Pre-Pregnancy Obesity and Infants’ Motor Development within the First Twelve Months of Life: Who Is Expected to Be the Ultimate Carrier of the Obesity Burden?
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Study Exclusion Criteria
2.3. Study Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, B.; Konje, J.C. The epidemiology of obesity in reproduction. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 89, 102342. [Google Scholar] [CrossRef]
- Poston, L.; Harthoorn, L.F.; van der Beek, E.M.; Contributors to the ILSI Europe Workshop. Obesity in Pregnancy: Implications for the Mother and Lifelong Health of the Child. A Consensus Statement. Pediatr. Res. 2011, 69, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Kweon, J.Y.; Mun, H.; Choi, M.R.; Kim, H.S.; Ahn, Y.J. Maternal obesity induced metabolic disorders in offspring and myeloid re-programming by epigenetic regulation. Front. Endocrinol. 2024, 14, 1256075. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef]
- Cunningham, M.W., Jr.; LaMarca, B. Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy. Am. J. Physiol. Integr. Comp. Physiol. 2018, 315, R521–R528. [Google Scholar] [CrossRef]
- Lackovic, M.; Nikolic, D.; Jankovic, M.; Rovcanin, M.; Mihajlovic, S. Stroke vs. Preeclampsia: Dangerous Liaisons of Hypertension and Pregnancy. Medicina 2023, 59, 1707. [Google Scholar] [CrossRef] [PubMed]
- Denizli, M.; Capitano, M.L.; Kua, K.L. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front. Cell. Infect. Microbiol. 2022, 12, 940937. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, P.D.; Buss, C.; Entringer, S.; Swanson, J.M. Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Semin. Reprod. Med. 2009, 27, 358–368. [Google Scholar] [CrossRef]
- Desai, M.; Ross, M.G. Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutr. Rev. 2020, 78, 25–31. [Google Scholar] [CrossRef]
- Boonzaaijer, M.; Suir, I.; Mollema, J.; Nuysink, J.; Volman, M.; Jongmans, M. Factors associated with gross motor development from birth to independent walking: A systematic review of longitudinal research. Child Care Health Dev. 2020, 47, 525–561. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Schieve, L.A.; Stein, A.D.; Swan, D.W.; Ramakrishnan, U.; Sharma, A.J. Associations between maternal prepregnancy body mass index and child neurodevelopment at 2 years of age. Int. J. Obes. 2012, 36, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Saros, L.; Lind, A.; Setänen, S.; Tertti, K.; Koivuniemi, E.; Ahtola, A.; Haataja, L.; Shivappa, N.; Hébert, J.R.; Vahlberg, T.; et al. Maternal obesity, gestational diabetes mellitus, and diet in association with neurodevelopment of 2-year-old children. Pediatr. Res. 2023, 94, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, M.; Milicic, B.; Mihajlovic, S.; Filimonovic, D.; Jurisic, A.; Filipovic, I.; Rovcanin, M.; Prodanovic, M.; Nikolic, D. Gestational Diabetes and Risk Assessment of Adverse Perinatal Outcomes and Newborns Early Motoric Development. Medicina 2021, 57, 741. [Google Scholar] [CrossRef] [PubMed]
- Saurel-Cubizolles, M.-J.; Azria, E.; Blondel, B.; Regnault, N.; Deneux-Tharaux, C. Exploring the socioeconomic disparities of maternal body mass index: A national study in France. Eur. J. Public Health 2022, 32, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Chatzi, L.; Carsin, A.-E.; Amiano, P.; Guxens, M.; Kogevinas, M.; Koutra, K.; Lertxundi, N.; Murcia, M.; Rebagliato, M.; et al. Maternal pre-pregnancy overweight and obesity, and child neuropsychological development: Two Southern European birth cohort studies. Leuk. Res. 2013, 42, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.L.S.; Harris, S.R. Psychometric properties and standardization samples of four screening tests for infants and young children: A review. Pediatr. Phys. Ther. 2005, 17, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, M.; Nikolic, D.; Filimonovic, D.; Petronic, I.; Mihajlovic, S.; Golubovic, Z.; Pavicevic, P.; Cirovic, D. Reliability, Consistency and Temporal Stability of Alberta Infant Motor Scale in Serbian Infants. Children 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Body Mass Index. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 31 May 2020).
- Institute of Medicine (US); National Research Council (US); Committee to Reexamine IOM Pregnancy Weight Guidelines. Consequences of Gestational Weight Gain for the Child. In Weight Gain during Pregnancy: Reexamining the Guidelines; Ras-mussen, K.M., Yaktine, A.L., Eds.; National Academies Press (US): Washington, DC, USA, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK32816/ (accessed on 24 September 2020).
- Araujo Júnior, E.; Peixoto, A.B.; Zamarian, A.C.; Elito Júnior, J.; Tonni, G. Macrosomia. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 38, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Kyvelidou, A.; Harbourne, R.T.; Willett, S.L.; Stergiou, N. Sitting postural control in infants with typical development, motor delay, or cerebral palsy. Pediatr. Phys. Ther. 2013, 25, 46–51. [Google Scholar] [CrossRef]
- Jensen-Willett, S.; Pleasant, M.; Jackson, B.; Needelman, H.; Roberts, H.; McMorris, C. Sitting Matters! Differences between Sitters and Nonsitters at 6 Months’ Adjusted Age in Infants At-Risk and Born Preterm. Pediatr. Phys. Ther. 2019, 31, 257–262. [Google Scholar] [CrossRef]
- Zacks, B.; Confroy, K.; Frino, S.; Skelton, J.A. Delayed motor skills associated with pediatric obesity. Obes. Res. Clin. Pract. 2021, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Kalish, B.T. The impact of maternal obesity on childhood neurodevelopment. J. Perinatol. 2020, 41, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Wylie, A.; Sundaram, R.; Kus, C.; Ghassabian, A.; Yeung, E.H. Maternal prepregnancy obesity and achievement of infant motor developmental milestones in the upstate KIDS study. Obesity 2015, 23, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Taveras, E.M.; Rifas-Shiman, S.L.; Belfort, M.B.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Weight status in the first 6 months of life and obesity at 3 years of age. Pediatrics 2009, 123, 1177–1183. [Google Scholar] [CrossRef]
- Aoyama, T.; Hikihara, Y.; Watanabe, M.; Wakabayashi, H.; Hanawa, S.; Omi, N.; Takimoto, H.; Tanaka, S. Association Between Age of Achieving Gross Motor Development Milestones during Infancy and Body Fat Percentage at 6 to 7 Years of Age. Matern. Child Health J. 2022, 26, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Girchenko, P.; Tuovinen, S.; Lahti-Pulkkinen, M.; Lahti, J.; Savolainen, K.; Heinonen, K.; Pyhälä, R.; Reynolds, R.M.; Hämäläinen, E.; Villa, P.M.; et al. Maternal early pregnancy obesity and related pregnancy and pre-pregnancy disorders: Associations with child developmental milestones in the prospective PREDO Study. Int. J. Obes. 2018, 42, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Adane, A.A.; Mishra, G.D.; Tooth, L.R. Maternal preconception weight trajectories, pregnancy complications and offspring’s childhood physical and cognitive development. J. Dev. Orig. Health Dis. 2018, 9, 653–660. [Google Scholar] [CrossRef]
- Gajewska, E.; Sobieska, M.; Kaczmarek, E.; Suwalska, A.; Steinborn, B. Achieving motor development milestones at the age of three months may determine, but does not guarantee, proper further development. Sci. World J. 2013, 2013, 354218. [Google Scholar] [CrossRef] [PubMed]
- Reichetzeder, C. Overweight and obesity in pregnancy: Their impact on epigenetics. Eur. J. Clin. Nutr. 2021, 75, 1710–1722. [Google Scholar] [CrossRef]
- Şanlı, E.; Kabaran, S. Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders. Curr. Genom. 2019, 20, 419–427. [Google Scholar] [CrossRef]
- Banik, A.; Kandilya, D.; Ramya, S.; Stünkel, W.; Chong, Y.S.; Dheen, S.T. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes 2017, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Harmancıoğlu, B.; Kabaran, S. Maternal high fat diets: Impacts on offspring obesity and epigenetic hypothalamic programming. Front. Genet. 2023, 14, 1158089. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, L.; Ferraro, Z.M.; Wen, S.W.; Walker, M. Maternal obesity and occurrence of fetal macrosomia: A systematic review and meta-analysis. BioMed Res. Int. 2014, 2014, 640291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gazimbi, M.M.; Chen, Z.; Zhang, B.; Chen, Y.; Yu, Y.; Tang, J. Association between birth weight and neurodevelopment at age 1–6 months: Results from the Wuhan Healthy Baby Cohort. BMJ Open 2020, 10, e031916. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.R.L.; Hansen, A.F. Interventions by Caregivers to Promote Motor Development in Young Children, the Caregivers’ Attitudes and Benefits Hereof: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 11543. [Google Scholar] [CrossRef] [PubMed]
- Dumuids-Vernet, M.-V.; Provasi, J.; Anderson, D.I.; Barbu-Roth, M. Effects of Early Motor Interventions on Gross Motor and Locomotor Development for Infants at-Risk of Motor Delay: A Systematic Review. Front. Pediatr. 2022, 10, 877345. [Google Scholar] [CrossRef] [PubMed]
- Blauw-Hospers, C.H.; Hadders-Algra, M. A systematic review of the effects of early intervention on motor development. Dev. Med. Child Neurol. 2005, 47, 421–432. [Google Scholar] [CrossRef]
- Lackovic, M.; Jankovic, M.; Mihajlovic, S.; Milovanovic, Z.; Nikolic, D. Exploring the Connection between Migraines and Pregnancy: The Impact of Physical Activity on Symptom Management. Medicina 2023, 60, 49. [Google Scholar] [CrossRef]
- Purcell, A.R.; Glastras, S.J. Maternal Weight Management to Prevent the Developmental Programming of MAFLD in Offspring of Obese Mothers. Nutrients 2023, 15, 2155. [Google Scholar] [CrossRef]
- Rovcanin, M.; Jankovic, S.; Mikovic, Z.; Grujicic, S.S.; Ersk, I.R.B.; Lackovic, M.; Dimitrijevic, D.; Simanic, S.; Vujcic, I. The Translation and Cross-Cultural Adaptation of the Pregnancy Physical Activity Questionnaire: Validity and Reliability of a Serbian Version (PPAQ-SRB). Healthcare 2022, 10, 1482. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Gharibi, T.; Safavi, B.; Mohammadi, S.Z.; Karami, F.; Keshavarz, S. Pregnancy; an opportunity to return to a healthy lifestyle: A qualitative study. BMC Pregnancy Childbirth 2021, 21, 751. [Google Scholar] [CrossRef]
- Garay, S.M.; Sumption, L.A.; Pearson, R.M.; John, R.M. Risk factors for excessive gestational weight gain in a UK population: A bi-opsychosocial model approach. BMC Pregnancy Childbirth 2021, 21, 43. [Google Scholar] [CrossRef] [PubMed]
- Saldiva, S.R.D.M.; De Arruda Neta, A.D.C.P.; Teixeira, J.A.; Peres, S.V.; Marchioni, D.M.L.; Carvalho, M.A.; Vieira, S.E.; Francisco, R.P.V. Dietary Pattern Influences Gestational Weight Gain: Results from the ProcriAr Cohort Study-São Paulo, Brazil. Nutrients 2022, 14, 4428. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Gao, M.; Ma, Y.; Wan, N.; Liu, Y.; Liu, B.; Li, L.; Yu, Y.; Liu, Y.; Liu, B.; et al. The Association between Dietary Patterns and Pre-Pregnancy BMI with Gestational Weight Gain: The “Born in Shenyang” Cohort. Nutrients 2022, 14, 2551. [Google Scholar] [CrossRef] [PubMed]
- Catov, J.M.; Abatemarco, D.; Althouse, A.; Davis, E.M.; Hubel, C. Patterns of gestational weight gain related to fetal growth among women with overweight and obesity. Obesity 2015, 23, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, M.; Jankovic, M.; Mihajlovic, S.; Milovanovic, Z.; Rovcanin, M.; Mitic, N.; Nikolic, D. Gestational Weight Gain, Pregnancy Related Complications and the Short-Term Risks for the Offspring. J. Clin. Med. 2024, 13, 445. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Lu, J.; Yan, S.; Tao, F.; Huang, K. Maternal Pre-Pregnancy Body Mass Index, Gestational Weight Gain and Children’s Cognitive Development: A Birth Cohort Study. Nutrients 2022, 14, 4613. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, M.; Filimonovic, D.; Mihajlovic, S.; Milicic, B.; Filipovic, I.; Rovcanin, M.; Dimitrijevic, D.; Nikolic, D. The Influence of In-creased Prepregnancy Body Mass Index and Excessive Gestational Weight Gain on Pregnancy Course and Fetal and Maternal Perinatal Outcomes. Healthcare 2020, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jin, J.; Hu, K.-L.; Wu, Y.; Zhang, D. Prevention of Gestational Diabetes Mellitus and Gestational Weight Gain Restriction in Overweight/Obese Pregnant Women: A Systematic Review and Network Meta-Analysis. Nutrients 2022, 14, 2383. [Google Scholar] [CrossRef]
- La Sala, L.; Pontiroli, A.E. Prevention of Diabetes and Cardiovascular Disease in Obesity. Int. J. Mol. Sci. 2020, 21, 8178. [Google Scholar] [CrossRef]
- Pullar, J.; Wickramasinghe, K.; Demaio, A.R.; Roberts, N.; Perez-Blanco, K.-M.; Noonan, K.; Townsend, N. The impact of maternal nutrition on offspring’s risk of non-communicable diseases in adulthood: A systematic review. J. Glob. Health 2019, 9, 020405. [Google Scholar] [CrossRef] [PubMed]
- Fall, C.H.D. Fetal Programming and the Risk of Noncommunicable Disease. Indian J. Pediatr. 2013, 80, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Lancet, T. Diabetes: A defining disease of the 21st century. Lancet 2023, 401, 2087. [Google Scholar] [CrossRef]
Variables | Maternal Pre-Pregnancy Weight Status N = 200 | p | ||
---|---|---|---|---|
Normal Weight | Overweight/Obese | |||
EGWG N (%) | No | 100 (89.3%) | 13 (14.8%) | <0.001 * |
Yes | 12 (10.7%) | 75 (85.2%) | ||
Family history of CVD N (%) | No | 96 (85.7%) | 63 (71.6%) | 0.014 * |
Yes | 16 (14.3%) | 25 (28.4%) | ||
Family history of DM N (%) | No | 106 (94.6%) | 76 (86.4%) | 0.042 * |
Yes | 6 (5.4%) | 12 (13.6%) | ||
Fetal macrosomia N (%) | No | 101 (90.2%) | 67 (76.1%) | 0.007 * |
Yes | 11 (9.8%) | 21 (23.9%) | ||
AIMS score | ||||
AIMS 3 months (MV ± SD) | Pronation | 2.72 ± 0.47 | 2.42 ± 0.60 | <0.001 ** |
Supination | 2.84 ± 0.37 | 2.42 ± 0.62 | <0.001 ** | |
Total | 5.57 ± 0.72 | 4.84 ± 1.02 | <0.001 ** | |
AIMS 6 months (MV ± SD) | Pronation | 15.72 ± 0.47 | 15.34 ± 0.68 | <0.001 ** |
Supination | 8.77 ± 0.50 | 8.25 ± 0.87 | <0.001 ** | |
Sitting | 6.78 ± 0.64 | 6.58 ± 0.83 | 0.021 ** | |
Standing | 1.97 ± 0.34 | 1.90 ± 0.34 | 0.125 ** | |
Total | 33.24 ± 1.54 | 32.07 ± 2.07 | <0.001 ** | |
AIMS 9 months (MV ± SD) | Pronation | 19.37 ± 0.68 | 18.93 ± 0.76 | <0.001 ** |
Supination | 8.97 ± 0.16 | 8.85 ± 0.36 | 0.002 ** | |
Sitting | 10.21 ± 0.85 | 9.58 ± 0.99 | <0.001 ** | |
Standing | 4.43 ± 0.65 | 3.94 ± 0.75 | <0.001 ** | |
Total | 42.97 ± 2.00 | 41.31 ± 2.41 | <0.001 ** | |
AIMS 12 months (MV ± SD) | Pronation | 21.00 ± 0.00 | 20.99 ± 0.11 | 0.259 ** |
Supination | 9.00 ± 0.00 | 9.00 ± 0.00 | 1.000 ** | |
Sitting | 11.96 ± 0.21 | 11.83 ± 0.46 | 0.019 ** | |
Standing | 15.67 ± 0.62 | 15.20 ± 0.79 | <0.001 ** | |
Total | 57.63 ± 0.75 | 57.02 ± 1.11 | <0.001 ** |
Variables | Univariate Logistic Regression Analysis (Pre-Pregnancy Overweight/Obesity and Normal Weight) | ||
---|---|---|---|
B | 95% CI | p | |
EGWG | 5.318 | 4.544–6.092 | <0.001 |
Fetal macrosomia | 1.683 | 0.249–3.117 | 0.022 |
Family history of CVD | 1.360 | 0.055–2.666 | 0.041 |
Family history of DM | 1.857 | 0.013–3.700 | 0.048 |
AIMS pronation 3 months | −1.919 | −2.851–(−)0.988 | <0.001 |
AIMS supination 3 months | −3.046 | −3.946–(−)2.146 | <0.001 |
AIMS total score 3 months | −1.698 | −2.218–(−)1.178 | <0.001 |
AIMS pronation 6 months | −2.179 | −3.017–(−)1.342 | <0.001 |
AIMS supination 6 months | −1.934 | −2.607–(−)1.260 | <0.001 |
AIMS sitting 6 months | −0.808 | −1.528–(−)0.088 | 0.028 |
AIMS standing 6 months | −1.093 | −2.647–0.461 | 0.167 |
AIMS total score 6 months | −0.676 | −0.943–(−)0.408 | <0.001 |
AIMS pronation 9 months | −1.631 | −2.309–(−)0.953 | <0.001 |
AIMS supination 9 months | −3.860 | −5.748–(−)1.972 | <0.001 |
AIMS sitting 9 months | −1.517 | −2.028–(−)1.005 | <0.001 |
AIMS standing 9 months | −1.932 | −2.605–(−)1.258 | <0.001 |
AIMS total score 9 months | −0.669 | −0.877–(−)0.460 | <0.001 |
AIMS pronation 12 months | −10.799 | −18.199–(−)3.399 | 0.004 |
AIMS supination 12 months | - | - | - |
AIMS sitting 12 months | −2.667 | −4.158–(−)1.175 | <0.001 |
AIMS standing 12 months | −1.940 | −2.613–(−)1.267 | <0.001 |
AIMS total score 12 months | −1.509 | −2.016–(−)1.002 | <0.001 |
Variables | Multivariate Logistic Regression Analysis (Pre-Pregnancy Overweight/Obesity and Normal Weight) | ||
---|---|---|---|
B | 95% CI | p | |
EGWG | −2.485 | −3.170–(−)1.800 | <0.001 |
Fetal macrosomia | −0.007 | −0.457–0.443 | 0.974 |
Family history of CVD | 0.173 | −0.340–0.686 | 0.506 |
Family history of DM | −0.673 | −1.431–0.084 | 0.081 |
AIMS pronation 3 months | 1.148 | −1.343–3.638 | 0.364 |
AIMS supination 3 months | 1.485 | −0.747–3.717 | 0.191 |
AIMS total score 3 months | −1.224 | −3.360–0.913 | 0.260 |
AIMS pronation 6 months | −0.266 | −1.631–1.100 | 0.702 |
AIMS supination 6 months | −0.896 | −1.631–(−)0.162 | 0.017 |
AIMS sitting 6 months | −0.462 | −1.119–0.195 | 0.167 |
AIMS total score 6 months | 0.616 | 0.021–1.212 | 0.043 |
AIMS pronation 12 months | −0.289 | −0.633–0.056 | 0.100 |
AIMS supination 9 months | 0.036 | −0.764–0.836 | 0.930 |
AIMS sitting 9 months | 0.216 | −0.104–0.536 | 0.185 |
AIMS standing 9 months | −0.280 | −0.718–0.157 | 0.207 |
AIMS supination 12 months | 0.238 | −2.389–2.865 | 0.858 |
AIMS sitting 12 months | −0.250 | −1.193–0.693 | 0.601 |
AIMS total score 12 months | −0.305 | −0.716–0.105 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lackovic, M.; Nikolic, D.; Milicic, B.; Dimitrijevic, D.; Jovanovic, I.; Radosavljevic, S.; Mihajlovic, S. Pre-Pregnancy Obesity and Infants’ Motor Development within the First Twelve Months of Life: Who Is Expected to Be the Ultimate Carrier of the Obesity Burden? Nutrients 2024, 16, 1260. https://doi.org/10.3390/nu16091260
Lackovic M, Nikolic D, Milicic B, Dimitrijevic D, Jovanovic I, Radosavljevic S, Mihajlovic S. Pre-Pregnancy Obesity and Infants’ Motor Development within the First Twelve Months of Life: Who Is Expected to Be the Ultimate Carrier of the Obesity Burden? Nutrients. 2024; 16(9):1260. https://doi.org/10.3390/nu16091260
Chicago/Turabian StyleLackovic, Milan, Dejan Nikolic, Biljana Milicic, Dejan Dimitrijevic, Ivona Jovanovic, Sofija Radosavljevic, and Sladjana Mihajlovic. 2024. "Pre-Pregnancy Obesity and Infants’ Motor Development within the First Twelve Months of Life: Who Is Expected to Be the Ultimate Carrier of the Obesity Burden?" Nutrients 16, no. 9: 1260. https://doi.org/10.3390/nu16091260
APA StyleLackovic, M., Nikolic, D., Milicic, B., Dimitrijevic, D., Jovanovic, I., Radosavljevic, S., & Mihajlovic, S. (2024). Pre-Pregnancy Obesity and Infants’ Motor Development within the First Twelve Months of Life: Who Is Expected to Be the Ultimate Carrier of the Obesity Burden? Nutrients, 16(9), 1260. https://doi.org/10.3390/nu16091260