Maternal Seafood Consumption during Pregnancy and Cardiovascular Health of Children at 11 Years of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sociodemographic, Clinical, and Lifestyle Data
2.3. Seafood Consumption
2.4. Cardiovascular Endpoints
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abegaz, K.H.; Abolhassani, H.; Aboyans, V.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 22 June 2022).
- Kromhout, D.; Menotti, A.; Kesteloot, H.; Sans, S. Prevention of Coronary Heart Disease by Diet and Lifestyle: Evidence from Prospective Cross-Cultural, Cohort, and Intervention Studies. Circulation 2002, 105, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Chagas, P.; Chiva-Blanch, G. Diet and Cardiovascular Disease: Effects of Foods and Nutrients in Classical and Emerging Cardiovascular Risk Factors. Curr. Med. Chem. 2019, 26, 3639–3651. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M.; Barrubés, L. Mediterranean Diet and Cardiovascular Disease Prevention: What Do We Know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutrients 2020, 12, 2278. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Bryson, C.L.; Lemaitre, R.N.; Burke, G.L.; Siscovick, D.S. Fish Intake and Risk of Incident Heart Failure. J. Am. Coll. Cardiol. 2005, 45, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Ajith, T.A.; Jayakumar, T.G. Omega-3 Fatty Acids in Coronary Heart Disease: Recent Updates and Future Perspectives. Clin. Exp. Pharmacol. Physiol. 2019, 46, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, K.; Iso, H.; Date, C.; Fukui, M.; Wakai, K.; Kikuchi, S.; Inaba, Y.; Tanabe, N.; Tamakoshi, A. Fish, Omega-3 Polyunsaturated Fatty Acids, and Mortality from Cardiovascular Diseases in a Nationwide Community-Based Cohort of Japanese Men and Women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J. Am. Coll. Cardiol. 2008, 52, 988–996. [Google Scholar] [CrossRef]
- Davidson, M.; Bulkow, L.R.; Gellin, B.G. Cardiac Mortality in Alaska’s Indigenous and Non-Native Residents. Int. J. Epidemiol. 1993, 22, 62–71. [Google Scholar] [CrossRef]
- Newman, W.P.; Middaugh, J.P.; Propst, M.T.; Rogers, D.R. Atherosclerosis in Alaska Natives and Non-Natives. Lancet 1993, 341, 1056–1057. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatsuno, I. Omega-3 Polyunsaturated Fatty Acids for Cardiovascular Diseases: Present, Past and Future. Expert. Rev. Clin. Pharmacol. 2017, 10, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Giosuè, A.; Calabrese, I.; Lupoli, R.; Riccardi, G.; Vaccaro, O.; Vitale, M. Relations between the Consumption of Fatty or Lean Fish and Risk of Cardiovascular Disease and All-Cause Mortality: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 1554. [Google Scholar] [CrossRef]
- Holden, J.M.; Lemar, L.E.; Exler, J. Vitamin D in Foods: Development of the US Department of Agriculture Database. Am. J. Clin. Nutr. 2008, 87, 1092S–1096S. [Google Scholar] [CrossRef]
- Roos, N.; Wahab, M.A.; Chamnan, C.; Thilsted, S.H. The Role of Fish in Food-Based Strategies to Combat Vitamin A and Mineral Deficiencies in Developing Countries. J. Nutr. 2007, 137, 1106–1109. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.E.; Van den Heuvel, E.G.H.M.; Atherton, C.A.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Crews, H.M.; Luten, J.B.; Lorentzen, M.; Sieling, F.W.; et al. Bioavailability of Selenium from Fish, Yeast and Selenate: A Comparative Study in Humans Using Stable Isotopes. Eur. J. Clin. Nutr. 2004, 58, 343–349. [Google Scholar] [CrossRef]
- Skilton, M.R. ω-3 Fatty Acids, Impaired Fetal Growth, and Cardiovascular Risk: Nutrition as Precision Medicine. Adv. Nutr. 2018, 9, 99–104. [Google Scholar] [CrossRef]
- Del Castillo-Matamoros, S.E.; Poveda, N.E. Importance of Nutrition in Pregnant Women. Rev. Colomb. Obstet. Ginecol. 2021, 72, 343. [Google Scholar] [CrossRef]
- Uauy, R.; Peirano, P.; Hoffman, D.; Mena, P.; Birch, D.; Birch, E. Role of Essential Fatty Acids in the Function of the Developing Nervous System. Lipids 1996, 31, S167–S176. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.; Hanson, M.; Peebles, C.; Davies, L.; Inskip, H.; Robinson, S.; Calder, P.C.; Cooper, C.; Godfrey, K.M. Higher Oily Fish Consumption in Late Pregnancy Is Associated with Reduced Aortic Stiffness in the Child at Age 9 Years. Circ. Res. 2015, 116, 1202–1205. [Google Scholar] [CrossRef]
- García-Rodríguez, C.E.; Olza, J.; Aguilera, C.M.; Mesa, M.D.; Miles, E.A.; Noakes, P.S.; Vlachava, M.; Kremmyda, L.S.; Diaper, N.D.; Godfrey, K.M.; et al. Plasma Inflammatory and Vascular Homeostasis Biomarkers Increase During Human Pregnancy but Are Not Affected by Oily Fish Intake. J. Nutr. 2012, 142, 1191–1196. [Google Scholar] [CrossRef]
- Blacher, J.; Asmar, R.; Djane, S.; London, G.M.; Safar, M.E. Aortic Pulse Wave Velocity as a Marker of Cardiovascular Risk in Hypertensive Patients. Hypertension 1999, 33, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Drobnjak, D.; Munch, I.C.; Glümer, C.; Faerch, K.; Kessel, L.; Larsen, M.; Veiby, N.C.B.B. Retinal Vessel Diameters and Their Relationship with Cardiovascular Risk and All-Cause Mortality in the Inter99 Eye Study: A 15-Year Follow-Up. J. Ophthalmol. 2016, 2016, 6138659. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, H.; Streese, L.; Vilser, W. Retinal Vessel Diameters and Function in Cardiovascular Risk and Disease. Prog. Retin. Eye Res. 2022, 91, 101095. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, S.B.; Claggett, B.; Bravo, P.E.; Gupta, A.; Farhad, H.; Klein, B.E.; Klein, R.; Di Carli, M.; Solomon, S.D. Retinal Vessel Calibers in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study. Circulation 2016, 134, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.F.; Sunyer, J.; Grimalt, J.; Rebagliato, M.; Ballester, F.; Ibarluzea, J.; Ribas-Fitó, N.; Tardon, A.; Fernandez-Patier, R.; Torrent, M.; et al. The Spanish Environment and Childhood Research Network (INMA Study). Int. J. Hyg. Environ. Health 2007, 210, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Guxens, M.; Ballester, F.; Espada, M.; Fernández, M.F.; Grimalt, J.O.; Ibarluzea, J.; Olea, N.; Rebagliato, M.; Tardón, A.; Torrent, M.; et al. Cohort Profile: The INMA—INfancia y Medio Ambiente—(Environment and Childhood) Project. Int. J. Epidemiol. 2012, 41, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, P.; Fossati, S.; Clemente, D.B.P.; Cirugeda, L.; Elosua, R.; Fernández-Barrés, S.; Fochs, S.; Garcia-Esteban, R.; Marquez, S.; Pey, N.; et al. Early-Childhood BMI Trajectories in Relation to Preclinical Cardiovascular Measurements in Adolescence. J. Dev. Orig. Health Dis. 2022, 13, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Güil-Oumrait, N.; Valvi, D.; Garcia-Esteban, R.; Guxens, M.; Sunyer, J.; Torrent, M.; Casas, M.; Vrijheid, M. Prenatal Exposure to Persistent Organic Pollutants and Markers of Obesity and Cardiometabolic Risk in Spanish Adolescents. Environ. Int. 2021, 151, 106469. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Vioque, J.; Navarrete-Muñoz, E.M.; Gimenez-Monzó, D.; García-De-La-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and Validity of a Food Frequency Questionnaire among Pregnant Women in a Mediterranean Area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Rei, M.; Severo, M.; Rodrigues, S. Reproducibility and Validity of the Mediterranean Diet Quality Index (KIDMED Index) in a Sample of Portuguese Adolescents. Br. J. Nutr. 2021, 126, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F.; Hwang, S.J.; Vasan, R.S.; Larson, M.G.; Pencina, M.J.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J. Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study. Circulation 2010, 121, 505. [Google Scholar] [CrossRef]
- Thurn, D.; Doyon, A.; Sözeri, B.; Bayazit, A.K.; Canpolat, N.; Duzova, A.; Querfeld, U.; Schmidt, B.M.W.; Schaefer, F.; Wühl, E.; et al. Aortic Pulse Wave Velocity in Healthy Children and Adolescents: Reference Values for the Vicorder Device and Modifying Factors. Am. J. Hypertens. 2015, 28, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Grima, N.A.; Sarris, J. The Effects of Dietary and Nutrient Interventions on Arterial Stiffness: A Systematic Review. Am. J. Clin. Nutr. 2011, 93, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Monahan, K.D.; Feehan, R.P.; Blaha, C.; McLaughlin, D.J. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation on Central Arterial Stiffness and Arterial Wave Reflections in Young and Older Healthy Adults. Physiol. Rep. 2015, 3, e12438. [Google Scholar] [CrossRef] [PubMed]
- Lakatta, E.G. Age-Associated Cardiovascular Changes in Health: Impact on Cardiovascular Disease in Older Persons. Heart Fail. Rev. 2002, 7, 29–49. [Google Scholar] [CrossRef]
- Chan, H.M.; Egeland, G.M. Fish Consumption, Mercury Exposure, and Heart Diseases. Nutr. Rev. 2004, 62, 68–72. [Google Scholar] [CrossRef]
- Tajik, B.; Tuomainen, T.P.; Kurl, S.; Salonen, J.; Virtanen, J.K. Serum Long-Chain Omega-3 Fatty Acids, Hair Mercury and Exercise-Induced Myocardial Ischaemia in Men. Heart 2019, 105, 1395–1401. [Google Scholar] [CrossRef]
- Spiller, P.; Hibbeln, J.R.; Myers, G.; Vannice, G.; Golding, J.; Crawford, M.A.; Strain, J.J.; Connor, S.L.; Brenna, J.T.; Kris-Etherton, P.; et al. An Abundance of Seafood Consumption Studies Presents New Opportunities to Evaluate Effects on Neurocognitive Development. Prostaglandins Leukot. Essent. Fat. Acids 2019, 151, 8–13. [Google Scholar] [CrossRef]
- Omega-3 Fatty Acids—Health Professional Fact Sheet. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/#h2 (accessed on 4 July 2023).
- Colombo, J.; Carlson, S.E.; Cheatham, C.L.; Fitzgerald-Gustafson, K.M.; Kepler, A.; Doty, T. Long Chain Polyunsaturated Fatty Acid Supplementation in Infancy Reduces Heart Rate and Positively Affects Distribution of Attention. Pediatr. Res. 2011, 70, 406. [Google Scholar] [CrossRef] [PubMed]
- Damsgaard, C.T.; Schack-Nielsen, L.; Michaelsen, K.F.; Fruekilde, M.B.; Hels, O.; Lauritzen, L. Fish Oil Affects Blood Pressure and the Plasma Lipid Profile in Healthy Danish Infants. J. Nutr. 2006, 136, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Rytter, D.; Bech, B.H.; Halldorsson, T.; Christensen, J.H.; Schmidt, E.B.; Danielsen, I.; Henriksen, T.B.; Olsen, S.F. No Association between the Intake of Marine N-3 PUFA during the Second Trimester of Pregnancy and Factors Associated with Cardiometabolic Risk in the 20-Year-Old Offspring. Br. J. Nutr. 2013, 110, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Rytter, D.; Christensen, J.H.; Bech, B.H.; Schmidt, E.B.; Henriksen, T.B.; Olsen, S.F. The Effect of Maternal Fish Oil Supplementation during the Last Trimester of Pregnancy on Blood Pressure, Heart Rate and Heart Rate Variability in the 19-Year-Old Offspring. Br. J. Nutr. 2012, 108, 1475–1483. [Google Scholar] [CrossRef]
- Larnkjær, A.; Christensen, J.H.; Michaelsen, K.F.; Lauritzen, L. Maternal Fish Oil Supplementation during Lactation Does Not Affect Blood Pressure, Pulse Wave Velocity, or Heart Rate Variability in 2.5-y-Old Children. J. Nutr. 2006, 136, 1539–1544. [Google Scholar] [CrossRef]
All Participants (N = 432) | % Missings | T1 (N = 147, 33.9%) | T2 (N = 142, 32.7%) | T3 (N = 143, 32.9%) | p | |
---|---|---|---|---|---|---|
Child Sex (%) | 0 | 0.599 | ||||
Female | 210 (49) | 71 (48) | 65 (46) | 74 (52) | ||
Male | 224 (51) | 76 (52) | 77 (54) | 69 (48) | ||
Child age at measurements, years | 11.1 (0.5) | 0.5 | 11.1 (0.5) | 11.1 (0.6) | 11.2 (0.5) | 0.688 |
Child height at age of measurements, cm | 146.8 (7.9) | 0.5 | 146.8 (7.6) | 147.2 (8.2) | 146.5 (7.9) | 0.761 |
Child zBMI at age of measurements, years | 0.7 (1.2) | 0.5 | 0.7 (1.2) | 0.6 (1.2) | 0.7 (1.3) | 0.704 |
Child fish intake at age of measurements, sv/w | 1.6 (1.3) | 1.8 | 1.4 (1.2) | 1.4 (1.1) | 2.0 (1.5) | <0.001 |
Parental Cardiovascular History (%) | 1.4 | 0.441 | ||||
None | 199 (47) | 68 (47) | 62 (45) | 69 (48) | ||
1 parent has ≥1 diagnosis | 188 (44) | 65 (45) | 66 (47) | 56 (39) | ||
Both parents have ≥1 diagnosis | 40 (9) | 11 (8) | 11 (8) | 18 (13) | ||
Maternal age, years | 31.8 (4.2) | 0 | 31.0 (4.3) | 32.2 (4.2) | 32.4 (3.8) | 0.009 |
Maternal Pre-pregnancy BMI, kg/m2 | 23.8 (4.6) | 0 | 24.0 (4.9) | 23.6 (4.4) | 23.8 (4.4) | 0.743 |
Maternal energy intake, kcal/d | 2047.8 (485.7) | 0 | 1917.2 (483.8) | 2017.9 (422.0) | 2211.7 (502.9) | <0.001 |
Maternal Smoking in pregnancy (%) | 1.6 | 0.218 | ||||
No | 375 (88) | 122 (84) | 127 (91) | 126 (89) | ||
Yes | 52 (12) | 23 (16) | 13 (9) | 16 (11) | ||
Maternal Education level (%) | 0.5 | 0.205 | ||||
Primary or less | 102 (24) | 38 (26) | 32 (23) | 32 (23) | ||
Secondary | 183 (43) | 69 (47) | 52 (37) | 62 (44) | ||
University | 145 (34) | 40 (27) | 57 (40) | 48 (34) | ||
Maternal Social Class (%) | 0 | 0.239 | ||||
Low | 104 (24) | 32 (22) | 36 (25) | 36 (25) | ||
Medium | 145 (34) | 42 (29) | 54 (38) | 49 (34) | ||
High | 183 (42) | 73 (50) | 52 (38) | 49 (34) | ||
Parity (%) | 0.5 | 0.365 | ||||
0 | 252 (59) | 92 (63) | 76 (54) | 84 (59) | ||
1 | 155 (36) | 48 (33) | 58 (41) | 49 (34) | ||
≥2 | 23 (5) | 5 (3) | 8 (6) | 10 (7) |
All Participants (N = 430) | % Missings | T1 (N = 146, 33.6%) | T2 (N = 150, 34.6%) | T3 (N = 134, 30.9%) | p | |
---|---|---|---|---|---|---|
Child Sex (%) | 0 | 0.332 | ||||
Female | 207 (48) | 63 (43) | 76 (51) | 68 (51) | ||
Male | 223 (52) | 83 (57) | 74 (49) | 66 (49) | ||
Child age at measurements, years | 11.2 (0.5) | 0.5 | 11.1 (0.5) | 11.2 (0.5) | 11.2 (0.5) | 0.486 |
Child height at age of measurements, cm | 146.8 (7.9) | 0.5 | 147.3 (8.0) | 146.2 (7.6) | 146.9 (8.1) | 0.464 |
Child zBMI at age of measurements, years | 0.7 (1.2) | 0.5 | 0.8 (1.2) | 0.7 (1.2) | 0.6 (1.3) | 0.534 |
Child fish intake at age of measurements, sv/w | 1.6 (1.3) | 1.9 | 1.4 (1.0) | 1.6 (1.4) | 1.9 (1.4) | 0.004 |
Paternal Cardiovascular History (%) | 1.4 | 0.35 | ||||
None | 198 (47) | 58 (41) | 72 (49) | 68 (51) | ||
1 parent has ≥1 diagnosis | 186 (44) | 72 (50) | 63 (43) | 51 (38) | ||
Both parents have ≥1 diagnosis | 40 (9) | 13 (9) | 13 (9) | 14 (11) | ||
Maternal Smoking in pregnancy (%) | 0.5 | 0.559 | ||||
No | 376 (88) | 124 (86) | 133 (89) | 119 (89) | ||
Yes | 52 (12) | 21 (14) | 17 (11) | 14 (11) | ||
Maternal Education level (%) | 0.7 | 0.497 | ||||
Primary or less | 100 (23) | 33 (23) | 32 (22) | 35 (26) | ||
Secondary | 184 (43) | 57 (39) | 68 (46) | 59 (44) | ||
University | 143 (33) | 56 (38) | 48 (32) | 39 (29) | ||
Maternal Social Class (%) | 0 | 0.613 | ||||
Low | 103 (24) | 38 (26) | 39 (26) | 26 (19) | ||
Medium | 145 (34) | 45 (31) | 51 (34) | 49 (37) | ||
High | 182 (42) | 63 (43) | 60 (40) | 59 (44) | ||
Maternal energy intake, kcal/d | 2081.0 (467.4) | 0.5 | 1909.9 (441.0) | 2103.7 (435.3) | 2242.1 (470.5) | <0.001 |
Maternal Pre-pregnancy BMI, kg/m2 | 23.8 (4.6) | 0 | 24.0 (4.5) | 23.8 (4.8) | 23.6 (4.3) | 0.781 |
Maternal age, years | 31.8 (4.2) | 0.2 | 31.4 (4.6) | 32.0 (4.1) | 32.1 (3.8) | 0.241 |
Parity (%) | 0.5 | 0.4 | ||||
0 | 249 (58) | 88 (61) | 90 (60) | 71 (53) | ||
1 | 155 (36) | 50 (35) | 49 (33) | 56 (42) | ||
≥2 | 24 (6) | 6 (4) | 11 (7) | 7 (5) |
T1 (N = 147, 33.9%) | T2 (N = 142, 32.7%) | T3 (N = 143, 32.9%) | |||
---|---|---|---|---|---|
Outcome | N | β (95% CI) | β (95% CI) | β (95% CI) | p for Trend |
CRAE | |||||
Model 1 | 397 | Ref | −1.3 (−4.5, 1.8) | −1.7 (−4.9, 1.4) | 0.280 |
Model 2 | 386 | Ref | 2.1 (−5.3, 1.1) | −1.9 (−5.2, 1.3) | 0.245 |
CRVE | |||||
Model 1 | 397 | Ref | −1.5 (−5.8, 2.7) | 0.2 (−4.2, 4.5) | 0.952 |
Model 2 | 386 | Ref | −1.6 (−5.9, 2.8) | 1.0 (−3.4, 5.5) | 0.642 |
PWV | |||||
Model 1 | 411 | Ref | 0.0 (−0.1, 0.1) | 0.0 (−0.1, 0.1) | 0.778 |
Model 2 | 400 | Ref | 0.0 (−0.1, 0.1) | 0.0 (−0.1, 0.1) | 0.898 |
T1 (N = 146, 33.6%) | T2 (N = 150, 34.6%) | T3 (N = 134, 30.9%) | |||
---|---|---|---|---|---|
Outcome | N | β (95% CI) | β (95% CI) | β (95% CI) | p for Trend |
CRAE | |||||
Model 1 | 394 | Ref | 1.1 (−2.0, 4.2) | 1.0 (−2.2, 4.3) | 0.534 |
Model 2 | 386 | Ref | 0.6 (−2.6, 3.7) | 0.9 (−2.5, 4.2) | 0.605 |
CRVE | |||||
Model 1 | 394 | Ref | 0.3 (−3.9, 4.5) | 0.0 (−4.4, 4.5) | 0.242 |
Model 2 | 386 | Ref | 0.1 (−4.2, 4.4) | 0.4 (−4.1, 5.0) | 0.849 |
PWV | |||||
Model 1 | 408 | Ref | 0.0 (−0.2, 0.1) | 0.0 (−0.1, 0.1) | 0.913 |
Model 2 | 400 | Ref | 0.0 (−0.1, 0.1) | 0.0 (−0.1, 0.1) | 0.800 |
CRAE | CRVE | PWV | |
---|---|---|---|
β (95% CI) | β (95% CI) | β (95% CI) | |
Large fatty fish | |||
Tertiles: 1 (median, 0 g/w) | Ref | Ref | Ref |
2 (median, 47.1 g/w) | 0.3 (−3.1, 3.7) | −0.3 (−5.0, 4.3) | 0.0 (−0.1, 0.1) |
3 (median, 100.5 g/w) | 2.0 (−1.3, 5.3) | 0.4 (−4.0, 4.9) | −0.1 (−0.2, 0.0) |
p for trend | 0.255 | 0.888 | 0.143 |
Small fatty fish | |||
Tertiles: 1 (median, 0 g/w) | Ref | Ref | Ref |
2 (median, 4.7 g/w) | 0.7 (−2.5, 3.9) | 0.8 (−3.5, 5.1) | 0.0 (−0.1, 0.1) |
3 (median, 100.5 g/w) | 1.1 (−2.0, 4.2) | 2.9 (−1.3, 7.0) | 0.0 (−0.1, 0.1) |
p for trend | 0.487 | 0.178 | 0.828 |
Canned Tuna | |||
Tertiles: 1 (median, 23.4 g/w) | Ref | Ref | Ref |
2 (median, 50.5 g/w) | −1.4 (−4.7, 1.8) | −0.7 (−5.1, 3.7) | 0.1 (−0.0, 0.2) |
3 (median, 150.1 g/w) | −1.4 (−4.7, 1.8) | −2.1 (−6.5, 2.3) | 0.1 (0.0, 0.2) |
p for trend | 0.392 | 0.350 | 0.047 |
Lean fish | |||
Tertiles: 1 (median, 94.2 g/w) | Ref | Ref | Ref |
2 (median, 201.0 g/w) | 0.3 (−2.7, 3.4) | 4.6 (0.5, 8.7) | 0.0 (−0.1, 0.1) |
3 (median, 402.0 g/w) | 0.7 (−2.7, 4.2) | 3.0 (−1.6, 7.6) | 0.0 (−0.2, 0.1) |
p for trend | 0.678 | 0.136 | 0.458 |
Shellfish | |||
Tertiles: 1 (median, 23.6 g/w) | Ref | Ref | Ref |
2 (median, 72.4 g/w) | −1.0 (−4.2, 2.1) | −0.6 (−4.9, 3.7) | 0.0 (−0.1, 0.1) |
3 (median, 104.5 g/w) | −1.8 (−5.1, 1.4) | −2.0 (−6.4, 2.4) | 0.0 (−0.1, 0.2) |
p for trend | 0.273 | 0.366 | 0.464 |
CRAE | CRVE | PWV | |
---|---|---|---|
β (95% CI) | β (95% CI) | β (95% CI) | |
Large fatty fish | |||
Tertiles: 1 (median, 0 g/w) | Ref | Ref | Ref |
2 (median, 47.1 g/w) | −1.1 (−4.6, 2.5) | −0.1 (−5.0, 4.7) | −0.1 (−0.2, 0.1) |
3 (median, 100.5 g/w) | 2.0 (−1.2, 5.2) | 2.6 (−1.8, 7.0) | 0.0 (−0.1, 0.1) |
p for trend | 0.313 | 0.291 | 0.651 |
Small fatty fish | |||
Tertiles: 1 (median, 0 g/w) | Ref | Ref | Ref |
2 (median, 47.1 g/w) | 1.3 (−2.0, 4.5) | 1.5 (−3.0, 5.9) | 0.1 (0.0, 0.2) |
3 (median, 100.5 g/w) | 0.9 (−2.2, 4.0) | 0.7 (−3.5, 4.9) | 0.1 (0.0, 0.2) |
p for trend | 0.555 | 0.721 | 0.157 |
Canned Tuna | |||
Tertiles: 1 (median, 23.4 g/w) | Ref | Ref | Ref |
2 (median, 50.5 g/w) | 0.1 (−3.0, 3.3) | −1.2 (−5.5, 3.0) | 0.0 (−0.1, 0.1) |
3 (150.1 g/w) | 0.6 (−2.8, 4.0) | −2.7 (−7.3, 1.9) | 0.0 (−0.1, 0.1) |
p for trend | 0.732 | 0.234 | 0.702 |
Lean fish | |||
Tertiles: 1 (median, 94.2 g/w) | Ref | Ref | Ref |
2 (median, 201.0 g/w) | −0.4 (−3.3, 2.6) | 0.4 (−3.5, 4.4) | 0.0 (−0.1, 0.1) |
3 (median, 402.0 g/w) | −0.9 (−4.5, 2.8) | −0.2 (−5.1, 4.8) | −0.1 (−0.2, 0.1) |
p for trend | 0.647 | 0.991 | 0.274 |
Shellfish | |||
Tertiles: 1 (median, 23.6 g/w) | Ref | Ref | Ref |
2 (median, 72.4 g/w) | −1.0 (−4.0, 2.1) | 1.4 (−2.7, 5.6) | 0.0 (−0.1, 0.1) |
3 (median, 101.1 g/w) | 1.0 (−2.2, 4.3) | 0.6 (−3.8, 5.0) | 0.1 (−0.1, 0.2) |
p for trend | 0.591 | 0.741 | 0.355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinar-Martí, A.; Fernández-Barrés, S.; Lázaro, I.; Fossati, S.; Fochs, S.; Pey, N.; Vrijheid, M.; Romaguera, D.; Sala-Vila, A.; Julvez, J. Maternal Seafood Consumption during Pregnancy and Cardiovascular Health of Children at 11 Years of Age. Nutrients 2024, 16, 974. https://doi.org/10.3390/nu16070974
Pinar-Martí A, Fernández-Barrés S, Lázaro I, Fossati S, Fochs S, Pey N, Vrijheid M, Romaguera D, Sala-Vila A, Julvez J. Maternal Seafood Consumption during Pregnancy and Cardiovascular Health of Children at 11 Years of Age. Nutrients. 2024; 16(7):974. https://doi.org/10.3390/nu16070974
Chicago/Turabian StylePinar-Martí, Ariadna, Sílvia Fernández-Barrés, Iolanda Lázaro, Serena Fossati, Silvia Fochs, Núria Pey, Martine Vrijheid, Dora Romaguera, Aleix Sala-Vila, and Jordi Julvez. 2024. "Maternal Seafood Consumption during Pregnancy and Cardiovascular Health of Children at 11 Years of Age" Nutrients 16, no. 7: 974. https://doi.org/10.3390/nu16070974
APA StylePinar-Martí, A., Fernández-Barrés, S., Lázaro, I., Fossati, S., Fochs, S., Pey, N., Vrijheid, M., Romaguera, D., Sala-Vila, A., & Julvez, J. (2024). Maternal Seafood Consumption during Pregnancy and Cardiovascular Health of Children at 11 Years of Age. Nutrients, 16(7), 974. https://doi.org/10.3390/nu16070974