Effects of Ethanol Concentrations on Primary Structural and Bioactive Characteristics of Dendrobium officinale Polysaccharides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Isolation of Polysaccharides
2.3. Chemical Compositions Determination
2.4. The Molecular Weight Detection Assay
2.5. Fourier Transformation Infrared (FTIR) Spectroscopy
2.6. Antioxidant Activity Assay In Vitro
2.7. Antitumor Activity Assay In Vitro
2.8. Animal Experimental Design
2.9. Collection of Physiological Indicators
2.10. Leukocyte Subsets Analysis and Lymphocytes Proliferative Activity
2.11. Antioxidant Activity Determination In Vivo
2.12. Statistical Analysis
3. Results
3.1. Chemical Compositions of DOPs
3.2. Ultraviolet Full Wavelength Spectra of DOPs
3.3. Molecular Weight Distributions of DOPs
3.4. Monosaccharide Compositions of DOPs
3.5. Functional Groups of DOPs
3.6. Antitumor Activities of DOPs In Vitro
3.7. Antioxidant Activities of DOPs In Vitro
3.8. Physiological Indicators Collection of H22-Bearing Mice
3.9. Effects of DOPs on Lymphocytes Activities
3.10. Antioxidant Activities of DOPs on H22-Bearing Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fei, W.; Noda, M.; Danshiitsoodol, N.; Sugiyama, M. Skin Anti-Aging Efficacy of a Lactobacillus plantarum GT-17F Fermented Dendrobium officinale Ingredient: A Randomized, Double-Blind, Placebo-Controlled Clinical Study. Cosmetics 2024, 11, 26. [Google Scholar] [CrossRef]
- Pham, P.L.; Le, T.T.; Vu, T.T.; Nguyen, T.T.; Zhang, Z.-S.; Zeng, R.-Z.; Xie, L.; Nguyen, M.N.; Trang, V.T.; Xuan, T.D.; et al. Comparative Transcriptome Analysis and Expression of Genes Associated with Polysaccharide Biosynthesis in Dendrobium officinale Diploid and Tetraploid Plants. Agronomy 2024, 14, 69. [Google Scholar] [CrossRef]
- Sui, M.; Feng, S.; Yu, J.; Chen, B.; Li, Z.; Shao, P. Removal and recovery of deep eutectic solvent with membrane-based methodology: A promising strategy to enhance extraction and purification of Dendrobium officinale flavonoids. Ind. Crops Prod. 2023, 206, 117638. [Google Scholar] [CrossRef]
- Liu, P.; Fan, B.; Mu, Y.; Tong, L.; Lu, C.; Li, L.; Liu, J.; Sun, J.; Wang, F. Plant-Wide Target Metabolomics Provides a Novel Interpretation of the Changes in Chemical Components during Dendrobium officinale Traditional Processing. Antioxidants 2023, 12, 1995. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, Y.; Li, C.; Luo, H.; Wang, L.; Qian, J.; Luo, X.; Xiang, L.; Song, J.; Sun, C.; et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene 2013, 527, 131–138. [Google Scholar] [CrossRef]
- Lai, C.-H.; Huo, C.-Y.; Xu, J.; Han, Q.-B.; Li, L.-F. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. Int. J. Biol. Macromol. 2024, 263, 130315. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wu, J.-J.; Li, X.-F.; Lu, J.-M.; Wu, W.; Sun, Y.-Q.; Zhu, B.; Qin, L.-P. Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: A review. Int. J. Biol. Macromol. 2021, 184, 1000–1013. [Google Scholar] [CrossRef]
- Xing, X.; Cui, S.W.; Nie, S.; Phillips, G.O.; Goff, H.D.; Wang, Q. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part I. Extraction, purification, and partial structural characterization. Bioact. Carbohydr. Diet. Fibre 2014, 4, 74–83. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, X.; Ke, H.; Lin, J.; Huang, Y.; Wei, G. Physicochemical properties of polysaccharides from Dendrobium officinale by fractional precipitation and their preliminary antioxidant and anti-HepG2 cells activities in vitro. Chem. Cent. J. 2018, 12, 100. [Google Scholar] [CrossRef]
- Tao, S.; Lei, Z.; Huang, K.; Li, Y.; Ren, Z.; Zhang, X.; Wei, G.; Chen, H. Structural characterization and immunomodulatory activity of two novel polysaccharides derived from the stem of Dendrobium officinale Kimura et Migo. J. Funct. Foods 2019, 57, 121–134. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Z.; Zhong, Y.; Li, C.; Huang, X.; Geng, F.; Nie, S. Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: Short chain fatty acid production and gut commensal translocation. Food Funct. 2021, 12, 7343–7357. [Google Scholar] [CrossRef]
- Ng, C.Y.J.; Lai, N.P.Y.; Ng, W.M.; Siah, K.T.H.; Gan, R.-Y.; Zhong, L.L.D. Chemical structures, extraction and analysis technologies, and bioactivities of edible fungal polysaccharides from Poria cocos: An updated review. Int. J. Biol. Macromol. 2024, 261, 129555. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-H.; Chiu, C.-S.; Lu, W.-C.; Huang, R.-H.; Wang, C.-C.R.; Li, P.-H. Change in chemical composition and enhancement of intestinal microflora of acid hydrolyzed polysaccharides from Zizyphus jujube and Sterculia lychnophora. Arab. J. Chem. 2024, 17, 105598. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, L.; Wang, J.; Zhang, Z.; Xu, X.; Yang, K.; Sun, P.; Liao, X.; Cai, M. Rheological behaviors of ethanol-fractional polysaccharides from Dendrobium officinale in aqueous solution: Effects of concentration, temperature, pH, and metal ions. Food Hydrocoll. 2023, 137, 108311. [Google Scholar] [CrossRef]
- Wu, D.-T.; An, L.-Y.; Liu, W.; Hu, Y.-C.; Wang, S.-P.; Zou, L. In vitro fecal fermentation properties of polysaccharides from Tremella fuciformis and related modulation effects on gut microbiota. Food Res. Int. 2022, 156, 111185. [Google Scholar] [CrossRef] [PubMed]
- de Souza, S.S.; da Costa, J.C.; da Silva, G.S.; de Almeida-Val, V.M.F. Malathion alters the transcription of target genes of the tumour suppressor tp53 and cancerous processes in Colossoma macropomum: Mechanisms of DNA damage response, oxidative stress and apoptosis. Chem.-Biol. Interact. 2023, 374, 110405. [Google Scholar] [CrossRef] [PubMed]
- Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O.; Mihaila, M.A.; Kaya, D.A.; Stan, R.; Meghea, A. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation. Mater. Sci. Eng. C 2015, 56, 88–94. [Google Scholar] [CrossRef]
- Shrotriya, S.; Deep, G.; Gu, M.; Kaur, M.; Jain, A.K.; Inturi, S.; Agarwal, R.; Agarwal, C. Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G 2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells. Carcinogenesis 2012, 33, 848–858. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Taie, H.A.A.; Abdel Wahab, W.A. Antioxidant capacity and antitumor activity of the bioactive protein prepared from orange peel residues as a by-product using fungal protease. Int. J. Biol. Macromol. 2023, 234, 123578. [Google Scholar] [CrossRef]
- Fan, Y.; Long, Y.; Gong, Y.; Gao, X.; Zheng, G.; Ji, H. Systemic Immunomodulatory Effects of Codonopsis pilosula Glucofructan on S180 Solid-Tumor-Bearing Mice. Int. J. Mol. Sci. 2023, 24, 15598. [Google Scholar] [CrossRef]
- Ji, H.-Y.; Yu, J.; Jiao, J.-S.; Dong, X.-D.; Yu, S.-S.; Liu, A.-J. Ultrasonic-Assisted Extraction of Codonopsis pilosula Glucofructan: Optimization, Structure, and Immunoregulatory Activity. Nutrients 2022, 14, 927. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-y.; Dai, K.-y.; Liu, C.; Yu, J.; Liu, A.-j.; Chen, Y.-f. The ethanol-extracted polysaccharide from Cynanchum paniculatum: Optimization, structure, antioxidant and antitumor effects. Ind. Crops Prod. 2022, 175, 114243. [Google Scholar] [CrossRef]
- Dai, K.-y.; Liu, C.; Ji, H.-y.; Liu, A.-j. Extraction, structural identification and anti-tumor activity of two Cordyceps militaris polysaccharides evaluated by S180 tumor-bearing mice. Ind. Crops Prod. 2024, 210, 118163. [Google Scholar] [CrossRef]
- López-Legarda, X.; Rostro-Alanis, M.; Parra-Saldivar, R.; Villa-Pulgarín, J.A.; Segura-Sánchez, F. Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. Int. J. Biol. Macromol. 2021, 186, 919–932. [Google Scholar] [CrossRef]
- Yu, J.; Dong, X.-D.; Jiao, J.-S.; Yu, S.-S.; Ji, H.-Y.; Liu, A.-J.; Chen, Y. The inhibitory effects of selenium nanoparticles modified by fructose-enriched polysaccharide from Codonopsis pilosula on HepG2 cells. Ind. Crops Prod. 2022, 176, 114335. [Google Scholar] [CrossRef]
- Xie, L.; Shen, M.; Wen, P.; Hong, Y.; Liu, X.; Xie, J. Preparation, characterization, antioxidant activity and protective effect against cellular oxidative stress of phosphorylated polysaccharide from Cyclocarya paliurus. Food Chem. Toxicol. 2020, 145, 111754. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, W.-W.; Ni, Z.-J.; Thakur, K.; Zhang, J.-G.; Khan, M.R.; Xu, W.-D.; Wei, Z.-J. Effects of different chemical modifications on physicochemical and antioxidation properties of Lycium barbarum seed dreg polysaccharides. Food Chem. X 2024, 22, 101271. [Google Scholar] [CrossRef]
- Hsiao, Y.; Shao, Y.; Wu, Y.; Hsu, W.; Cheng, K.; Yu, C.; Chou, C.; Hsieh, C. Physicochemical properties and protective effects on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides by fractional precipitation. Int. J. Biol. Macromol. 2023, 228, 537–547. [Google Scholar] [CrossRef]
- Liu, S.; Li, M.; Liu, W.; Zhang, Z.; Wang, X.; Dong, H. Structure and properties of acidic polysaccharides isolated from Massa Medicata Fermentata: Neuroprotective and antioxidant activity. Int. J. Biol. Macromol. 2024, 259, 129128. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, Y.; Lv, Z.; Taoerdahong, H.; Li, G.; Li, J.; Zhao, X.; Jin, X.; Chang, J. Structural characterization of a polysaccharide from Alhagi honey and its protective effect against inflammatory bowel disease by modulating gut microbiota dysbiosis. Int. J. Biol. Macromol. 2024, 259, 128937. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-T.; Geng, J.-L.; Li, J.; Deng, W.; Zhang, Y.; Hu, Y.-C.; Zou, L.; Xia, Y.; Zhuang, Q.-G.; Liu, H.-Y.; et al. Efficient extraction of pectic polysaccharides from thinned unripe kiwifruits by deep eutectic solvent-based methods: Chemical structures and bioactivities. Food Chem. X 2024, 21, 101083. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Cui, S.W.; Nie, S.; Phillips, G.O.; Goff, H.D.; Wang, Q. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part II. Fine structures of O-acetylated residues. Carbohydr. Polym. 2015, 117, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.; Wang, D.; Wu, N.; Wang, K.; Zhang, Y. Preparation, chemical structure and α-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa. J. Funct. Foods 2022, 98, 105289. [Google Scholar] [CrossRef]
- Bako, H.K.; Ibeogu, H.I.; Bassey, A.P.; Yar, M.S.; Zhou, T.; Li, C. Optimisation and characterization of double emulsion derived from rice starch, rice protein isolates and rice bran oil. Int. J. Biol. Macromol. 2024, 258, 128966. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiong, W.; He, L.; Chu, G.; Dong, D.; Hu, J. Moisturizing and aroma enhancing effects of polysaccharides during pyrolysis. J. Agric. Food Res. 2023, 12, 100609. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, Z.; Xu, Y.; Wu, J.; Yu, Y. Effects of Lactobacillus plantarum FM 17 fermentation on jackfruit polysaccharides: Physicochemical, structural, and bioactive properties. Int. J. Biol. Macromol. 2024, 258, 128988. [Google Scholar] [CrossRef] [PubMed]
- Deore, U.V.; Mahajan, H.S.; Surana, S.J.; Joshi, A.A. Exploring film forming ability and improving its bioadhesiveness by thiolation of mucilaginous polysaccharides from Cassia uniflora seeds for drug delivery application. Int. J. Biol. Macromol. 2024, 260, 129500. [Google Scholar] [CrossRef]
- Cheng, Z.; Zheng, Q.; Duan, Y.; Cai, M.; Zhang, H. Effect of subcritical water temperature on the structure, antioxidant activity and immune activity of polysaccharides from Glycyrrhiza inflata Batalin. Int. J. Biol. Macromol. 2024, 261, 129591. [Google Scholar] [CrossRef]
- Abdullah, S.S.S.; Mazlan, A.N. Quantification of polyphenols and antioxidant activity in several herbal and green tea products in Malaysia. Mater. Today Proc. 2020, 31, A106–A113. [Google Scholar] [CrossRef]
- de Moraes-Pinto, M.I.; Suano-Souza, F.; Aranda, C.S. Immune system: Development and acquisition of immunological competence. J. Pediatr. 2020, 97, S59–S66. [Google Scholar] [CrossRef]
- Tao, Y.; Yang, L.; Lai, C.; Huang, C.; Li, X.; Yong, Q. A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. Carbohydr. Polym. 2020, 250, 116951. [Google Scholar] [CrossRef]
- Li, J.H.; Zhu, Y.Y.; Gu, F.T.; Wu, J.Y. Efficient isolation of immunostimulatory polysaccharides from Lentinula edodes by autoclaving-ultrasonication extraction and fractional precipitation. Int. J. Biol. Macromol. 2023, 237, 124216. [Google Scholar] [CrossRef]
- Yang, X.; Cao, D.; Ji, H.; Xu, H.; Feng, Y.; Liu, A. Physicochemical characterization, rheological properties, and hypolipidemic and antioxidant activities of compound polysaccharides in Chinese herbal medicines by fractional precipitation. Int. J. Biol. Macromol. 2023, 242, 124838. [Google Scholar] [CrossRef]
- Niu, G.; You, G.; Zhou, X.; Fan, H.; Liu, X. Physicochemical properties and in vitro hypoglycemic activities of hsian-tsao polysaccharide fractions by gradient ethanol precipitation method. Int. J. Biol. Macromol. 2023, 231, 123274. [Google Scholar] [CrossRef]
- Berti, F.; De Ricco, R.; Rappuoli, R. Role of O-Acetylation in the Immunogenicity of Bacterial Polysaccharide Vaccines. Molecules 2018, 23, 1340. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhao, P.; Guo, L.; Huang, L.; Li, X.; Gao, W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr. Polym. 2023, 313, 120746. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, K.A.; Muresan, A.R.; Min, H.; Son, J.; Han, H.-S.; Kang, M.-J.; Kwon, O.-S. Simultaneous quantification of TB-500 and its metabolites in in-vitro experiments and rats by UHPLC-Q-Exactive orbitrap MS/MS and their screening by wound healing activities in-vitro. J. Chromatogr. B 2024, 1235, 124033. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, P.; Prearo, M.; Barceló, D. Ethical principles and scientific advancements: In vitro, in silico, and non-vertebrate animal approaches for a green ecotoxicology. Green Anal. Chem. 2024, 8, 100096. [Google Scholar] [CrossRef]
- Mi, Y.; Chen, Y.; Li, Q.; Tan, W.; Guo, Z. pH sensitive adriamycin-incorporated nanoparticles self-assembled from amphiphilic chitosan derivatives with enhanced antioxidant and antitumor activities. Carbohydr. Polym. Technol. Appl. 2024, 7, 100475. [Google Scholar] [CrossRef]
- Pacini, G.; Ahrén, B. The dual incretin co-agonist tirzepatide increases both insulin secretion and glucose effectiveness in model experiments in mice. Peptides 2024, 171, 171117. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Cheng, S.W.; Zou, J.; Li, K.S.L.; Cheng, H.; Wai Lau, D.T.; Han, Q.; Yang, X.; Shaw, P.C.; Zuo, Z. Role of gut microbiota on regulation potential of Dendrobium officinale Kimura & Migo in metabolic syndrome: In-vitro fermentation screening and in-vivo verification in db/db mice. J. Ethnopharmacol. 2024, 321, 117437. [Google Scholar] [CrossRef] [PubMed]
- Özalp, G.R.; Üstüner, B.; Avci, G.; Bari, Ö.; Yılmaz, M.M.; Denk, B.; Aktar, A. Vincristine-associated total antioxidant and oxidant status of ovaries and in vitro nuclear oocyte maturation in dogs with canine transmissible venereal tumor. Anim. Reprod. Sci. 2023, 253, 107260. [Google Scholar] [CrossRef]
- Bayerl, F.; Meiser, P.; Donakonda, S.; Hirschberger, A.; Lacher, S.B.; Pedde, A.-M.; Hermann, C.D.; Elewaut, A.; Knolle, M.; Ramsauer, L.; et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity 2023, 56, 1341–1358.e11. [Google Scholar] [CrossRef]
- Lu, J.; Song, L.; Feng, S.; Wang, K.; Mao, Y.; Gao, Y.; Zhao, Q.; Wang, S. Nanozyme-mediated biocatalysis as a mitochondrial oxidative stress amplifier for tumor nanocatalytic immunotherapy. Chem. Eng. J. 2024, 481, 148270. [Google Scholar] [CrossRef]
- Chatterjee, A.; Kosmacek, E.; Oberley-Deegan, R. Oxidative damage in tumor microenvironment enhances prostate tumor growth in a diabetic irradiated condition. Free Radic. Biol. Med. 2022, 192, 99–100. [Google Scholar] [CrossRef]
- Ibrahim, A.Y.; El-Newary, S.A.; Ibrahim, G.E. Antioxidant, cytotoxicity and anti-tumor activity of Cordia dichotoma fruits accompanied with its volatile and sugar composition. Ann. Agric. Sci. 2019, 64, 29–37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Long, Y.; Chi, J.; Dai, K.; Jia, X.; Ji, H. Effects of Ethanol Concentrations on Primary Structural and Bioactive Characteristics of Dendrobium officinale Polysaccharides. Nutrients 2024, 16, 897. https://doi.org/10.3390/nu16060897
Yu J, Long Y, Chi J, Dai K, Jia X, Ji H. Effects of Ethanol Concentrations on Primary Structural and Bioactive Characteristics of Dendrobium officinale Polysaccharides. Nutrients. 2024; 16(6):897. https://doi.org/10.3390/nu16060897
Chicago/Turabian StyleYu, Juan, Yan Long, Jinyue Chi, Keyao Dai, Xiaoyu Jia, and Haiyu Ji. 2024. "Effects of Ethanol Concentrations on Primary Structural and Bioactive Characteristics of Dendrobium officinale Polysaccharides" Nutrients 16, no. 6: 897. https://doi.org/10.3390/nu16060897
APA StyleYu, J., Long, Y., Chi, J., Dai, K., Jia, X., & Ji, H. (2024). Effects of Ethanol Concentrations on Primary Structural and Bioactive Characteristics of Dendrobium officinale Polysaccharides. Nutrients, 16(6), 897. https://doi.org/10.3390/nu16060897