Negative Association of Lignan and Phytosterol Intake with Stress Perception during the COVID-19 Pandemic—A Polish Study on Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Tools
2.3. Assessment of the Diet
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Correlation Analysis of Lignan and Phytosterol Intake with Total PSS Score and Its Components
3.3. Preliminary Findings—Univariate Analysis of the Association between Lignan and Phytosterol Intake and PSS
3.4. The Association of High Perceived Stress with the Amount of Phytochemicals Consumed in Diet—Multivariable Analysis
3.5. Relationship between Consumption of Phytochemicals and Other Dietary Food Products, Macro- and Micro-Nutrients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Badenoch, J.B.; Rengasamy, E.R.; Watson, C.; Jansen, K.; Chakraborty, S.; Sundaram, R.D.; Hafeez, D.; Burchill, E.; Saini, A.; Thomas, L.; et al. Persistent neuropsychiatric symptoms after COVID-19: A systematic review and meta-analysis. Brain Commun. 2022, 4, fcab297. [Google Scholar] [CrossRef]
- Stein, D.J.; Szatmari, P.; Gaebel, W.; Berk, M.; Vieta, E.; Maj, M.; de Vries, Y.A.; Roest, A.M.; de Jonge, P.; Maercker, A.; et al. Mental, behavioral and neurodevelopmental disorders in the ICD-11: An international perspective on key changes and controversies. BMC Med. 2020, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Feizi, A.; Aliyari, R.; Roohafza, H. Association of perceived stress with stressful life events, lifestyle and sociodemographic factors: A large-scale community-based study using logistic quantile regression. Comput. Math. Methods Med. 2012, 2012, 151865. [Google Scholar] [CrossRef] [PubMed]
- Cristóbal-Narváez, P.; Haro, J.M.; Koyanagi, A. Longitudinal association between perceived stress and depression among community-dwelling older adults: Findings from the Irish Longitudinal Study on Ageing. J. Affect. Disord. 2022, 299, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Bergdahl, J.; Bergdahl, M. Perceived stress in adults: Prevalence and association of depression, anxiety and medication in a Swedish population. Stress Health 2002, 18, 235–241. [Google Scholar] [CrossRef]
- Mariotti, A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication. Future Sci. OA 2015, 1, FSO23. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The impact of stress on body function: A review. EXCLI J. 2017, 16, 1057–1072. [Google Scholar] [CrossRef]
- Haykin, H.; Rolls, A. The neuroimmune response during stress: A physiological perspective. Immunity 2021, 54, 1933–1947. [Google Scholar] [CrossRef]
- Wong, H.; Singh, J.; Go, R.M.; Ahluwalia, N.; Guerrero-Go, M.A. The Effects of Mental Stress on Non-insulin-dependent Diabetes: Determining the Relationship Between Catecholamine and Adrenergic Signals from Stress, Anxiety, and Depression on the Physiological Changes in the Pancreatic Hormone Secretion. Cureus 2019, 11, e5474. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.; Henderson, S.; Hall, W. Prevalence, comorbidity, disability and service utilisation. Overview of the Australian National Mental Health Survey. Br. J. Psychiatry 2001, 178, 145–153. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Flor, L.S.; Friedman, J.; Spencer, C.N.; Cagney, J.; Arrieta, A.; Herbert, M.E.; Stein, C.; Mullany, E.C.; Hon, J.; Patwardhan, V.; et al. Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: A comprehensive review of data from March, 2020, to September, 2021. Lancet 2022, 399, 2381–2397. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the “SMILES” trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020, 9, 346. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef]
- Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and mental health: A review of current knowledge about the impact of diet on mental health. Front. Nutr. 2022, 9, 943998. [Google Scholar] [CrossRef]
- Logan, A.C.; Jacka, F.N. Nutritional psychiatry research: An emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J. Physiol. Anthropol. 2014, 33, 22. [Google Scholar] [CrossRef]
- Osmakov, D.I.; Kalinovskii, A.P.; Belozerova, O.A.; Andreev, Y.A.; Kozlov, S.A. Lignans as pharmacological agents in disorders related to oxidative stress and inflammation: Chemical synthesis approaches and biological activities. Int. J. Mol. Sci. 2022, 23, 6031. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol. 2020, 11, 599959. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Kim, M.-Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 5482. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Micek, A.; Mena, P.; Del Rio, D.; Galvano, F.; Castellano, S.; Grosso, G. Dietary (Poly)phenols and Cognitive Decline: A Systematic Review and Meta-Analysis of Observational Studies. Mol. Nutr. Food Res. 2023, 68, e2300472. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Bolesławska, I.; Jagielski, P.; Konopka, K.; Waśkiewicz, A.; Witkowska, A.M.; Przysławski, J.; Godos, J. Association of dietary intake of polyphenols, lignans, and phytosterols with immune-stimulating microbiota and COVID-19 risk in a group of Polish men and women. Front. Nutr. 2023, 10, 1241016. [Google Scholar] [CrossRef] [PubMed]
- Piao, J.; Wang, Y.; Zhang, T.; Zhao, J.; Lv, Q.; Ruan, M.; Yu, Q.; Li, B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023, 28, 6992. [Google Scholar] [CrossRef]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.-H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, M.; Zhao, Y.; Hui, Y.; Pan, J.; Yu, H.; Yan, S.; Dai, X.; Liu, X.; Liu, Z. Supplementation of Sesamin Alleviates Stress-Induced Behavioral and Psychological Disorders via Reshaping the Gut Microbiota Structure. J. Agric. Food Chem. 2019, 67, 12441–12451. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, X.; Liu, J.; Cai, E.; Zhao, Y.; Li, H.; Zhang, L.; Li, P.; Gao, Y. The effect of beta-sitosterol and its derivatives on depression by the modification of 5-HT, DA and GABA-ergic systems in mice. RSC Adv. 2018, 8, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.D.; Thornton, T.; Muir, A.D.; Westcott, N.D. The effect of flax seed cultivars with differing content of alpha-linolenic acid and lignans on responses to mental stress. J. Am. Coll. Nutr. 2003, 22, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Vijayakumar, A.; Rooney, C.; Noad, R.L.; Appleton, K.M.; McCarthy, D.; Donnelly, M.; Young, I.S.; McKinley, M.C.; McKeown, P.P.; et al. A High Polyphenol Diet Improves Psychological Well-Being: The Polyphenol Intervention Trial (PPhIT). Nutrients 2020, 12, 2445. [Google Scholar] [CrossRef] [PubMed]
- Jagielski, P.; Łuszczki, E.; Wnęk, D.; Micek, A.; Bolesławska, I.; Piórecka, B.; Kawalec, P. Associations of Nutritional Behavior and Gut Microbiota with the Risk of COVID-19 in Healthy Young Adults in Poland. Nutrients 2022, 14, 350. [Google Scholar] [CrossRef] [PubMed]
- Juczyński, Z.; Ogińska-Bulik, N. Narzędzia Pomiaru Stresu i Radzenia Sobie ze Stresem; Pracownia Testów Psychologicznych Polskiego Towarzystw Psychologicznego: Warszawa, Poland, 2012; ISBN 9788360733479. [Google Scholar]
- Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Mirończuk-Chodakowska, I.; Cicha-Mikołajczyk, A.; Drygas, W. Assessment of Plant Sterols in the Diet of Adult Polish Population with the Use of a Newly Developed Database. Nutrients 2021, 13, 2722. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S. [Google Scholar] [CrossRef] [PubMed]
- Prior, A.; Vestergaard, M.; Larsen, K.K.; Fenger-Grøn, M. Association between perceived stress, multimorbidity and primary care health services: A Danish population-based cohort study. BMJ Open 2018, 8, e018323. [Google Scholar] [CrossRef]
- Xiang, Y.-T.; Jin, Y.; Cheung, T. Joint international collaboration to combat mental health challenges during the coronavirus disease 2019 pandemic. JAMA Psychiatry 2020, 77, 989–990. [Google Scholar] [CrossRef]
- Choi, H.S.; Zhao, T.T.; Shin, K.S.; Kim, S.H.; Hwang, B.Y.; Lee, C.K.; Lee, M.K. Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum in mice after exposure to chronic stress. Molecules 2013, 18, 4342–4356. [Google Scholar] [CrossRef]
- Ehret, M. Treatment of posttraumatic stress disorder: Focus on pharmacotherapy. Ment. Health Clin. 2019, 9, 373–382. [Google Scholar] [CrossRef]
- Grosso, G.; Godos, J.; Currenti, W.; Micek, A.; Falzone, L.; Libra, M.; Giampieri, F.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; et al. The effect of dietary polyphenols on vascular health and hypertension: Current evidence and mechanisms of action. Nutrients 2022, 14, 545. [Google Scholar] [CrossRef] [PubMed]
- Al Sunni, A.; Latif, R. Effects of chocolate intake on Perceived Stress; a Controlled Clinical Study. Int. J. Health Sci. 2014, 8, 393–401. [Google Scholar] [CrossRef]
- Carillon, J.; Notin, C.; Schmitt, K.; Simoneau, G.; Lacan, D. Dietary supplementation with a superoxide dismutase-melon concentrate reduces stress, physical and mental fatigue in healthy people: A randomised, double-blind, placebo-controlled trial. Nutrients 2014, 6, 2348–2359. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Shin, D. Arylnaphthalene lactones: Structures and pharmacological potentials. Phytochem. Rev. 2021, 20, 1033–1054. [Google Scholar] [CrossRef]
- Mucci, D.d.B.; Fernandes, F.S.; Souza, A.D.S.; Sardinha, F.L.d.C.; Soares-Mota, M.; Tavares do Carmo, M.d.G. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy. Prostaglandins Leukot. Essent. Fatty Acids 2015, 97, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Xu, Z.-K.; Yang, D.-H.; Yao, H.-Y.; Ku, B.-S.; Ma, X.-Q.; Wang, C.-Z.; Liu, S.-L.; Cai, S.-Q. The antidepressant effect of secoisolariciresinol, a lignan-type phytoestrogen constituent of flaxseed, on ovariectomized mice. J. Nat. Med. 2013, 67, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Saito, H.; Seki, S.; Ueda, F.; Asada, T. Effects of Composite Supplement Containing Astaxanthin and Sesamin on Cognitive Functions in People with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimers Dis. 2018, 62, 1767–1775. [Google Scholar] [CrossRef]
- Imai, A.; Oda, Y.; Ito, N.; Seki, S.; Nakagawa, K.; Miyazawa, T.; Ueda, F. Effects of Dietary Supplementation of Astaxanthin and Sesamin on Daily Fatigue: A Randomized, Double-Blind, Placebo-Controlled, Two-Way Crossover Study. Nutrients 2018, 10, 281. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; et al. Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L. Front. Pharmacol. 2017, 8, 697. [Google Scholar] [CrossRef]
- Sangouni, A.A.; Vasmehjani, A.A.; Ghayour-Mobarhan, M.; Ferns, G.A.; Khayyatzadeh, S.S. The association between dietary phytochemical index with depression and quality of life in iranian adolescent girls. Biopsychosoc. Med. 2022, 16, 5. [Google Scholar] [CrossRef]
- Darooghegi Mofrad, M.; Siassi, F.; Guilani, B.; Bellissimo, N.; Azadbakht, L. Association of dietary phytochemical index and mental health in women: A cross-sectional study. Br. J. Nutr. 2019, 121, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, X.; Luo, S.; Chu, C.; Wu, D.; Liu, R.; Wang, L.; Wang, J.; Liu, X. Extract of sesame cake and sesamol alleviate chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits. J. Funct. Foods 2018, 42, 237–247. [Google Scholar] [CrossRef]
- Ahmad, S.; ElSherbiny, N.M.; Jamal, M.S.; Alzahrani, F.A.; Haque, R.; Khan, R.; Zaidi, S.K.; AlQahtani, M.H.; Liou, G.I.; Bhatia, K. Anti-inflammatory role of sesamin in STZ induced mice model of diabetic retinopathy. J. Neuroimmunol. 2016, 295–296, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Jeng, K.-C.G.; Hou, R.C.W.; Wang, J.-C.; Ping, L.-I. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol. Lett. 2005, 97, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.C.-W.; Huang, H.-M.; Tzen, J.T.C.; Jeng, K.-C.G. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J. Neurosci. Res. 2003, 74, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.F.; Hou, C.-W.; Yao, P.-W.; Wu, S.-P.; Peng, Y.-F.; Shen, M.-L.; Lin, C.-H.; Chao, Y.-Y.; Chang, M.-H.; Jeng, K.-C. Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation. J. Neuroinflammation 2011, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Elsherbiny, N.M.; Haque, R.; Khan, M.B.; Ishrat, T.; Shah, Z.A.; Khan, M.M.; Ali, M.; Jamal, A.; Katare, D.P.; et al. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology 2014, 45, 100. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, Y.; Yang, D.; Yuan, F.; Ding, J.; Chen, H.; Tian, H. Sesamin protects SH-SY5Y cells against mechanical stretch injury and promoting cell survival. BMC Neurosci. 2017, 18, 57. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Jia, M.; Fu, S.; Pan, J.; Chu, C.; Liu, X.; Liu, X.; Liu, Z. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. J. Nutr. Biochem. 2019, 64, 61–71. [Google Scholar] [CrossRef]
- Lei, S.; Wu, S.; Wang, G.; Li, B.; Liu, B.; Lei, X. Pinoresinol diglucoside attenuates neuroinflammation, apoptosis and oxidative stress in a mice model with Alzheimer’s disease. Neuroreport 2021, 32, 259–267. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Yao, X.; Yi, J.; Feng, G. Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress. Chem. Biol. Drug Des. 2021, 98, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.S.; Ashour, M.L.; El-Beshbishy, H.A.; Ahmed Hamza, A.; Singab, A.N.B.; Wink, M. Pinoresinol-4-O-β-D-glucopyranoside: A lignan from prunes (Prunus domestica) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in vitro and in vivo. J. Pharm. Pharmacol. 2020, 72, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, P.; Errico, S.; Verardi, A.; Moliterni, S.; Tamasi, G.; Rossi, C.; Balducchi, R. Bioactive Lignans from Flaxseed: Biological Properties and Patented Recovery Technologies. Nutraceuticals 2023, 3, 58–74. [Google Scholar] [CrossRef]
- Sharma, N.; Tan, M.A.; An, S.S.A. Phytosterols: Potential metabolic modulators in neurodegenerative diseases. Int. J. Mol. Sci. 2021, 22, 12255. [Google Scholar] [CrossRef]
- López-García, G.; Cilla, A.; Barberá, R.; Alegría, A. Anti-Inflammatory and Cytoprotective Effect of Plant Sterol and Galactooligosaccharides-Enriched Beverages in Caco-2 Cells. J. Agric. Food Chem. 2020, 68, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- López-García, G.; Cilla, A.; Barberá, R.; Alegría, A.; Recio, M.C. Effect of a Milk-Based Fruit Beverage Enriched with Plant Sterols and/or Galactooligosaccharides in a Murine Chronic Colitis Model. Foods 2019, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Aldini, R.; Micucci, M.; Cevenini, M.; Fato, R.; Bergamini, C.; Nanni, C.; Cont, M.; Camborata, C.; Spinozzi, S.; Montagnani, M.; et al. Antiinflammatory effect of phytosterols in experimental murine colitis model: Prevention, induction, remission study. PLoS ONE 2014, 9, e108112. [Google Scholar] [CrossRef] [PubMed]
- Nashed, B.; Yeganeh, B.; HayGlass, K.T.; Moghadasian, M.H. Antiatherogenic effects of dietary plant sterols are associated with inhibition of proinflammatory cytokine production in Apo E-KO mice. J. Nutr. 2005, 135, 2438–2444. [Google Scholar] [CrossRef]
- Bouic, P.J.; Clark, A.; Lamprecht, J.; Freestone, M.; Pool, E.J.; Liebenberg, R.W.; Kotze, D.; van Jaarsveld, P.P. The effects of B-sitosterol (BSS) and B-sitosterol glucoside (BSSG) mixture on selected immune parameters of marathon runners: Inhibition of post marathon immune suppression and inflammation. Int. J. Sports Med. 1999, 20, 258–262. [Google Scholar] [CrossRef]
- Shi, C.; Wu, F.; Zhu, X.C.; Xu, J. Incorporation of beta-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3beta signaling. Biochim. Biophys. Acta 2013, 1830, 2538–2544. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Miao, L.; Meng, Z.; Gu, N.; Song, G. Stigmasterol alleviates allergic airway inflammation and airway hyperresponsiveness in asthma mice through inhibiting substance-P receptor. Pharm. Biol. 2023, 61, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, R.; Nantasenamat, C.; Ruankham, W.; Suwanjang, W.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Front. Nutr. 2021, 8, 648995. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-W.; He, R.-R.; Li, Y.-F.; Li, S.-B.; Tsoi, B.; Kurihara, H. Pharmacological studies on the anxiolytic effect of standardized Schisandra lignans extract on restraint-stressed mice. Phytomedicine 2011, 18, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Szurpnicka, A.; Wrońska, A.K.; Bus, K.; Kozińska, A.; Jabłczyńska, R.; Szterk, A.; Lubelska, K. Phytochemical screening and effect of Viscum album L. on monoamine oxidase A and B activity and serotonin, dopamine and serotonin receptor 5-HTR1A levels in Galleria mellonealla (Lepidoptera). J. Ethnopharmacol. 2022, 298, 115604. [Google Scholar] [CrossRef]
- Ma, X.; Wang, R.; Zhao, X.; Zhang, C.; Sun, J.; Li, J.; Zhang, L.; Shao, T.; Ruan, L.; Chen, L.; et al. Antidepressant-like effect of flaxseed secoisolariciresinol diglycoside in ovariectomized mice subjected to unpredictable chronic stress. Metab. Brain Dis. 2013, 28, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-L.; Xu, Z.-M.; Yang, G.-Y.; Yang, D.-X.; Ding, J.; Chen, H.; Yuan, F.; Tian, H.-L. Sesamin alleviates blood-brain barrier disruption in mice with experimental traumatic brain injury. Acta Pharmacol. Sin. 2017, 38, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, G.M.; Alcântara, A.F.d.C. Chemical constituents and biological activities of species of Justicia: A review. Rev. Bras. Farmacogn. 2012, 22, 220–238. [Google Scholar] [CrossRef]
- Huang, B.; Liu, H.; Wu, Y.; Li, C.; Tang, Q.; Zhang, Y.-W. Two Lignan Glycosides from Albizia julibrissin Durazz. Noncompetitively Inhibit Serotonin Transporter. Pharmaceuticals 2022, 15, 344. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, A.; Sachan, N.; Chandra, P. Evaluation of the Antidepressant-like Effect of Total Sterols Fraction and Stigmasterol Isolated from Leaves of Aegle marmelos and Possible Mechanism( s) of Action Involved. Curr. Drug Discov. Technol. 2022, 19, e290721195144. [Google Scholar] [CrossRef]
- Robinson, E.; Sutin, A.R.; Daly, M.; Jones, A. A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020. J. Affect. Disord. 2022, 296, 567–576. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western diet and the immune system: An inflammatory connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Opie, R.S.; Itsiopoulos, C.; Parletta, N.; Sanchez-Villegas, A.; Akbaraly, T.N.; Ruusunen, A.; Jacka, F.N. Dietary recommendations for the prevention of depression. Nutr. Neurosci. 2017, 20, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Orlando, L.; Savel, K.A.; Madigan, S.; Colasanto, M.; Korczak, D.J. Dietary patterns and internalizing symptoms in children and adolescents: A meta-analysis. Aust. N. Z. J. Psychiatry 2022, 56, 617–641. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-G.; Pae, C.; Lee, S.-H.; Yook, K.-H.; Park, C.I. Relationship between Mediterranean diet and depression in South Korea: The Korea National Health and Nutrition Examination Survey. Front. Nutr. 2023, 10, 1219743. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Luchini, C.; Maggi, S. Adherence to the Mediterranean diet is associated with better quality of life: Data from the Osteoarthritis Initiative. Am. J. Clin. Nutr. 2016, 104, 1403–1409. [Google Scholar] [CrossRef]
- Skarupski, K.A.; Tangney, C.C.; Li, H.; Evans, D.A.; Morris, M.C. Mediterranean diet and depressive symptoms among older adults over time. J. Nutr. Health Aging 2013, 17, 441–445. [Google Scholar] [CrossRef]
Variable | Category/Unit | Total, n = 104 | Normal Perceived Stress < 6 stens, n = 52 | Elevated Perceived Stress ≥ 6 stens, n = 52 |
---|---|---|---|---|
Age $ | Years | 34.6 (5.7) | 34.4 (5.8) | 34.7 (5.6) |
Sex & | Men | 78 (75.0) | 44 (84.6) | 34 (65.4) * |
Women | 26 (25.0) | 8 (15.4) | 18 (34.6) | |
BMI $ | Kg/m2 | 23.2 (2.6) | 23.5 (2.8) | 22.9 (2.4) |
Log2 PA $ | H/d | 0.6 (0.2) | 0.6 (0.2) | 0.6 (0.2) |
TEE $ | Kcal/d | 2535 (456) | 2598 (402) | 2472 (500) |
Sleep duration $ | H/d | 7.4 (0.9) | 7.4 (0.8) | 7.4 (0.9) |
Energy intake $ | Kcal/d | 2206 (525) | 2259 (475) | 2153 (570) |
Marital status & | Single/divorced | 55 (52.9) | 26 (50.0) | 29 (55.8) |
Married/cohabiting | 49 (47.1) | 26 (50.0) | 23 (44.2) | |
BMI [kg/m2] & | Normal body weight | 74 (71.2) | 36 (69.2) | 38 (73.1) |
Overweight | 30 (28.8) | 16 (30.8) | 14 (26.9) | |
Diet & | Traditional | 58 (55.8) | 25 (48.1) | 33 (63.5) |
Vegetarian | 46 (44.2) | 27 (51.9) | 19 (36.5) | |
BF [%] & | Underweight | 11 (10.6) | 6 (11.5) | 5 (9.6) |
Normal | 77 (74.0) | 38 (73.1) | 39 (75.0) | |
Overweight | 16 (15.4) | 8 (15.4) | 8 (15.4) | |
Smoking & | No | 91 (87.5) | 48 (92.3) | 43 (82.7) |
Yes | 13 (12.5) | 4 (7.7) | 9 (17.3) | |
Alcohol & | None or moderate | 65 (62.5) | 34 (65.4) | 31 (59.6) |
Regular | 39 (37.5) | 18 (34.6) | 21 (40.4) |
Daily Phytochemical Intake | Phytochemical-Specific Tertiles | OR (95% CI) of Elevated PSS | |||
---|---|---|---|---|---|
T1 (n = 35) | T2 (n = 34) | T3 (n = 35) | Per 1 Category of Tertile Increase | Per 1 Unit Increase in Log2 | |
n (%) Elevated Perceived Stress | |||||
Total lignans [μg] | 22 (62.9) | 12 (35.3) | 18 (51.4) | 0.79 (0.49; 1.27) | 0.72 (0.50; 1.02) |
Lariciresinol [μg] | 21 (60.0) | 13 (38.2) | 18 (51.4) | 0.84 (0.52; 1.35) | 0.72 (0.47; 1.07) |
Pinoresinol [μg] | 24 (68.6) | 12 (35.3) | 16 (45.7) * | 0.63 (0.38; 1.01) | 0.79 (0.62; 1.00) * |
Secoisolariciresinol [μg] | 18 (51.4) | 16 (47.1) | 18 (51.4) | 1.00 (0.62; 1.60) | 0.87 (0.65; 1.13) |
Total phytosterols [mg] | 24 (68.6) | 15 (44.1) | 13 (37.1) * | 0.52 (0.31; 0.85) ** | 0.27 (0.09; 0.68) ** |
Stigmasterol [mg] | 23 (65.7) | 15 (44.1) | 14 (40.0) | 0.59 (0.36; 0.95) * | 0.52 (0.28; 0.89) * |
Campesterol [mg] | 20 (57.1) | 17 (50.0) | 15 (42.9) | 0.75 (0.46; 1.20) | 0.40 (0.15; 0.97) * |
β-sitosterol [mg] | 24 (68.6) | 12 (35.3) | 16 (45.7) ** | 0.63 (0.38; 1.01) | 0.30 (0.11; 0.73) * |
Daily Phytochemical Intake | Phytochemical-Specific Tertiles | Δ AIC | Per 1 Category of Tertile Increase | Δ AIC | Per 1 Unit Increase in Log2 | Δ AIC | ||
---|---|---|---|---|---|---|---|---|
T1 (n = 35) | T2 (n = 34) | T3 (n = 35) | ||||||
Total lignans [μg] | ||||||||
Model 1 | 1 (ref.) | 0.31 (0.11; 0.82) * | 0.59 (0.22; 1.55) | 0 | 0.77 (0.47; 1.24) | 0 | 0.72 (0.49; 1.02) | 0 |
Model 2 | 1 (ref.) | 0.31 (0.11; 0.83) * | 0.58 (0.22; 1.54) | 3.9 | 0.77 (0.47; 1.24) | 3.8 | 0.72 (0.49; 1.02) | 3.8 |
Model 3 | 1 (ref.) | 0.35 (0.12; 1.01) | 0.53 (0.19; 1.48) | 8.2 | 0.73 (0.43; 1.22) | 5.9 | 0.67 (0.44; 0.98) * | 5.9 |
Lariciresinol [μg] | ||||||||
Model 1 | 1 (ref.) | 0.41 (0.15; 1.08) | 0.70 (0.26; 1.83) | 0 | 0.84 (0.51; 1.35) | 0 | 0.72 (0.47; 1.08) | 0 |
Model 2 | 1 (ref.) | 0.40 (0.15; 1.07) | 0.68 (0.25; 1.81) | 3.6 | 0.83 (0.51; 1.35) | 3.8 | 0.72 (0.46; 1.07) | 3.8 |
Model 3 | 1 (ref.) | 0.48 (0.17; 1.37) | 0.64 (0.23; 1.77) | 7.4 | 0.80 (0.48; 1.34) | 5.7 | 0.66 (0.40; 1.01) | 5.7 |
Pinoresinol [μg] | ||||||||
Model 1 | 1 (ref.) | 0.26 (0.09; 0.69) ** | 0.39 (0.14; 1.03) | 0 | 0.63 (0.38; 1.02) | 0 | 0.79 (0.62; 1.00) | 0 |
Model 2 | 1 (ref.) | 0.26 (0.09; 0.70) ** | 0.39 (0.14; 1.04) | 3.9 | 0.63 (0.38; 1.03) | 3.8 | 0.79 (0.61; 1.00) * | 3.8 |
Model 3 | 1 (ref.) | 0.30 (0.10; 0.86) * | 0.38 (0.13; 1.07) | 7.8 | 0.61 (0.36; 1.03) | 6.2 | 0.77 (0.59; 0.99) * | 6.2 |
Secoisolariciresinol [μg] | ||||||||
Model 1 | 1 (ref.) | 0.80 (0.30; 2.11) | 0.94 (0.36; 2.45) | 0 | 0.97 (0.60; 1.56) | 0 | 0.84 (0.63; 1.11) | 0 |
Model 2 | 1 (ref.) | 0.78 (0.29; 2.10) | 0.94 (0.35; 2.49) | 3.6 | 0.97 (0.59; 1.58) | 3.8 | 0.84 (0.63; 1.11) | 3.8 |
Model 3 | 1 (ref.) | 0.88 (0.31; 2.53) | 0.90 (0.32; 2.51) | 6.3 | 0.95 (0.57; 1.59) | 5.9 | 0.83 (0.61; 1.10) | 5.9 |
Total phytosterols [mg] | ||||||||
Model 1 | 1 (ref.) | 0.33 (0.12; 0.90) * | 0.24 (0.08; 0.66) ** | 0 | 0.49 (0.29; 0.81) ** | 0 | 0.25 (0.08; 0.65) ** | 0 |
Model 2 | 1 (ref.) | 0.33 (0.11; 0.90) * | 0.24 (0.08; 0.66) ** | 3.9 | 0.49 (0.29; 0.82) ** | 3.9 | 0.25 (0.08; 0.65) ** | 3.9 |
Model 3 | 1 (ref.) | 0.30 (0.10; 0.89) * | 0.18 (0.05; 0.56) ** | 3.6 | 0.42 (0.22; 0.74) ** | 5.2 | 0.21 (0.06; 0.60) ** | 5.2 |
Stigmasterol [mg] | ||||||||
Model 1 | 1 (ref.) | 0.44 (0.16; 1.18) | 0.31 (0.11; 0.84) * | 0 | 0.55 (0.33; 0.91) * | 0 | 0.50 (0.26; 0.87) * | 0 |
Model 2 | 1 (ref.) | 0.43 (0.15; 1.21) | 0.31 (0.10; 0.85) * | 4 | 0.56 (0.32; 0.92) * | 4 | 0.50 (0.26; 0.88) * | 4 |
Model 3 | 1 (ref.) | 0.35 (0.11; 1.06) | 0.28 (0.09; 0.85) * | 6.9 | 0.54 (0.30; 0.93) * | 6.8 | 0.45 (0.22; 0.83) * | 6.8 |
Campesterol [mg] | ||||||||
Model 1 | 1 (ref.) | 0.73 (0.28; 1.91) | 0.55 (0.20; 1.46) | 0 | 0.74 (0.45; 1.21) | 0 | 0.40 (0.14; 0.99) * | 0 |
Model 2 | 1 (ref.) | 0.74 (0.28; 1.94) | 0.55 (0.20; 1.46) | 3.9 | 0.74 (0.45; 1.21) | 3.9 | 0.40 (0.14; 1.00) * | 3.9 |
Model 3 | 1 (ref.) | 0.72 (0.25; 2.01) | 0.55 (0.19; 1.55) | 6.7 | 0.74 (0.43; 1.25) | 6.8 | 0.41 (0.13; 1.09) | 6.8 |
β-Sitosterol [mg] | ||||||||
Model 1 | 1 (ref.) | 0.25 (0.09; 0.66) ** | 0.37 (0.13; 1.00) | 0 | 0.61 (0.37; 1.00) | 0 | 0.29 (0.10; 0.73) * | 0 |
Model 2 | 1 (ref.) | 0.23 (0.08; 0.65) ** | 0.36 (0.13; 0.98) * | 3.8 | 0.61 (0.37; 1.00) | 3.9 | 0.29 (0.10; 0.73) * | 3.9 |
Model 3 | 1 (ref.) | 0.23 (0.07; 0.67) ** | 0.33 (0.11; 0.96) * | 6 | 0.58 (0.33; 0.99) * | 5.8 | 0.24 (0.07; 0.67) * | 5.8 |
Daily Intake | Total Lignan Tertiles | Total Phytosterol Tertiles | ||||
---|---|---|---|---|---|---|
T1 (n = 35) | T2 (n = 34) | T3 (n = 35) | T1 (n = 35) | T2 (n = 34) | T3 (n = 35) | |
Energy [kcal] | 2196 (1886–2468) | 2317 (2034–2473) | 2145 (1802–2309) | 2196 (1925–2514) | 2217 (1923–2482) | 2161 (1829–2334) |
Total protein [g] | 88 (74–99) | 85 (74–95) | 82 (76–95) | 85 (79–94) | 92 (78–101) | 82 (70–93) |
Animal protein [g] | 51 (30–68) | 45 (21–58) | 45 (24–59) | 52 (43–59) | 52 (28–67) | 22 (9–45) *** |
Plant protein [g] | 34 (30–41) | 44 (35–53) | 40 (32–51) * | 32 (28–40) | 35 (31–42) | 51 (45–60) *** |
Arginine [mg] | 4526 (3844–5290) | 4520 (3874–5140) | 4438 (4108–5354) | 4171 (3823–5008) | 4714 (3973–5513) | 4716 (4023–5236) |
Fat [g] | 77 (69–83) | 68 (64–77) | 73 (62–76) * | 75 (67–78) | 76 (69–83) | 67 (58–76) * |
SFA [%] | 27 (22–31) | 24 (18–27) | 24 (20–29) | 29 (24–30) | 26 (21–31) | 20 (16–25) *** |
MUFA [%] | 29 (27–34) | 27 (23–32) | 27 (25–30) | 27 (25–30) | 29 (26–34) | 27 (21–32) |
PUFA [%] | 13 (11–16) | 13 (11–16) | 13 (11–17) | 12 (9–13) | 13 (11–17) | 14 (13–20) *** |
Omega- FA [g] | 2 (1–2) | 2 (1–2) | 1 (1–2) | 1 (1–2) | 2 (1–3) | 2 (1–3) ** |
Omega-6 FA [g] | 8 (7–12) | 8 (7–11) | 8 (7–11) | 7 (6–8) | 8 (7–13) | 10 (8–12) ** |
Total carbohydrates [g] | 286 (267–302) | 300 (274–330) | 300 (281–331) | 289 (275–307) | 285 (261–327) | 307 (280–345) * |
Saccharose [g] | 43 (34–56) | 45 (28–61) | 37 (30–47) | 47 (34–61) | 40 (28–53) | 42 (30–48) |
Dietary fiber [g] | 23 (19–26) | 27 (22–35) | 29 (26–34) *** | 24 (18–26) | 25 (21–30) | 34 (27–43) *** |
Cholesterol [mg] | 285 (197–343) | 260 (151–374) | 274 (192–366) | 297 (245–360) | 318 (229–460) | 191 (80–286) *** |
Sodium [mg] | 3200 (2951–4019) | 3235 (2669–3931) | 3527 (3034–4053) | 3305 (3111–4127) | 3432 (3076–4033) | 3069 (2360–3643) |
Potassium [mg] | 3194 (2892–3772) | 3800 (3405–4215) | 3763 (3331–4606) ** | 3245 (2894–3438) | 3767 (3297–4207) | 4099 (3463–4717) *** |
Calcium [mg] | 818 (599–969) | 875 (751–1044) | 809 (734–1010) | 847 (750–992) | 894 (699–1009) | 790 (659–988) |
Magnesium [mg] | 389 (341–439) | 469 (391–534) | 426 (378–531) * | 376 (299–414) | 423 (371–493) | 529 (437–595) *** |
Iron [mg] | 15 (12–16) | 16 (14–19) | 16 (14–19) ** | 14 (12–15) | 15 (14–17) | 17 (16–20) *** |
Zinc [mg] | 12 (9–14) | 12 (11–14) | 13 (11–14) | 12 (10–14) | 13 (11–14) | 13 (11–14) |
Copper [mg] | 2 (1–2) | 2 (2–2) | 2 (1–2) ** | 1 (1–2) | 2 (2–2) | 2 (2–3) *** |
Manganese [mg] | 6 (5–7) | 7 (6–10) | 7 (5–8) | 5 (4–7) | 6 (5–8) | 9 (6–11) *** |
Vitamin A [µg] | 964 (703–1200) | 1110 (801–1508) | 1383 (1034–1667) ** | 1041 (876–1376) | 1183 (876–1515) | 1101 (863–1648) |
β-carotene [µg] | 3332 (2517–4078) | 4683 (2962–6489) | 5577 (3660–7568) * | 3576 (2364–5321) | 4188 (2740–6136) | 4825 (3442–8122) * |
Vitamin E [mg] | 12 (9–14) | 13 (10–16) | 12 (10–16) | 11 (8–14) | 12 (10–15) | 15 (12–17) ** |
Thiamin [mg] | 1 (1–1) | 1 (1–2) | 1 (1–2) | 1 (1–2) | 1 (1–1) | 1 (1–2) * |
Riboflavin [mg] | 2 (1–2) | 2 (2–2) | 2 (2–2) | 2 (1–2) | 2 (2–2) | 2 (2–2) |
Niacin [mg] | 20 (16–22) | 19 (17–23) | 19 (15–24) | 19 (17–21) | 21 (17–26) | 19 (16–23) |
Vitamin B6 [mg] | 2 (2–2) | 2 (2–3) | 2 (2–2) | 2 (2–2) | 2 (2–3) | 2 (2–3) ** |
Vitamin B12 [µg] | 6 (0–20) | 3 (0–11) | 10 (1–23) | 2 (1–12) | 10 (0–20) | 8 (1–16) |
Vitamin C [mg] | 104 (52–151) | 119 (86–153) | 135 (90–197) | 109 (77–135) | 96 (64–157) | 139 (109–201) * |
Vitamin D [µg] | 4 (2–7) | 4 (3–10) | 4 (3–15) | 4 (2–6) | 6 (3–15) | 3 (2–7) |
Alcohol [g] | 5 (0–13) | 6 (2–17) | 6 (2–11) | 5 (1–13) | 6 (1–11) | 6 (2–18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micek, A.; Jagielski, P.; Bolesławska, I.; Witkowska, A.M.; Waśkiewicz, A.; Wajda, Z.; Kamińska, A.; Cebula, A.; Godos, J. Negative Association of Lignan and Phytosterol Intake with Stress Perception during the COVID-19 Pandemic—A Polish Study on Young Adults. Nutrients 2024, 16, 445. https://doi.org/10.3390/nu16030445
Micek A, Jagielski P, Bolesławska I, Witkowska AM, Waśkiewicz A, Wajda Z, Kamińska A, Cebula A, Godos J. Negative Association of Lignan and Phytosterol Intake with Stress Perception during the COVID-19 Pandemic—A Polish Study on Young Adults. Nutrients. 2024; 16(3):445. https://doi.org/10.3390/nu16030445
Chicago/Turabian StyleMicek, Agnieszka, Paweł Jagielski, Izabela Bolesławska, Anna Maria Witkowska, Anna Waśkiewicz, Zbigniew Wajda, Anna Kamińska, Aneta Cebula, and Justyna Godos. 2024. "Negative Association of Lignan and Phytosterol Intake with Stress Perception during the COVID-19 Pandemic—A Polish Study on Young Adults" Nutrients 16, no. 3: 445. https://doi.org/10.3390/nu16030445
APA StyleMicek, A., Jagielski, P., Bolesławska, I., Witkowska, A. M., Waśkiewicz, A., Wajda, Z., Kamińska, A., Cebula, A., & Godos, J. (2024). Negative Association of Lignan and Phytosterol Intake with Stress Perception during the COVID-19 Pandemic—A Polish Study on Young Adults. Nutrients, 16(3), 445. https://doi.org/10.3390/nu16030445