Diet. 2008, 21, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Resseguier, N.; Ouattara, A.; De Lonlay, P.; Arnoux, J.B.; Brassier, A.; Schiff, M.; Pichard, S.; Fabre, A.; Hoebeke, C.; et al. Health Status of French Young Patients with Inborn Errors of Metabolism with Lifelong Restricted Diet. J. Pediatr. 2020, 220, 184–192.e6. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.T.; Reidlinger, D.P.; Hoffmann, T.C.; Campbell, K.L. Telehealth methods to deliver dietary interventions in adults with chronic disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1693–1702. [Google Scholar] [CrossRef]
- Bösch, F.; Landolt, M.A.; Baumgartner, M.R.; Zeltner, N.; Kölker, S.; Gleich, F.; Burlina, A.; Cazzorla, C.; Packman, W.; Schwartz, I.V.D.; et al. Health-related quality of life in paediatric patients with intoxication-type inborn errors of metabolism: Analysis of an international data set. J. Inherit. Metab. Dis. 2021, 44, 215–225. [Google Scholar] [CrossRef]
- Weber, S.L.; Segal, S.; Packman, W. Inborn errors of metabolism: Psychosocial challenges and proposed family systems model of intervention. Mol. Genet. Metab. 2012, 105, 537–541. [Google Scholar] [CrossRef]
- Lea, D.; Shchelochkov, O.; Cleary, J.; Koehly, L.M. Dietary Management of Propionic Acidemia: Parent Caregiver Perspectives and Practices. J. Parenter. Enteral Nutr. 2019, 43, 434–437. [Google Scholar] [CrossRef]
- Ouattara, A.; Resseguier, N.; Cano, A.; De Lonlay, P.; Arnoux, J.B.; Brassier, A.; Schiff, M.; Pichard, S.; Fabre, A.; Hoebeke, C.; et al. Determinants of Quality of Life in Children with Inborn Errors of Metabolism Receiving a Restricted Diet. J. Pediatr. 2022, 242, 192–200.e3. [Google Scholar] [CrossRef]
- Sestini, S.; Paneghetti, L.; Lampe, C.; Betti, G.; Bond, S.; Bellettato, C.M.; Maurizio, S. Social and medical needs of rare metabolic patients: Results from a MetabERN survey. Orphanet J. Rare Dis. 2021, 16, 336. [Google Scholar] [CrossRef]
- Mütze, U.; Gleich, F.; Barić, I.; Baumgartner, M.; Burlina, A.; Chapman, K.A.; Chien, Y.; Cortès-Saladelafont, E.; De Laet, C.; Dobbelaere, D.; et al. Impact of the SARS-CoV-2 pandemic on the health of individuals with intoxication-type metabolic diseases-Data from the E-IMD consortium. J. Inherit. Metab. Dis. 2023, 46, 220–231. [Google Scholar] [CrossRef]
- Rovelli, V.; Zuvadelli, J.; Paci, S.; Ercoli, V.; Re Dionigi, A.; Selmi, R.; Salvatici, E.; Cefalo, G.; Banderali, G. Telehealth and COVID-19: Empowering Standards of Management for Patients Affected by Phenylketonuria and Hyperphenylalaninemia. Healthcare 2021, 9, 1407. [Google Scholar] [CrossRef] [PubMed]
- Zubarioglu, T.; Hopurcuoglu, D.; Uygur, E.; Ahmadzada, S.; Oge-Enver, E.; Isat, E.; Cansever, M.S.; Kiykim, E.; Aktuglu-Zeybek, C. The impact of telemedicine for monitoring and treatment of phenylketonuria patients on metabolic outcome during coronavirus disease-19 outbreak. Telemed. e-Health 2022, 28, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Redecillas Ferreiro, S.; Nuñez Ramos, R. Ingestas dietéticas de referencia y valoración de la ingesta. In Manual de Nutrición de la Asociación Española de Pediatria, 1st ed.; Asociación Española de Pediatría, Lúa Ediciones 3.0.S.L: Madrid, Spain, 2021; pp. 430–440. [Google Scholar]
- Pedron, C.; Arhip, L.; Cañedo, E.; Cuerda, M.C.; Egea, N.; García, B.; García, J.J.; González-Lamuño, D.; Gutiérrez, A.; Martínez, c.; et al. Práctica. In Manual para la Práctica de la Dieta Cetogénica, 2nd ed.; Sociedad Española de Gastroenterología, Hepatología y Nutrición Pediátrica: Madrid, Spain, 2021; pp. 43–81. [Google Scholar]
- Martínez-Villaescusa, M.; Aguado-García, Á.; López-Montes, A.; Martínez-Díaz, M.; Gonzalvo-Díaz, C.; Pérez-Rodriguez, A.; Pedrón-Megías, A.; García-Arce, L.; Sánchez-Sáez, P.; García-Martínez, C.; et al. New approaches in the nutritional treatment of advanced chronic kidney disease. Nefrologia Engl. Ed. 2022, 42, 448–459. [Google Scholar] [CrossRef]
- Monasterio, O.; Larrinaga, A.; Calles, L.; Iglesias, A. Nuevas dietas para el tratamiento dietético del paciente intervenido de cirugía bariátrica. Nutr. Hosp. 2016, 33 (Suppl. S2), 7. [Google Scholar]
IEMs (n) | Gender | Age | ||
---|---|---|---|---|
M | F | P | A | |
PKU (84) | 36 | 48 | 28 | 56 |
MSUD (12) | 6 | 6 | 12 | 0 |
UCDs (11) | 5 | 6 | 7 | 4 |
Classic galactosemia (13) | 5 | 8 | 13 | 0 |
IEM | Metabolic Marker | Mean [Interquartile Range] | % of Patients that Employ Odimet |
---|---|---|---|
PKU | Phe (µmol/L) | 78–100% | |
<12 y: vn < 360 | 251.46 [137.16–365.66] | ||
≥12 y: vn < 600 | 365.76 [259.08–556.26] | ||
MSUD | Leu (µmol/L) (nv < 381) | 175.2 [114.3–266.7] | 100% |
UCDs | Gln (µmol/L) (nv < 1000) | 627 [518–820] | 100% |
Ammonium (µmol/L) (nv < 50) | 17 [10–25] | ||
Classic galactosemia | Gal 1-P (µmol/L) (nv < 0.7) | 0.06 [0.03–0.1] | 88% |
Metabolic Marker | Pre-Pandemic 15 March 2018–14 March 2020 | Pandemic 1 15 March 2020–14 March 2021 | Pandemic 2 15 March 2021–15 March 2023 | ||
---|---|---|---|---|---|
Median [IQR] N | Median [IQR] N | p Value | Median [IQR] N | p Value | |
Phe (µmol/L) | |||||
<12 y (nv < 360 µmol/L) | 289.56 [190.50–381.00] N: 175 | 297.18 [228.6–411.48] N: 73 | 0.208 | 228.6 [121.92–358.14] N: 241 | 0.001 |
≥12 y (nv < 600 µmol/L) | 411.48 [304.80–601.98] N: 203 | 365.76 [259.13–553.40] N: 130 | 0.022 | 358.14 [258.54–582.93] N: 316 | 0.021 |
Leu (µmol/L) | |||||
(nv < 381 µmol/L) | 167.64 [99.06–316.23] N: 515 | 175.26 [114.30–274.32] N: 290 | 0.540 | 175.26 [106.68–266.70] N: 647 | 0.872 |
Gln (µmol/L) | |||||
(nv < 1000 µmol/L) | 632.5 [538–890] N: 58 | 771.5 [644.5–1090] N: 28 | 0.002 | 567 [448–738] N: 63 | 0.018 |
Ammonium (µmol/L) | |||||
(nv < 50 µmol/L *) | 18 [12–27] N: 49 | 19 [10–27] N: 23 | 0.539 | 17 [10.5–22] N: 52 | 0.351 |
Gal 1-P (µmol/L) | |||||
(nv < 0.7 µmol/L) | 0.12 [0.08–0.27] N: 87 | 0.09 [0.05–0.17] N: 43 | 0.014 | 0.05 [0.03–0.09] N: 77 | <0.001 |
Period | Ner of Diets Calculated | Mean [Median] Pageviews/Quarterly | p | Pageviews/Session |
---|---|---|---|---|
Pre-pandemic | Total: 89,728 | 11,216 [11,292] | 3.71 | |
15 March 2018–14 June 2018 | 11,076 | |||
15 June 2018–14 September 2018 | 9161 | |||
15 September 2018–14 December 2018 | 13,531 | |||
15 December 2018–14 March 2019 | 9999 | |||
15 March 2019–14 June 2019 | 11,775 | |||
15 June 2019–14 September 2019 | 8750 | |||
15 September 2019–14 December 2019 | 13,927 | |||
15 December 2019–14 March 2020 | 11,509 | |||
Pandemic 1 | Total: 52,017 | 13,004 [12,514] | 0.2140 | 3.77 |
15 March 2020–14 June 2020 | 11,604 | |||
15 June 2020–14 September 2020 | 10,262 | |||
15 September 2020–14 December 2020 | 16,727 | |||
15 December 2020–14 March 2021 | 13,424 | |||
Pandemic 2 | Total: 116,054 | 14,506 [14,661] | 0.0913 | 2.77 |
15 March 2021–14 June 2021 | 13,094 | |||
15 June 2021–14 September 2021 | 11,079 | |||
15 September 2021–14 December 2021 | 13,267 | |||
15 December 2021–14 March 2022 | 25,108 | |||
15 March 2022–14 June 2022 | 16,041 | |||
15 June 2022–14 September 2022 | 9460 | |||
15 September 2022–14 December 2022 | 15,329 | |||
15 December 2022–15 March 2023 | 12,676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Pintos, P.; Camba-Garea, M.J.; López-Pardo, B.M.; Couce, M.L. Odimet®: A Pioneering Tele-Health Tool to Empower Dietary Treatment and the Acute Management of Inborn Errors of Metabolism—An Assessment of Its Effectiveness during the COVID Pandemic. Nutrients 2024, 16, 423. https://doi.org/10.3390/nu16030423
Sánchez-Pintos P, Camba-Garea MJ, López-Pardo BM, Couce ML. Odimet®: A Pioneering Tele-Health Tool to Empower Dietary Treatment and the Acute Management of Inborn Errors of Metabolism—An Assessment of Its Effectiveness during the COVID Pandemic. Nutrients. 2024; 16(3):423. https://doi.org/10.3390/nu16030423
Chicago/Turabian StyleSánchez-Pintos, Paula, María José Camba-Garea, Beatriz Martin López-Pardo, and María L. Couce. 2024. "Odimet®: A Pioneering Tele-Health Tool to Empower Dietary Treatment and the Acute Management of Inborn Errors of Metabolism—An Assessment of Its Effectiveness during the COVID Pandemic" Nutrients 16, no. 3: 423. https://doi.org/10.3390/nu16030423
APA StyleSánchez-Pintos, P., Camba-Garea, M. J., López-Pardo, B. M., & Couce, M. L. (2024). Odimet®: A Pioneering Tele-Health Tool to Empower Dietary Treatment and the Acute Management of Inborn Errors of Metabolism—An Assessment of Its Effectiveness during the COVID Pandemic. Nutrients, 16(3), 423. https://doi.org/10.3390/nu16030423