Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probiotic Strains
2.2. Obtaining Peptidase Preparations from Probiotic Strains
2.3. Two-Step Gliadin Hydrolysis Procedure
2.4. One-Step Gliadin Hydrolysis Procedure
2.5. Evaluation of Gliadin Content in Hydrolysates
2.6. Statistical and Bioinformatics Analyses
3. Results
3.1. The Impact of Two-Step Hydrolysis on the Immunoreactivity of Gliadin Peptides
3.2. The Effect of the Mixture of Peptidase Preparations on Gliadin Hydrolysis
3.3. Genetic Potential of L. casei LC130 and L. paracasei LPC100 to Produce Peptidases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balakireva, A.V.; Zamyatnin, A.A. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 2016, 18, 644. [Google Scholar] [CrossRef]
- Iversen, R.; Sollid, L.M. The immunobiology and pathogenesis of celiac disease. Annu. Rev. Pathol. 2023, 18, 47–70. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K.A. The two faces of wheat. Front. Nutr. 2020, 7, 517313. [Google Scholar] [CrossRef] [PubMed]
- Cebolla, Á.; Moreno, M.L.; Coto, L.; Sousa, C. Gluten immunogenic peptides as standard for the evaluation of potential harmful prolamin content in food and human specimen. Nutrients 2018, 10, 1927. [Google Scholar] [CrossRef] [PubMed]
- Lexhaller, B.; Tompos, C.; Scherf, K.A. Comparative analysis of prolamin and glutelin fractions from wheat, rye and barley with five sandwich ELISA test kits. Anal. Bioanal. Chem. 2016, 408, 6093–6104. [Google Scholar] [CrossRef] [PubMed]
- Cukrowska, B.; Sowińska, A.; Bierła, J.B.; Czarnowska, E.; Rybak, A.; Grzybowska-Chlebowczyk, U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota—Key players in the pathogenesis of celiac disease. World J. Gastroenterol. 2017, 23, 7505–7518. [Google Scholar] [CrossRef]
- Vargas, F.M.; Cardoso, L.T.; Didoné, A.; Lima, J.P.M.; Venzke, J.G.; de Oliveira, V.R. Celiac disease: Risks of cross-contamination and strategies for gluten removal in food environments. Int. J. Environ. Res. Public Health 2024, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Yoosuf, S.; Makharia, G.K. Evolving therapy for celiac disease. Front. Pediatr. 2019, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Casale, R.; Borghini, R.; Di Nardi, S.; Donato, G.; Angeloni, A.; Moscaritolo, S.; Grasso, L.; Mazzarella, G.; Di Tola, M.; et al. The effects of modified versus unmodified wheat gluten administration in patients with celiac disease. Int. Immunopharmacol. 2017, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, B.; Stasiewicz, K.; Ostolski, M.; Adamczak, M. Reducing immunoreactivity of gliadins and coeliac-toxic peptides using peptidases from L. acidophilus 5e2 and A. niger. Catalysts 2020, 10, 923. [Google Scholar] [CrossRef]
- Lähdeaho, M.L.; Kaukinen, K.; Laurila, K.; Vuotikka, P.; Koivurova, O.P.; Kärjä-Lahdensuu, T.; Marcantonio, A.; Adelman, D.C.; Mäki, M. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology 2014, 146, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Hoilat, G.J.; Altowairqi, A.K.; Ayas, M.F.; Alhaddab, N.T.; Alnujaidi, R.A.; Alharbi, H.A.; Alyahyawi, N.; Kamal, A.; Alhabeeb, H.; Albazee, E.; et al. Larazotide acetate for treatment of celiac disease: A systematic review and meta-analysis of randomized controlled trials. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101782. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, E.; Yadav, A.; Kelly, C.P.; Mukherjee, R. Novel nondietary therapies for celiac disease. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Norouzbeigi, S.; Vahid-Dastjerdi, L.; Yekta, R.; Sohrabvadi, S.; Zendoboodi, F.; Mortazavian, A.M. Celiac therapy by administration of probiotics in food products: A review. Curr. Opin. Food Sci. 2020, 32, 58–66. [Google Scholar] [CrossRef]
- Moawad, M.H.; Alkhawaldeh, I.M.; Naswhan, A.J. Efficacy of probiotics supplementation in amelioration of celiac disease symptoms and enhancement of immune system. World J. Clin. Cases 2023, 11, 7741–7744. [Google Scholar] [CrossRef]
- Zolnikova, O.; Dzhakhaya, N.; Bueverova, E.; Sedova, A.; Kurbatova, A.; Kryuchkova, K.; Butkova, T.; Izotov, A.; Kulikova, L.; Yurku, K.; et al. The contribution of the intestinal microbiota to the celiac disease pathogenesis along with the effectiveness of probiotic therapy. Microorganisms 2023, 11, 2848. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.M.; Valitutti, F.; Karathia, H.; Pujolassos, M.; Kenyon, V.; Fanelli, B.; Troisi, J.; Subramanian, P.; Camhi, S.; Colucci, A.; et al. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc. Natl. Acad. Sci. USA 2021, 118, e2020322118. [Google Scholar] [CrossRef] [PubMed]
- Farhat, E.K.; Sher, E.K.; Džidić-Krivić, A.; Banjari, I.; Sher, F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J. Nutr. Biochem. 2023, 118, 109368. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, R.; Cristofori, F.; Vacca, M.; Barone, M.; De Angelis, M. Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert. Rev. Gastroenterol. Hepatol. 2020, 14, 323–333. [Google Scholar] [CrossRef]
- De Angelis, M.; Cassone, A.; Rizzello, C.G.; Gagliardi, F.; Minervini, F.; Calasso, M.; Di Cagno, R.; Francavilla, R.; Gobbetti, M. Mechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases. Appl. Environ. Microbiol. 2010, 76, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar] [CrossRef]
- Narsing Rao, M.P.; Banerjee, A.; Liu, G.H.; Thamchaipenet, A. Genome-based reclassification of Bacillus acidicola, Bacillus pervagus and the genera Heyndrickxia, Margalitia and Weizmannia. Int. J. Syst. Evol. Microbiol. 2023, 73, 005961. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, B. Immunoreactivity of wheat proteins by hydrolysis and polymerisation. Eur. Food Res. Technol. 2016, 242, 1025–1140. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Curiel, J.A.; Nionelli, L.; Vincentini, O.; Di Cagno, R.; Silano, M.; Gobbetti, M.; Coda, R. Use of fungal proteases and selected courdough lactic bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol. 2014, 7, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinform. Oxf. Engl. 2014, 30, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, 412–419. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine, National Center for Biotechnology Information. Available online: https://blast.ncbi.nlm.nih.gov (accessed on 1 October 2023).
- Darwish, G.; Helmerhorst, E.J.; Schuppan, D.; Oppenheim, F.G.; Wei, G. Pharmaceutically modified subtilisins withstand acidic conditions and effectively degrade gluten in vivo. Sci. Rep. 2019, 9, 7505. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Darwish, G.; Oppenheim, F.G.; Schuppan, D.; Helmerhorst, E.J. Commensal bacterium Rothia aeria degrades and detoxifies gluten via a highly effective subtilisin enzyme. Nutrients 2020, 12, 3724. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Sieiro, P.; Redruello, B.; Ladero, V.; Martín, M.C.; Fernández, M.; Alvarez, M.A. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide. Can. J. Microbiolol. 2016, 62, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Mickowska, B.; Romanova, K.; Urminská, D. Reduction of immunoreactivity of rye and wheat prolamins by lactobacilli and flavourzyme proteolysis during sourdough fermentation—A way to obtain low-gluten bread. J. Food Nutr. Res. 2019, 58, 153–166. [Google Scholar]
- Dhanalakshmi, K.; Kuramitsu, S.; Yokoyama, S.; Kumarevel, T.; Ponnuraj, K. Crystal structure analysis of pyrrolidone carboxyl peptidase from Thermus thermophilus. Biophys. Chem. 2023, 293, 106946. [Google Scholar] [CrossRef] [PubMed]
- Kõiv, V.; Tenson, T. Gluten-degrading bacteria: Availability and applications. Appl. Microbiol. Biotechnol. 2021, 105, 3045–3059. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Sowdhamini, R. Distribution, classification, domain architectures and evolution of prolyl oligopeptidases in prokaryotic lineages. BMC Genom. 2014, 15, 985. [Google Scholar] [CrossRef]
- Mohan Kumar, B.V.; Sarabhai, S.; Prabhasankar, P. Targeted degradation of gluten proteins in wheat flour by prolyl endoprotease and its utilization in low immunogenic pasta for gluten sensitivity population. J. Cereal Sci. 2019, 87, 59–67. [Google Scholar] [CrossRef]
- Cristofori, F.; Francavilla, R.; Capobianco, D.; Dargenio, V.N.; Filardo, S.; Mastromarino, P. Bacterial-based strategies to hydrolyze gluten peptides and protect intestinal mucosa. Front. Immunol. 2020, 11, 567801. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Pruitt, K.D.; Sherry, S.; Yankie, L.; Karsch-Mizrachi, I. GenBank 2023 update. Nucleic Acids Res. 2023, 51, D141–D144. [Google Scholar] [CrossRef]
- Perez-Conesa, D.; Lopez, G.; Ros, G. Effect of probiotic, prebiotic and synbiotic follow-up infant formulas on iron bioavailability in rats. Food Sci. Technol. Int. 2007, 13, 69–77. [Google Scholar] [CrossRef]
- de Sire, A.; de Sire, R.; Curci, C.; Castiglione, F.; Wahli, W. Role of dietary supplements and probiotics in modulating microbiota and bone health: The gut-bone axis. Cells 2022, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewska, Z.; Zawartka, A.; Schab, M.; Martyniak, A.; Skoczeń, S.; Tomasik, P.J.; Wędrychowicz, A. Prebiotics, probiotics, and postbiotics in the prevention and treatment of anemia. Microorganisms 2022, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Gasaly, N.; de Vos, P.; Hermoso, M.A. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 2021, 12, 658354. [Google Scholar] [CrossRef] [PubMed]
- Lomash, A.; Venkatakrishnan, A.; Bothra, M.; Dhingra, B.; Kumar, P.; Kapoor, S. Coeliac disease presenting atypically: A much wider spectrum. Trop. Dr. 2021, 51, 309–314. [Google Scholar] [CrossRef] [PubMed]
Species | Strain | DSMZ Number * |
---|---|---|
Lactobacillus acidophilus | LA120 | 33795 |
Lacticaseibacillus casei [Basonym: Lactobacillus casei] | LC130 | 33796 |
Limosilactobacillus fermentum [Basonym: Lactobacillus fermentum] | LF160 | 33805 |
Lacticaseibacillus paracasei [Basonym: Lactobacillus paracasei] | LPC100 | 33793 |
Lactiplantibacillus plantarum [Basonym: Lactobacillus plantarum] | LP140 | 33804 |
Lacticaseibacillus rhamnosus [Basonym: Lactobacillus rhamnosus] | LR110 | 33794 |
Limosilactobacillus reuteri [Basonym: Lactobacillus reuteri] | LU150 | 33841 |
Bifidobacterium bifidum | BF030 | 33818 |
Bifidobacterium breve | BB010 | 33814 |
Weizmania coagulans/Heyndrickxia coagulans [Basonym: Bacillus coagulans] | BC300 | 33836 |
Bifidobacterium longum ssp. infantis [Basonym: Bifidobacterium infantis] | BSI050 | 33813 |
Bifidobacterium animalis ssp. lactis [Basonym: Bifidobacterium lactis] | BI040 | 33812 |
Bifidobacterium longum | BL020 | 33815 |
Streptococcus thermophilus | ST250 | 33808 |
Enzyme Entry | General Classification | Locus_tag | Gene | Function | Cellular Location | ||
---|---|---|---|---|---|---|---|
LPC100 | LC130 | LP140 | |||||
DIPETIDASES (EC 3.4.13) | Non-specific dipeptidases | VOW57_06340 | VIN14_05430 | V2P12_00955 | pepD | Dipeptidase (EC 3.4.-.-) | cytoplasm |
VOW57_11255 | VIN14_10245 | V2P12_01380 | pepD | Dipeptidase (EC 3.4.-.-) | cytoplasm | ||
VOW57_00205 | VIN14_09190 | V2P12_07345 | pepD | Dipeptidase (EC 3.4.-.-) | cytoplasm | ||
VOW57_10190 | - | V2P12_04350 | pepD | Dipeptidase (EC 3.4.-.-) | cytoplasm | ||
VOW57_04325 | - | V2P12_05760 | pepV | Xaa-His dipeptidase (EC 3.4.13.-) | cytoplasm | ||
Proline-specific peptidases: proline dipeptidase (prolidase) | VOW57_04300 | VIN14_03085 | V2P12_09730 | pepQ | Xaa-Pro dipeptidase (EC 3.4.13.9) | cytoplasm | |
METALLO ENDOPEPTIDASES (3.4.24) | Endopeptidases | VOW57_05660 | VIN14_05080 | V2P12_14540 | pepO | Neutral endopeptidase O (EC 3.4.24.-) | cytoplasm |
VOW57_07925 | VIN14_06965 | - | pepO | Neutral endopeptidase O (EC 3.4.24.-) | cytoplasm | ||
VOW57_01280 | VIN14_01015 | V2P12_09460 | pepF | Oligoendopeptidase F (EC 3.4.24.−) | cytoplasm | ||
VOW57_04015 | VIN14_02800 | V2P12_11255 | pepF | Oligoendopeptidase F (EC 3.4.24.−) | cytoplasm | ||
VOW57_05320 | VIN14_04820 | - | pepF | Oligoendopeptidase F (EC 3.4.24.−) | cytoplasm | ||
VOW57_14970 | VIN14_13985 | - | Bacillolysin (EC 3.4.24.28) | extracellular | |||
CYSTEINE PEPTIDASES (EC 3.4.22) | Major aminopeptidases: aminopeptidase C | VOW57_12010 | VIN14_10970 | V2P12_11255 | pepC | Aminopeptidase C (EC 3.4.22.40) | cytoplasm |
AMINOPEPTIDASES (EC 3.4.11) | Major aminopeptidases: aminopeptidase N | VOW57_02565 | VIN14_01725 | V2P12_04275 | pepN | Lysyl aminopeptidase (EC 3.4.11.15) | cytoplasm |
Proline-specific peptidases: aminopeptidase P | VOW57_01540 | VIN14_07915 | V2P12_06815 | pepP | Xaa-Pro aminopeptidase (EC:3.4.11.9) | cytoplasm | |
VOW57_08765 | - | - | pepP | Xaa-Pro aminopeptidase (EC:3.4.11.9) | cytoplasm | ||
Proline-specific peptidases: proline iminopeptidase | VOW57_04040 | VIN14_02820 | V2P12_00355 | pepI | Proline iminopeptidase (EC 3.4.11.5) | cytoplasm | |
VOW57_10215 | VIN14_09220 | V2P12_03920 | pepI | Proline iminopeptidase (EC 3.4.11.5) | cytoplasm | ||
VOW57_13235 | VIN14_12450 | - | pepI | Proline iminopeptidase (EC 3.4.11.5) | cytoplasm | ||
Proline-specific peptidases: glutamyl (aspartyl) specific aminopeptidase | VOW57_01560 | - | - | pepA | Glutamyl aminopeptidase (EC 3.4.11.7) | cytoplasm | |
Specific aminopeptidases: methionine aminopeptidase | VOW57_05765 | VIN14_05200 | V2P12_01035 | pepM (map) | Methionine aminopeptidase (EC 3.4.11.18) | cytoplasm | |
Specific aminopeptidases: leucyl aminopeptidase | VOW57_05740 | VIN14_05175 | - | pepS (ampS) | Aminopeptidase S (EC 3.4.11.24) | cytoplasm | |
Tripeptidases | VOW57_01570 | - | V2P12_08125 | pepT | Tripeptide aminopeptidase (EC 3.4.11.4) | cytoplasm | |
DI- and TRIPEPTIDYL PEPTIDASES (EC 3.4.14) | Proline-specific peptidases: X-prolyl-dipeptidyl aminopeptidase | VOW57_08805 | VIN14_07955 | V2P12_03935 | pepX | Xaa-Pro dipeptidyl-peptidase (EC 3.4.14.11) | cytoplasm |
OMEGAPEPTIDASES (EC 3.4.19) | Tripeptidases | - | VIN14_00705 | - | - | γ-glutamyltranspeptidase (EC 2.3.2.2) @ Glutathione hydrolase (EC 3.4.19.13) | cytoplasm |
Specific aminopeptidases: pyrrolidone-carboxylate peptidase | VOW57_01075 | VIN14_00785 | - | pcp | Pyrrolidone-carboxylate peptidase (EC 3.4.19.3) | cytoplasm | |
SERINE PEPTIDASES | Proline-specific peptidases | VOW57_09600 | VIN14_08785 | - | pop | S9 (prolyl oligopeptidase, POP) family peptidase (EC 3.4.21.26) | cytoplasm |
Unknown | Unspecified | VOW57_09535 | VIN14_08720 | V2P12_02345 | - | Putative metallopeptidase (Zinc) SprT family | cytoplasm |
Total genes | 27 | 23 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszczyńska, J.; Szczepankowska, A.K.; Majak, I.; Mańkowska, D.; Smolińska, B.; Ścieszka, S.; Diowksz, A.; Cukrowska, B.; Aleksandrzak-Piekarczyk, T. Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases. Nutrients 2024, 16, 976. https://doi.org/10.3390/nu16070976
Leszczyńska J, Szczepankowska AK, Majak I, Mańkowska D, Smolińska B, Ścieszka S, Diowksz A, Cukrowska B, Aleksandrzak-Piekarczyk T. Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases. Nutrients. 2024; 16(7):976. https://doi.org/10.3390/nu16070976
Chicago/Turabian StyleLeszczyńska, Joanna, Agnieszka K. Szczepankowska, Iwona Majak, Dorota Mańkowska, Beata Smolińska, Sylwia Ścieszka, Anna Diowksz, Bożena Cukrowska, and Tamara Aleksandrzak-Piekarczyk. 2024. "Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases" Nutrients 16, no. 7: 976. https://doi.org/10.3390/nu16070976
APA StyleLeszczyńska, J., Szczepankowska, A. K., Majak, I., Mańkowska, D., Smolińska, B., Ścieszka, S., Diowksz, A., Cukrowska, B., & Aleksandrzak-Piekarczyk, T. (2024). Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases. Nutrients, 16(7), 976. https://doi.org/10.3390/nu16070976