Early Extra-Uterine Growth Restriction in Very-Low-Birth-Weight Neonates with Normal or Mildly Abnormal Brain MRI: Effects on a 2–3-Year Neurodevelopmental Outcome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Main Population Description
3.2. Neurological Outcome and Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Born Too Soon: The Global Action Report on Preterm Birth; World Health Organization: Geneva, Switzerland, 2012.
- Behrman, R.E.; Babson, G.S.; Lessel, R. Fetal and neonatal mortality in white middle class infants: Mortality risks by gestational age and weight. Am. J. Dis. Child 1971, 21, 486–489. [Google Scholar] [CrossRef]
- Platt, M.J. Outcomes in preterm infants. Public Health 2014, 128, 399–403. [Google Scholar] [CrossRef]
- Saigal, S.; Doyle, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008, 371, 261–269. [Google Scholar] [CrossRef]
- Himpens, E.; Van den Broeck, C.; Oostra, A.; Calders, P.; Vanhaesebrouch, P. Prevalence, type, distribution and severity of cerebral palsy in relation to gestational age: A meta-analytical review. Dev. Med. Child Neurol. 2008, 50, 334–340. [Google Scholar] [CrossRef]
- Edwards, J.; Berube, M.; Erlandson, K.; Haug, S.; Johnstone, H.; Meagher, M.; Sarkodee-Ado, S.; Zwicker, J.G. Development coordination disorder in school-aged children born very preterm and/or low birth weight: A systemic review. J. Dev. Behav. Pediatr. 2011, 32, 678–687. [Google Scholar] [CrossRef]
- Clark, R.H.; Thomas, P.; Peabody, J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 2003, 111 Pt 1, 986–990. [Google Scholar] [CrossRef]
- Zozaya, C.; Díaz, C.; Saenz de Pipaón, M. How Should We Define Postnatal Growth Restriction in Preterm Infants? Neonatology 2018, 114, 177–180. [Google Scholar] [CrossRef]
- Roggero, P.; Giannì, M.L.; Orsi, A.; Amato, O.; Piemontese, P.; Liotto, N.; Morlacchi, L.; Taroni, F.; Garavaglia, E.; Bracco, B.; et al. Implementation of nutritional strategies decreasespostnatalgrowthrestriction in preterminfants. PLoS ONE 2012, 7, e5116. [Google Scholar]
- De Rose, D.U.; Cota, F.; Gallini, F.; Bottoni, A.; Fabrizio, G.C.; Ricci, D.; Romeo, D.M.; Mercuri, E.; Vento, G.; Maggio, L. Extra-uterine growthrestriction in preterminfants: Neurodevelopmentaloutcomesaccording to differentdefinitions. Eur. J. Paediatr. Neurol. 2021, 33, 135–145. [Google Scholar] [CrossRef]
- Martínez-Jiménez, M.D.; Gómez-García, F.J.; Gil-Campos, M.; Pérez-Navero, J.L. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: A scoping review. Eur. J. Pediatr. 2020, 179, 1255–1265. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- Guellec, I.; Lapillonne, A.; Marret, S.; Picaud, J.C.; Mitanchez, D.; Charkaluk, M.L.; Fresson, J.; Arnaud, C.; Flamant, C.; Cambonie, G.; et al. Étude Épidémiologique sur les Petits ÂgesGestationnels (EPIPAGE; [Epidemiological Study on Small Gestational Ages]) Study Group. Effect of Intra- and Extrauterine Growth on Long-Term Neurologic Outcomes of Very Preterm Infants. J. Pediatr. 2016, 175, 93. [Google Scholar] [CrossRef]
- Parodi, A.; Morana, G.; Severino, M.S.; Malova, M.; Natalizia, A.R.; Sannia, A.; Rossi, A.; Ramenghi, L.A. Low-grade intraventricular hemorrhage: Is ultrasound good enough? J. Matern. Fetal Neonatal Med. 2015, 28 (Suppl. S1), 2261–2264. [Google Scholar] [CrossRef]
- Parodi, A.; Rossi, A.; Severino, M.; Morana, G.; Sannia, A.; Calevo, M.G.; Malova, M.; Ramenghi, L.A. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch. Dis. Child Fetal Neonatal Ed. 2015, 100, F289–F292. [Google Scholar] [CrossRef]
- Belfort, M.B.; Ehrenkranz, R.A. Neurodevelopmental outcomes and nutritional strategies in very low birth weight infants. Semin. Fetal Neonatal Med. 2017, 22, 42–48. [Google Scholar] [CrossRef]
- Bancker, B.Q.; Larroche, J.C. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch. Neurol. 1962, 7, 386–410. [Google Scholar] [CrossRef]
- Krageloh-Mann, I.; Horber, V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2007, 49, 144–151. [Google Scholar] [CrossRef]
- Woodward, L.J.; Clark, C.A.; Bora, S.; Inder, T.E. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS ONE 2012, 7, 518–579. [Google Scholar] [CrossRef]
- Inder, T.; Perlman, J.; Volpe, J. Unit V—Intracranial hemorrhage. In Neurology of the Newborn, 6th ed.; Volpe, J.J., Inder, T.E., Darras, B.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 591–698. [Google Scholar]
- Parodi, A.; Govaert, P.; Horsch, S.; Bravo, M.C.; Ramenghi, L.A.; eurUS.brain Group. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr. Res. 2020, 87 (Suppl. S1), 13–24. [Google Scholar] [CrossRef]
- De Angelis, L.C.; Parodi, A.; Sebastiani, M.; Consales, A.; Ravegnani, G.M.; Severino, M.; Tortora, D.; Rossi, A.; Malova, M.; Minghetti, D.; et al. External ventricular drainage for posthemorrhagic ventricular dilatation in preterm infants: Insights on efficacy and failure. J. Neurosurg. Pediatr. 2021, 28, 563–571. [Google Scholar] [CrossRef]
- Boswinkel, V.; Steggerda, S.J.; Fumagalli, M.; Parodi, A.; Ramenghi, L.A.; Groenendaal, F.; Dudink, J.; Benders, M.N.; Knol, R.; de Vries, L.S.; et al. The CHOPIn Study: A Multicenter Study on Cerebellar Hemorrhage and Outcome in Preterm Infants. Cerebellum 2019, 18, 989–998. [Google Scholar] [CrossRef]
- Uccella, S.; Parodi, A.; Calevo, M.G.; Nobili, L.; Tortora, D.; Severino, M.; Andreato, C.; Group Eu-Brain Neonatal Rossi, A.; Ramenghi, L.A. Influence of isolated low-grade intracranial haemorrhages on the neurodevelopmental outcome of infants born very low birthweight. Dev. Med. Child Neurol. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- de Bruijn, C.A.M.; Di Michele, S.; Tataranno, M.L.; Ramenghi, L.A.; Rossi, A.; Malova, M.; Benders, M.; van den Hoogen, A.; Dudink, J. Neurodevelopmental consequences of preterm punctate white matter lesions: A systematic review. Pediatr. Res. 2023, 93, 1480–1490. [Google Scholar] [CrossRef]
- Kurinczuk, J.J.; White-Koning, M.; Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2012, 86, 329–338. [Google Scholar] [CrossRef]
- Bassler, D.; Stoll, B.J.; Schmidt, B.; Asztalos, E.V.; Roberts, R.S.; Robertson, C.M.; Sauve, R.S. rial of Indomethacin Prophylaxis in Preterms Investigators. Using a count of neonatal morbidities to predict poor outcome in extremely low birth weight infants: Added role of neonatal infection. Pediatrics 2009, 123, 313–318. [Google Scholar] [CrossRef]
- Soraisham, A.S.; Amin, H.J.; Al-Hindi, M.Y.; Singhal, N.; Sauve, R.S. Does necrotising enterocolitis impact the neurodevelopmental and growth outcomes in preterm infants with birthweight < or = 1250 g? J. Paediatr. Child Health 2006, 42, 499–504. [Google Scholar]
- Hickey, M.; Georgieff, M.; Ramel, S. Neurodevelopmental outcomes following necrotizing enterocolitis. Semin. Fetal Neonatal Med. 2018, 23, 426–432. [Google Scholar] [CrossRef]
- Gou, X.; Yang, L.; Pan, L.; Xiao, D. Association between bronchopulmonary dysplasia and cerebral palsy in children: A meta-analysis. BMJ Open 2018, 8, e020735. [Google Scholar] [CrossRef]
- Cheong, J.L.Y.; Doyle, L.W. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin. Perinatol. 2018, 42, 478–484. [Google Scholar] [CrossRef]
- Poets, C.F.; Lorenz, L. Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: Current evidence. Arch. Dis. Child Fetal Neonatal Ed. 2018, 103, F285–F291. [Google Scholar] [CrossRef]
- Hunt, R.W.; Hickey, L.M.; Burnett, A.C.; Anderson, P.J.; Cheong, J.L.Y.; Doyle, L.W.; Victorian Infant Collaborative Study Group. Early surgery and neurodevelopmental outcomes of children born extremely preterm. Arch. Dis. Child Fetal Neonatal Ed. 2018, 103, F227–F232. [Google Scholar] [CrossRef]
- Tortora, D.; Severino, M.; Di Biase, C.; Malova, M.; Parodi, A.; Minghetti, D.; Traggiai, C.; Uccella, S.; Boeri, L.; Morana, G.; et al. Early Pain Exposure Influences Functional Brain Connectivity in Very Preterm Neonates. Front. Neurosci. 2019, 13, 899. [Google Scholar] [CrossRef]
- Antonov, N.K.; Ruzal-Shapiro, C.B.; Morel, K.D.; Millar, W.S.; Kashyap, S.; Lauren, C.T.; Garzon, M.C. Feed and Wrap MRI Technique in Infants. Clin. Pediatr. 2017, 56, 1095–1103. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Fenton, T.R.; Ohuma, E.O.; Ismail, L.C.; Kennedy, S.H. INTERGROWTH-21st very preterm size at birth reference charts. Lancet 2016, 387, 844–845. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Bhutta, Z.A.; Bertino, E.; Ohuma, E.O.; Ismail, L.C.; Barros, F.C.; Altman, D.G.; Victora, C.; Noble, J.A.; et al. Postnatal growth standards for preterm infants: The Preterm Postnatal Follow-up Study of the INTERGROWTH-21st Project. Lancet Glob. Health 2015, 3, e681–e691. [Google Scholar] [CrossRef]
- LMS. Parameters for Girls: Infant Weight for Age. National Health and Nutrition Survey (NHANES), CDC/National Center for Health Statistics; LMS Parameters for Boys: Infant Weight for Age. National Health and Nutrition Survey (NHANES), CDC/National Center for Health Statistics. Available online: https://www.cdc.gov/growthcharts/percentile_data_files.htm (accessed on 30 December 2023).
- Fenton, T.R.; Chan, H.T.; Madhu, A.; Griffin, I.J.; Hoyos, A.; Ziegler, E.E.; Groh-Wargo, S.; Carlson, S.J.; Senterre, T.; Anderson, D.; et al. Preterm infant growth velocity calculations: A systematic review. Pediatrics 2017, 139, e20162045. [Google Scholar] [CrossRef]
- Griffiths, R.; Huntley, M. GMDS-R Griffiths Mental Development Scales- Revised 0–2 Years; Battaglia, F.M., Savoini, M., Eds.; Manuale. Giunti O.S: Firenze, Italy, 2007. [Google Scholar]
- Kumar, R.K.; Singhal, A.; Vaidya, U.; Banerjee, S.; Anwar, F.; Rao, S. Optimizing Nutrition in Preterm Low Birth Weight Infants—Consensus Summary. Front. Nutr. 2017, 4, 20. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, L.; Lee, S.K.; Chen, C.; Hu, X.J.; Liu, C.; Cao, Y. A Quality Improvement Initiative to Increase Mother’s Own Milk Use in a Chinese Neonatal Intensive Care Unit. Breastfeed Med. 2020, 15, 261–267. [Google Scholar] [CrossRef]
- Cerasani, J.; Ceroni, F.; De Cosmi, V.; Mazzocchi, A.; Morniroli, D.; Roggero, P.; Mosca, F.; Agostoni, C.; Giannì, M.L. Human Milk Feeding and Preterm Infants’ Growth and Body Composition: A Literature Review. Nutrients 2020, 12, 1155. [Google Scholar] [CrossRef]
- ESPGHAN Committee on Nutrition; Aggett, P.J.; Agostoni, C.; Axelsson, I.; De Curtis, M.; Goulet, O.; Hernell, O.; Koletzko, B.; Lafeber, H.N.; Michaelsen, K.F.; et al. Feeding preterm infants after hospital discharge: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 596–603. [Google Scholar] [CrossRef]
- Lucas, A.; Morley, R.; Cole, T.J.; Lister, G.; Leeson-Payne, C. Breast milk and subsequent intelligence quotient in. Lancet 1992, 339, 261–264. [Google Scholar] [CrossRef]
- Vohr, B.R.; Poindexter, B.B.; Dusick, A.M.; McKinley, L.T.; Higgins, R.D.; Langer, J.C.; Poole, W.K. National Institute of Child Health and Human Development National Research Network. Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics 2007, 120, e953–e959. [Google Scholar] [CrossRef]
- Young, L.; Embleton, N.D.; McCormick, F.M.; McGuire, W. Multinutrient fortification of human milk for preterm infants. Cochrane Database Syst. Rev. 2013, 2, CD004866. [Google Scholar]
- Young, L.; Embleton, N.D.; McGuire, W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst. Rev. 2016, 12, CD004696. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Ksiażyk, J.; Luna, M.S.; Migacheva, N.; Picaud, J.C.; Ramenghi, L.A.; Singhal, A.; Wabitsch, M. Partial Hydrolyzed Protein as a Protein Source for Infant Feeding: Do or Don’t? Nutrients 2022, 14, 1720. [Google Scholar] [CrossRef]
- World Health Organization. Complementary Feeding: Report of the Global Consultation, and Summary of Guiding Principles for Complementary Feeding of the Breastfed Child; World Health Organization: Geneva, Switzerland, 2003.
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Appropriate age range for introduction of complementary feeding into an infant’s diet. EFSA J. 2019, 17, e05780. [Google Scholar]
- Baldassarre, M.E.; Di Mauro, A.; Pedico, A.; Rizzo, V.; Capozza, M.; Meneghin, F.; Lista, G.; Laforgia, N.; On behalf of Italian Society of Pediatrics (SIP), Italian Society of Neonatology (SIN), Italian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (SIGENP) and Italian Federation of Paediatricians (FIMP). Weaning Time in Preterm Infants: An Audit of Italian Primary Care Paediatricians. Nutrients 2018, 10, 616. [Google Scholar] [CrossRef]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Mis, N.F.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A.; et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, hepatology, and nutrition (ESPGHAN) committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
- DHSS (Department of Health and Social Security). Present day practice in infant feeding. Lancet 1988, 331, 975–976. [Google Scholar] [CrossRef]
- Department of Health. Weaning and the weaning diet. Rep. Health Soc. Subj. 1994, 45, 1–113. [Google Scholar]
- Palmer, D.J.; Makrides, M. Introducing solid foods to preterm infants in developed countries. Ann. Nutr. Metab. 2012, 60, 31–38. [Google Scholar] [CrossRef]
- Gupta, S.; Agarwal, R.; Aggarwal, K.C.; Chellani, H.; Duggal, A.; Arya, S.; Bhatia, S.; Sankar, M.J.; Sreenivas, V.; Jain, V.; et al. Investigators of the CF trial. Complementary feeding at 4 versus 6 months of age for preterm infants born at less than 34 weeks of gestation: A randomised, open-label, multicentre trial. Lancet Glob. Health 2017, 5, e501–e511. [Google Scholar] [CrossRef]
- Marriott, L.D.; Foote, K.D.; Bishop, J.A.; Kimber, A.C.; Morgan, J.B. Weaning preterm infants: A randomised controlled trial. Arch. Dis. Child Fetal Neonatal Ed. 2003, 88, F302–F307. [Google Scholar] [CrossRef]
- Haiden, N.; Thanhaeuser, M.; Eibensteiner, F.; Huber-Dangl, M.; Gsoellpointner, M.; Ristl, R.; Kroyer, B.; Brandstetter, S.; Kornsteiner-Krenn, M.; Binder, C.; et al. Randomized Controlled Trial of Two Timepoints for Introduction of Standardized Complementary Food in Preterm Infants. Nutrients 2022, 14, 697. [Google Scholar] [CrossRef]
- Spiegler, J.; Eisemann, N.; Ehlers, S.; Orlikowsky, T.; Kannt, O.; Herting, E.; Göpel, W. Length and weight of very low birth weight infants in Germany at 2 years of age: Does it matter at what age they start complementary food? Eur. J. Clin. Nutr. 2015, 69, 662–667. [Google Scholar] [CrossRef]
- Morgan, J.B.; Lucas, A.; Fewtrell, M.S. Does weaning influence growth and health up to 18 months? Arch. Dis. Child 2004, 89, 728–733. [Google Scholar] [CrossRef]
- Sun, C.; Foskey, R.J.; Allen, K.J.; Dharmage, S.C.; Koplin, J.J.; Ponsonby, A.L.; Lowe, A.J.; Matheson, M.C.; Tang, M.L.; Gurrin, L.; et al. The impact of timing of introduction of solids on infant body mass index. J. Pediatr. 2016, 179, 104–110.e1. [Google Scholar] [CrossRef]
- Yrjänä, J.M.S.; Koski, T.; Törölä, H.; Valkama, M.; Kulmala, P. Very early introduction of semisolid foods in preterm infants does not increase food allergies or atopic dermatitis. Ann. Allergy Asthma Immunol. 2018, 121, 353–359. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Panza, R.; Cresi, F.; Salvatori, G.; Corvaglia, L.; Aceti, A.; Giannì, M.L.; Liotto, N.; Ilardi, L.; Laforgia, N.; et al. Mosca F and Italian Society of Paediatrics (SIP), Italian Society of Neonatology. Complementary feeding in preterm infants: A position paper by Italian neonatal, paediatric and paediatric gastroenterology joint societies. Ital. J. Pediatr. 2022, 48, 143. [Google Scholar] [CrossRef]
- Salvatori, G.; Martini, L.; On behalf of The Study Group On Neonatal Nutrition And Gastroenterology-Italian Society of Neonatology. Complementary Feeding in the Preterm Infants: Summary of Available Macronutrient Intakes and Requirements. Nutrients 2020, 12, 3696. [Google Scholar] [CrossRef]
- Ojha, S.; Elfzzani, Z.; Kwok, T.C.; Dorling, J. Education of family members to support weaning to solids and nutrition in later infancy in term-born infants. Cochrane Database Syst. Rev. 2020, 7, CD012241. [Google Scholar] [PubMed]
- Elfzzani, Z.; Kwok, T.C.; Ojha, S.; Dorling, J. Education of family members to support weaning to solids and nutrition in infants born preterm. Cochrane Database Syst. Rev. 2019, 2, CD012240. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.F.; Matthews, M.A. Neurodevelopmental Outcomes in Early Childhood. Clin. Perinatol. 2018, 45, 377–392. [Google Scholar] [CrossRef]
- Fitzgerald, E.; Boardman, J.P.; Drake, A.J. Preterm Birth and the Risk of Neurodevelopmental Disorders—Is There a Role for Epigenetic Dysregulation? Curr. Genomics 2018, 19, 507–521. [Google Scholar] [CrossRef]
- Malova, M.; Parodi, A.; Severino, M.; Tortora, D.; Calevo, M.G.; Traggiai, C.; Massirio, P.; Minghetti, D.; Uccella, S.; Preiti, D.; et al. Neurodevelopmental Outcome at 3 Years of Age in Very Low Birth Weight Infants According to Brain Development and Lesions. Curr. Pediatr. Rev. 2024, 20, 94–105. [Google Scholar] [CrossRef] [PubMed]
Whole Population | n = 288 |
---|---|
Gestational age (weeks) | 28.9 ± 2.1 |
Birth weight (g) | 1097 ± 255 g (z-score −0.449 ± 1.09) |
Small for gestational age (SGA) | 62 (21.5%) |
Male sex | 139 (48.3%) |
Cesarean delivery | 232 (80.6%) |
Apgar at 5 min | 8 ± 1.2 |
Sepsis | 108 (37.5%) |
Necrotizingenterocolitis (NEC) | 30 (10.4%) |
Bronchodysplasia (BPD) | 68 (23.6%) |
Major surgery | 36 (12.5%) |
NEC surgery | 15 (5.2%) |
Patent ductus arteriosus surgery | 17 (5.9%) |
Exclusive mother milk feeding | 49 (17%) |
Exclusive formula feeding | 118 (41%) |
MRI low-grade lesions | 101 (35.1%) |
Low-grade intraventricular hemorrhage (GMH-IVH) | 44 (15.3%) |
Punctate white matter lesions (PWMLs) | 47 (16.3%) |
Cerebellar micro-hemorrhage (micro-CBH) | 31 (10.8%) |
Weight at term age TEA (g) | 2600 ± 598 (z-score −1.407 ± 1.415) |
“Cross-sectional” EUGR at TEA | 144 (50%) |
“Longitudinal” EUGR at TEA | 126 (43.8%) |
Weight at 6 months (kg) | 6.81 ± 1.03 (z-score −1.240 ± 1.29) |
“Cross-sectional” EUGR at 6 months | 133 (46.2%) |
“Longitudinal” EUGR at 6 months | 46 (16.0%) |
Weight at 12 months (kg) | 8.78 ± 1.16 (z-score −1.360 ± 1.25) |
“Cross-sectional” EUGR at 12 months | 139 (48.3%) |
Developmental Quotient < 85 GMDS at 2 y (n = 288) | |
Global DQ | 56 (19.4%) |
Locomotor (scale A) | 68 (23.6%) |
Personal/social (scale B) | 67 (23.2%) |
Language (scale C) | 127 (44.1%) |
Hand–eye coordination (scale D) | 38 (13.2%) |
Performance (scale E) | 70 (24.3%) |
Developmental Quotient < 85 GMDS at 3 y (n = 262) | |
Global DQ | 100 (38.2%) |
Locomotor (scale A) | 83 (31.7%) |
Personal/social (scale B) | 87 (33.2%) |
Language (scale C) | 139 (53.0%) |
Hand–eye coordination (scale D) | 83 (31.6%) |
Performance (scale E) | 126 (48.1%) |
Practical reasoning (scale F) | 101 (38.5%) |
2 y GMDS Global DQ | <85 | ≥85 | |
---|---|---|---|
n | 56 | 232 | Total 288 |
z-score at 6 months | −1.639 ± 1.582 | −1.140 ± 1.188 | p = 0.03 |
z-score at 12 months | −1.735 ± 1.56 | −1.264 ± 1.155 | p = 0.03 |
Surgical NEC | 6 (10.7%) | 9 (3.9%) | p = 0.08 |
“Cross-sectional” EUGR at 6 months | 33 (58.9%) | 101 (43.5%) | p = 0.07 |
Multivariate analysis (corrected for GA): | |||
z-score at 6 months | OR 0.74 (CI 95% 0.59–0.93) | p = 0.01 |
2 y GMDS Locomotor DQ | ||
Major surgery | OR 3.79 (CI 95% 1.69–8.49) | p = 0.001 |
“Cross-sectional” EUGR at 6 months | OR 1.96 (CI 95% 1.10–3.47) | p = 0.02 |
Punctate white matter lesions (PWMLs) | OR 2.33 (CI 95% 1.15–4.71) | p = 0.02 |
2 y GMDS Personal/social DQ | ||
“Cross-sectional” EUGR at 6 months | OR 1.94 (CI 95% 1.12–3.37) | p = 0.02 |
NEC | OR 2.60 (CI 95% 1.14–5.92) | p = 0.02 |
2 y GMDS Language DQ | ||
NEC | OR 2.48 (CI 95% 1.07–5.71) | p = 0.03 |
“Cross-sectional” EUGR at 6 months | OR 1.87 (CI 95% 1.05–3.29) | p = 0.02 |
Weight z-score at birth | OR 0.31 (CI 95% 0.12–0.81) | p = 0.02 |
2 y GMDS Hand–eye Coordination DQ | ||
NEC | OR 3.98 (CI 95% 1.66–9.55) | p = 0.002 |
2 y GMDS Performance DQ | ||
Male sex | OR 2.01 (CI 95% 1.13–3.57) | p = 0.02 |
Punctate white matter lesions (PWMLs) | OR 2.03 (CI 95% 1.00–4.14) | p = 0.05 |
Major surgery | OR 4.07 (CI 95% 1.78–9.33) | p = 0.001 |
“Longitudinal” EUGR at 6 months | OR 2.10 (CI 95% 1.03–4.30) | p = 0.04 |
3 y GMDS Global DQ | <85 | ≥85 | |
---|---|---|---|
n | 100 | 162 | Total 262 |
Male sex | 60 (60%) | 70 (43.2%) | p = 0.01 |
Caesarean delivery | 76 (76%) | 138 (85.2%) | p = 0.05 |
NEC | 17 (17%) | 12 (7.4%) | p = 0.02 |
Multivariate analysis (corrected for GA): | |||
Male sex | OR 1.94 (CI 95% 1.16–3.24) | p = 0.01 | |
NEC | OR 2.55 (CI 95% 1.11–5.86) | p = 0.03 |
3 y GMDS Locomotor DQ | ||
Male sex | OR 1.82 (CI 95% 1.07–3.10) | p = 0.03 |
3 y GMDS Personal/social DQ | ||
Male sex | OR 2.18 (CI 95% 1.28–3.72) | p = 0.004 |
Caesarean delivery | OR 0.47 (CI 95% 0.25–0.91) | p = 0.02 |
3 y GMDS Language DQ | ||
“Cross-sectional” EUGR at 6 months | OR 1.63 (CI 95% 0.99–2.68) | p = 0.05 |
Male sex | OR 1.88 (CI 95% 1.14–3.10) | p = 0.01 |
3 y GMDS Hand–eye Coordination DQ | ||
NEC | OR 4.17 (CI 95% 1.78–9.76) | p = 0.001 |
Male sex | OR 1.80 (CI 95% 1.04–3.10) | p = 0.03 |
3 y GMDS Performance DQ | ||
NEC | OR 4.31 (CI 95% 1.63–11.35) | p = 0.003 |
Male sex | OR 2.39 (CI 95% 1.44–3.97) | p = 0.001 |
3 y GMDS Practical Reasoning DQ | ||
NEC | OR 4.47 (CI 95% 1.84–10.85) | p = 0.001 |
“Longitudinal” EUGR at 6 months | OR 2.07 (CI 95% 1.02–4.17) | p = 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massirio, P.; Battaglini, M.; Bonato, I.; De Crescenzo, S.; Calevo, M.G.; Malova, M.; Caruggi, S.; Parodi, A.; Preiti, D.; Zoia, A.; et al. Early Extra-Uterine Growth Restriction in Very-Low-Birth-Weight Neonates with Normal or Mildly Abnormal Brain MRI: Effects on a 2–3-Year Neurodevelopmental Outcome. Nutrients 2024, 16, 449. https://doi.org/10.3390/nu16030449
Massirio P, Battaglini M, Bonato I, De Crescenzo S, Calevo MG, Malova M, Caruggi S, Parodi A, Preiti D, Zoia A, et al. Early Extra-Uterine Growth Restriction in Very-Low-Birth-Weight Neonates with Normal or Mildly Abnormal Brain MRI: Effects on a 2–3-Year Neurodevelopmental Outcome. Nutrients. 2024; 16(3):449. https://doi.org/10.3390/nu16030449
Chicago/Turabian StyleMassirio, Paolo, Marcella Battaglini, Irene Bonato, Sara De Crescenzo, Maria Grazia Calevo, Mariya Malova, Samuele Caruggi, Alessandro Parodi, Deborah Preiti, Agata Zoia, and et al. 2024. "Early Extra-Uterine Growth Restriction in Very-Low-Birth-Weight Neonates with Normal or Mildly Abnormal Brain MRI: Effects on a 2–3-Year Neurodevelopmental Outcome" Nutrients 16, no. 3: 449. https://doi.org/10.3390/nu16030449
APA StyleMassirio, P., Battaglini, M., Bonato, I., De Crescenzo, S., Calevo, M. G., Malova, M., Caruggi, S., Parodi, A., Preiti, D., Zoia, A., Uccella, S., Tortora, D., Severino, M., Rossi, A., Traggiai, C., Nobili, L., Striano, P., & Ramenghi, L. A. (2024). Early Extra-Uterine Growth Restriction in Very-Low-Birth-Weight Neonates with Normal or Mildly Abnormal Brain MRI: Effects on a 2–3-Year Neurodevelopmental Outcome. Nutrients, 16(3), 449. https://doi.org/10.3390/nu16030449