Blood Cadmium Level Is a Marker of Cancer Risk in Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Laboratory Analysis
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cancer | Population | Sex, Age (Range, Mean) | Follow-Up | Risk Factors | N, New Cancer Diagnosis | Cd Concentration | Results * | Literature |
---|---|---|---|---|---|---|---|---|
Whole blood Cd concentration | ||||||||
Breast Ovarian Prostate Testicular | American | women, men >20 | 19 years | age, education, race/ethnicity, poverty income ratio, BMI, marital status | N = 94,337 (1718) Breast—788 Ovarian—113 Prostate—784 Testicular—33 | quantile (mean) [µg/L] 0.25|0.17 0.50|0.30 0.75|0.61 | prostate OR 0.49 (0.30–0.80) p = 0.004 testicular OR 0.54 (0.06–4.55) p = 0.57 | Cao et al., 2023 [10] |
Skin (non-melanoma) | American | women, men >20 (48.2) | 7 years | age, sex, ethnicity, education, marital status, poverty income ratio, alcohol drinking status, smoking status, BMI, systolic blood pressure, creatinine, physical activity (MET score), diabetes, hypertension, hyperlipidemia | N = 16,034 (202) | quartiles [-] 1. 0.62–1.69 2. 1.78–2.76 3. 2.85–4.98 4. 5.07–115.93 | Quartile 1 vs. 4 OR 0.87 (0.7–1.09) p-trend = 0.151 | Wang and Yu., 2023 [15] |
Erythrocytes Cd concentration | ||||||||
B-cell non Hodgkin lymphoma and multiple myeloma | American CPS-II NC | women, men (40–90) | (ongoing since 1992) | Case-control matched by race, age, sex, blood draw date. smoking status, alcohol use, gender, age at diagnosis, time between blood draw and diagnosis, and age at blood draw were also completed | N = 1125 (375) | quartiles [µg/L] total 1. <0.40 2. 0.40–<0.56 3. 0.56–<0.77 4. >0.77 men 1. <0.36 2. 0.36–<0.49 3. 0.49–<0.70 4. >0.70 | continuously (per 1 SD increase) Multiple myeloma total RR 0.59 (0.38–0.89) men RR 0.64 (0.38–1.07) | Deubler et al., 2020 [11] |
B-cell non Hodgkin lymphoma and multiple myeloma | Italian EPIC-Italy Swedish NSHDS | EPIC-Italy women, men (35–70) NSHDS women, men (40–60) | 2–16 years | Case-control matched by population, sex, age (±5 years), centre, date of blood collection (±6 months) sex, age, centre, batch and sample date | EPIC-Italy N = 168 (84) NSHDS N = 372 (186) | quartiles [µg/L] total 1. 0.14–0.32 2. 0.32–0.50 3. 0.50–0.74 4. 0.74–5.22 men 1. 0.14–0.26 2. 0.26–0.37 3. 0.38–0.80 4. 0.80–5.22 | quartile 1 vs. 4 B-cell NHL total OR 1.09 (0.61–1.93) p = 0.78 men OR 0.65 (0.27–1.56) p = 0.33 Multiple myeloma total OR 1.16 (0.40–3.40) p = 0.79 men OR 0.84 (0.11–6.62) p = 0.50 | Kelly et al., 2013 [16] |
Pancreatic | (not reported) EPIC cohort | women, men (age not reported) | 12.2 years | Case-control matched by age, sex, study center Smoking, alcohol, BMI, diabetes, education and other metals | N = 1331 (429) | quantiles not reported | ORlog2Cd1.13 (1.01–1.27) ORQ5v11.87 (1.13–3.08) p-trend = 0.04 | Duell et al., 2018 (abstract) [12] |
Dietary Cd intake (FFQ questionnaire) | ||||||||
Prostate | Danish | men (50–65) | 13 years | educational level (<8 yrs, 8–10 yrs, >10 yrs). Smoking (never, former, current), BMI, waist-to-hip ratio, physical activity (MET score) | N = 27,178 (1567) | tertiles [ngCd/day] 1. <14 2. 14–18 3. >18 | tertile 1 vs. 3 IRR 0.97 (0.86–1.10) | Eriksen et al., 2015 [17] |
Prostate + all cancer sites | Swedish | men (45–79) | 10.8 years | age (years), family history of prostate cancer (yes, no, unknown), years of education (<12, ≥12 years), BMI (18.5–<25, 25–<30 and ≥30), waist circumference (<94, 94–102 and ≥102 cm), metabolic equivalent (MET) hours per day (quartiles), smoking status (ever, never), total energy intake (kcal), alcohol consumption (<0.1, 0.1–<5, 5–<10, 10–<15 and ≥15 g/day), selenium, lycopene and calcium (mg/day, tertiles) | N = 41,089 (3085) prostate cancer 894 (794 advanced and 326 fatal) | tertiles [ngCd/day] 1. <17 2. 17–20 3. >20 | tertile 1 vs. 3 total RR 1.13 (1.03–1.24) p = 0.01 prostate cancer RR 1.29 (1.08–1.53) p < 0.01 advanced prostate cancer RR 1.05 (0.87–1.25) p = 0.7 fatal prostate cancer RR 1.14 (0.86–1.51) p = 0.35 | Julin et al., 2012 [9] |
all cancer sites | Japanese | women, men (45–47) | 9 years | age, living area, BMI, smoking history, frequency of alcohol consumption, physical activity, consumption of meat, soy, vegetables, fruit, menopause status (yes, no), use of exogenous hormones in women | N = 90,383 (5849) | quartiles (median) [ngCd/day] men 1. 18.4 2. 24.3 3. 29.3 4. 37.5 | quartile 1 vs. 4 men HR 0.94 (0.82–1.08) p = 0.46 | Sawada et al., 2012 [18] |
Urine Cd concentration | ||||||||
Thyroid + all cancer sites | South Korean | women, men, ≥19 | 8 years | age, sex, region (random effect), enrollment year (random effect), education achievement, smoking status, and job status | N = 5406 (371) women 2004 men 3402 all cancers women—166 men—137 thyroid cancer women—60 men—8 | tertiles [µg/g creatinine] 1. <0.91 2. 0.91–1.96 3. ≥1.96 | tertile 1 vs. 3 total HR 1.41 (1.01–1.95) p = 0.03 thyroid cancer HR 2.28 (0.93–3.91) p = 0.03 | Park et al., 2021 [13] |
Lung | Five ethnicity (Africans Americans, Native Hawaiians, Whites, Latinos, Japanese Amercians) | women, men, ≥45 | 13.4 years | Only current smokers age, sex (men/women), race (ethnicity African American, Native Hawaiian, White, Latino, Japanese American), BMI, creatinine (mg/dL; log). | N = 2309 (140) women—1241 (63) men—1068 (77) Adenocarcinoma—42 Squamous cell carcinoma—38 Small cell lung cancer—21 Unspecified—22 | geometric mean (GM) | Cd urine level vs. lung cancer Model 1 HR 1.48 (1.21–1.82) p = 0.0002 Adenocarcinoma HR 1.75 (1.25–2.46) p = 0.001 Squamous cell carcinoma HR 0.96 (0.62–1.49) p = 0.87 Small cell lung cancer HR 1.54 (0.92–2.57) p = 0.101 Unspecified HR 1.64 (1.05–2.56) p = 0.030 | Cigan et al., 2023 [14] |
Toenail Cd concentration | ||||||||
Prostate | American | men (58–74) | not reported | Cases and controls were matched on age (eligible non-cases nearest in age, with one control being older and one younger), race, date of blood collection (typically within 2 weeks), and size of toenail clipping (small, medium, large) Risk factors were not taken into account. | N = 342 (115) | quintiles [ppb] 1. 10.8 2. 28.7 3. 54.5 4. 104.4 5. 310.8 | quintile 1 vs. 5 OR 0.70 (0.36–1.37) p = 0.9 | Platz et al., 2002 [19] |
References
- List of Classifications—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/list-of-classifications/ (accessed on 20 July 2021).
- Cadmium and Cadmium Compounds (IARC Summary & Evaluation, Volume 58, 1993). Available online: http://www.inchem.org/documents/iarc/vol58/mono58-2.html (accessed on 15 June 2021).
- IARC. Arsenic, Metals, Fibres, and Dusts; IARC: Lyon, France, 2012; ISBN 978-92-832-1320-8. [Google Scholar]
- Nawrot, T.S.; Martens, D.S.; Hara, A.; Plusquin, M.; Vangronsveld, J.; Roels, H.A.; Staessen, J.A. Association of Total Cancer and Lung Cancer with Environmental Exposure to Cadmium: The Meta-Analytical Evidence. Cancer Causes Control 2015, 26, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium Carcinogenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef]
- Gaudet, M.M.; Deubler, E.L.; Kelly, R.S.; Ryan Diver, W.; Teras, L.R.; Hodge, J.M.; Levine, K.E.; Haines, L.G.; Lundh, T.; Lenner, P.; et al. Blood Levels of Cadmium and Lead in Relation to Breast Cancer Risk in Three Prospective Cohorts. Int. J. Cancer 2019, 144, 1010–1016. [Google Scholar] [CrossRef]
- Grioni, S.; Agnoli, C.; Krogh, V.; Pala, V.; Rinaldi, S.; Vinceti, M.; Contiero, P.; Vescovi, L.; Malavolti, M.; Sieri, S. Dietary Cadmium and Risk of Breast Cancer Subtypes Defined by Hormone Receptor Status: A Prospective Cohort Study. Int. J. Cancer 2019, 144, 2153–2160. [Google Scholar] [CrossRef]
- Julin, B.; Wolk, A.; Bergkvist, L.; Bottai, M.; Akesson, A. Dietary Cadmium Exposure and Risk of Postmenopausal Breast Cancer: A Population-Based Prospective Cohort Study. Cancer Res. 2012, 72, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Julin, B.; Wolk, A.; Johansson, J.-E.; Andersson, S.-O.; Andrén, O.; Åkesson, A. Dietary Cadmium Exposure and Prostate Cancer Incidence: A Population-Based Prospective Cohort Study. Br. J. Cancer 2012, 107, 895–900. [Google Scholar] [CrossRef]
- Cao, H.; Yang, Y.; Huang, B.; Zhang, Y.; Wu, Y.; Wan, Z.; Ma, L. A Cross-Sectional Study of the Association between Heavy Metals and Pan-Cancers Associated with Sex Hormones in NHANES 1999–2018. Environ. Sci. Pollut. Res. 2023, 30, 61005–61017. [Google Scholar] [CrossRef]
- Deubler, E.L.; Gapstur, S.M.; Diver, W.R.; Gaudet, M.M.; Hodge, J.M.; Stevens, V.L.; McCullough, M.L.; Haines, L.G.; Levine, K.E.; Teras, L.R. Erythrocyte Levels of Cadmium and Lead and Risk of B-Cell Non-Hodgkin Lymphoma and Multiple Myeloma. Int. J. Cancer 2020, 147, 3110–3118. [Google Scholar] [CrossRef] [PubMed]
- Duell, E.; Lujan-Barroso, L.; Outzen, M.; Raaschou-Nielsen, O.; Jenab, M.; Sund, M.; Bergdahl, I. Pre-Diagnostic Erythrocyte Cadmium, Selenium, and Zinc Levels and Pancreatic Cancer Risk in Europe. Pancreatology 2018, 18, S55–S56. [Google Scholar] [CrossRef]
- Park, E.; Kim, S.; Song, S.-H.; Lee, C.-W.; Kwon, J.-T.; Lim, M.K.; Park, E.Y.; Won, Y.-J.; Jung, K.-W.; Kim, B. Environmental Exposure to Cadmium and Risk of Thyroid Cancer from National Industrial Complex Areas: A Population-Based Cohort Study. Chemosphere 2021, 268, 128819. [Google Scholar] [CrossRef]
- Cigan, S.S.; Murphy, S.E.; Stram, D.O.; Hecht, S.S.; Le Marchand, L.; Stepanov, I.; Park, S.L. Association of Urinary Biomarkers of Smoking-Related Toxicants with Lung Cancer Incidence in Smokers: The Multiethnic Cohort Study. Cancer Epidemiol. Biomark. Prev. 2023, 32, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, Q. Association between Blood Heavy Metal Concentrations and Skin Cancer in the National Health and Nutrition Examination Survey, 2011–2018. Environ. Sci. Pollut. Res. 2023, 30, 108681–108693. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.S.; Lundh, T.; Porta, M.; Bergdahl, I.A.; Palli, D.; Johansson, A.-S.; Botsivali, M.; Vineis, P.; Vermeulen, R.; Kyrtopoulos, S.A.; et al. Blood Erythrocyte Concentrations of Cadmium and Lead and the Risk of B-Cell Non-Hodgkin’s Lymphoma and Multiple Myeloma: A Nested Case-Control Study. PLoS ONE 2013, 8, e81892. [Google Scholar] [CrossRef]
- Eriksen, K.T.; Halkjær, J.; Meliker, J.R.; McElroy, J.A.; Sørensen, M.; Tjønneland, A.; Raaschou-Nielsen, O. Dietary Cadmium Intake and Risk of Prostate Cancer: A Danish Prospective Cohort Study. BMC Cancer 2015, 15, 177. [Google Scholar] [CrossRef]
- Sawada, N.; Iwasaki, M.; Inoue, M.; Takachi, R.; Sasazuki, S.; Yamaji, T.; Shimazu, T.; Endo, Y.; Tsugane, S. Long-Term Dietary Cadmium Intake and Cancer Incidence. Epidemiology 2012, 23, 368–376. [Google Scholar] [CrossRef]
- Platz, E.A.; Helzlsouer, K.J.; Hoffman, S.C.; Morris, J.S.; Baskett, C.K.; Comstock, G.W. Prediagnostic Toenail Cadmium and Zinc and Subsequent Prostate Cancer Risk. Prostate 2002, 52, 288–296. [Google Scholar] [CrossRef]
- McShane, W.J.; Pappas, R.S.; Wilson-McElprang, V.; Paschal, D. A Rugged and Transferable Method for Determining Blood Cadmium, Mercury, and Lead with Inductively Coupled Plasma-Mass Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 638–644. [Google Scholar] [CrossRef]
- Jarrett, J.M.; Xiao, G.; Caldwell, K.L.; Henahan, D.; Shakirova, G.; Jones, R.L. Eliminating Molybdenum Oxide Interference in Urine Cadmium Biomonitoring Using ICP-DRC-MS. J. Anal. At. Spectrom. 2008, 23, 962–967. [Google Scholar] [CrossRef]
- Lewis, G.P.; Coughlin, L.L.; Jusko, W.J.; Hartz, S. Contribution of Cigarette Smoking to Cadmium Accumulation in Man. Lancet 1972, 1, 291–292. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, J. Blood Levels of Endocrine-Disrupting Metals and Prevalent Breast Cancer among US Women. Med. Oncol. 2019, 37, 1. [Google Scholar] [CrossRef]
- Cai, R.; Zheng, Y.-F.; Bu, J.-G.; Zhang, Y.-Y.; Fu, S.-L.; Wang, X.-G.; Guo, L.-L.; Zhang, J.-R. Effects of Blood Lead and Cadmium Levels on Homocysteine Level in Plasma. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 162–166. [Google Scholar] [PubMed]
- Hecht, S.S.; Hatsukami, D.K. Smokeless Tobacco and Cigarette Smoking: Chemical Mechanisms and Cancer Prevention. Nat. Rev. Cancer 2022, 22, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Cancer (IARC). T.I.A. for R. on Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 13 February 2023).
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Toxicological Profile for Cadmium. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=48&tid=15 (accessed on 7 April 2023).
- Hayat, M.T.; Nauman, M.; Nazir, N.; Ali, S.; Bangash, N. Chapter 7—Environmental Hazards of Cadmium: Past, Present, and Future. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 163–183. ISBN 978-0-12-814864-8. [Google Scholar]
- Wang, R.; Sang, P.; Guo, Y.; Jin, P.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Qian, H. Cadmium in Food: Source, Distribution and Removal. Food Chem. 2023, 405, 134666. [Google Scholar] [CrossRef] [PubMed]
- Czeczot, H.; Majewska, M. Kadm—zagrożenie i skutki zdrowotne. Farm Pol. 2010, 66, 243–250. [Google Scholar]
- Krajcovicoya-Kudlackova, M.; Ursinyova, M.; Hladikova, V.; Simoncic, R.; Bederova, A.; Magalova, T.; Brtkova, A.; Grancicova, E. Cadmium Blood Levels in Vegetarians. Hygiena 1999, 44, 30–35. [Google Scholar]
- Krajcovicová-Kudládková, M.; Ursínyová, M.; Masánová, V.; Béderová, A.; Vala-chovicová, M. Cadmium Blood Concentrations in Relation to Nutrition. Cent. Eur. J. Public Health 2006, 14, 126–129. [Google Scholar] [CrossRef]
- Kosečková, P.; Zvěřina, O.; Pruša, T.; Coufalík, P.; Hrežová, E. Estimation of Cadmium Load from Soybeans and Soy-Based Foods for Vegetarians. Environ. Monit. Assess 2020, 192, 89. [Google Scholar] [CrossRef] [PubMed]
- Asagba, S. Role of Diet in Absorption and Toxicity of Oral Cadmium—A Review of Literature. Afr. J. Biotechnol. 2009, 8, 7428-7436. [Google Scholar]
- Brzóska, M.M.; Moniuszko-Jakoniuk, J. Interactions between Cadmium and Zinc in the Organism. Food Chem. Toxicol. 2001, 39, 967–980. [Google Scholar] [CrossRef]
- Brzóska, M.M.; Moniuszko-Jakoniuk, J. The Influence of Calcium Content in Diet on Cumulation and Toxicity of Cadmium in the Organism. Arch. Toxicol. 1998, 72, 63–73. [Google Scholar] [CrossRef] [PubMed]
All Cohort N = 2956 | Unaffected N = 2812 | New Cancer Diagnosis N = 144 | Mean Cd Level, µg/L (Range) | |
---|---|---|---|---|
Age | ||||
range | 33–87 | 33–87 | 36–76 | - |
mean | 53 | 53 | 60.5 | - |
Follow-up (months) | ||||
range | 6–120 | 29–120 | 6–103 | - |
mean | 76 | 78 | 48 | - |
Smoking | ||||
no | 1743 (59%) | 1656 (56%) | 87 (3%) | 0.28 (0.02–2.34) |
yes | 1213 (41%) | 1156 (39%) | 57 (2%) | 1.18 (0.08–11.82) |
Cancer Site | N (%) |
---|---|
prostate | 58 (40%) |
colon | 13 (9%) |
kidney | 13 (9%) |
bladder | 12 (8%) |
melanoma | 12 (8%) |
circulatory system | 7 (5%) |
lung | 6 (4%) |
liver | 4 (3%) |
head, neck, brain | 4 (3%) |
thyroid | 4 (3%) |
lymphatic system | 2 (1.5%) |
pancreatic | 2 (1.5%) |
skin | 2 (1.5%) |
stomach | 2 (1.5%) |
breast | 1 (0.7%) |
esophagus | 1 (0.7%) |
testis | 1 (0.7%) |
Univariable COX Regression | Multivariable COX Regression C | |||||||
---|---|---|---|---|---|---|---|---|
Blood Cd Level, Quartiles | Unaffected, N = 2812 A | New Cancer Diagnosis, N = 144 A | HR B | 95% CI B | p-Value | HR B | 95% CI B | p-Value |
0.02–0.19 | 678 (24%) | 14 (9.7%) | 1.0 | — | — | 1.0 | — | — |
0.20–0.32 | 727 (26%) | 39 (27%) | 2.46 | 1.33, 4.52 | 0.004 * | 2.15 | 1.17–4.0 | 0.014 * |
0.33–0.70 | 698 (25%) | 45 (31%) | 2.94 | 1.62, 5.36 | <0.001 * | 2.65 | 1.42–4.92 | 0.002 * |
0.71–11.82 | 709 (25%) | 46 (32%) | 2.84 | 1.56, 5.17 | <0.001 * | 3.42 | 1.67–7.01 | <0.001 * |
Univariable COX Regression | Multivariable COX Regression C | |||||||
---|---|---|---|---|---|---|---|---|
Blood Cd Level, Quartiles | Unaffected, N = 1656 A | New Cancer Diagnosis, N = 87 A | HRB | 95% CI B | p-Value | HR B | 95% CI B | p-Value |
0.02–0.15 | 388 (23%) | 6 (6.9%) | 1.0 | — | — | 1.0 | — | — |
0.16–0.22 | 421 (25%) | 17 (20%) | 2.60 | 1.02, 6.59 | 0.044 * | 2.26 | 0.89, 5.75 | 0.086 |
0.23–0.32 | 420 (25%) | 24 (28%) | 3.50 | 1.43, 8.55 | 0.006 * | 2.68 | 1.09, 6.61 | 0.032 * |
0.33–2.34 | 427 (26%) | 40 (46%) | 5.63 | 2.39, 13.3 | <0.001 * | 3.74 | 1.56, 8.95 | 0.003 * |
Univariable COX Regression | Multivariable COX Regression C | |||||||
---|---|---|---|---|---|---|---|---|
Blood Cd Level, Quartiles | Unaffected, N = 1156 A | New Cancer Diagnosis, N = 57 A | HR B | 95% CI B | p-Value | HR B | 95% CI B | p-Value |
0.08–0.41 | 284 (25%) | 9 (16%) | 1.0 | — | — | 1.0 | — | — |
0.42–0.83 | 294 (25%) | 13 (23%) | 1.29 | 0.55, 3.03 | 0.6 | 1.12 | 0.48, 2.62 | 0.8 |
0.84–1.42 | 288 (25%) | 18 (32%) | 1.79 | 0.80, 3.99 | 0.2 | 1.53 | 0.68, 3.43 | 0.3 |
1.43–11.82 | 290 (25%) | 17 (30%) | 1.70 | 0.76, 3.81 | 0.2 | 1.49 | 0.66, 3.35 | 0.3 |
Univariable COX Regression | Multivariable COX Regression C | |||||||
---|---|---|---|---|---|---|---|---|
Blood Cd Level, Quartiles | Unaffected, N = 1990 A | New Cancer Diagnosis, N = 58 A | HR B | 95% CI B | p-Value | HR B | 95% CI B | p-Value |
0.02–0.19 | 558 (28%) | 9 (16%) | 1.0 | — | — | 1.0 | — | — |
0.20–0.32 | 512 (26%) | 14 (24%) | 1.61 | 0.70, 3.73 | 0.3 | 1.67 | 0.72, 3.88 | 0.2 |
0.33–0.70 | 439 (22%) | 19 (33%) | 2.53 | 1.14, 5.58 | 0.022 * | 2.79 | 1.20, 6.48 | 0.017 * |
0.71–11.82 | 481 (24%) | 16 (28%) | 1.90 | 0.84, 4.30 | 0.12 | 2.35 | 0.84, 6.58 | 0.10 |
Univariable COX Regression | Multivariable COX Regression C | |||||||
---|---|---|---|---|---|---|---|---|
Blood Cd Level, Quartiles | Unaffected, N = 822 A | New Cancer Diagnosis, N = 86 A | HR B | 95% CI B | p-Value | HR B | 95% CI B | p-Value |
0.04–0.19 | 120 (15%) | 5 (5.8%) | 1.0 | — | — | 1.0 | — | — |
0.20–0.32 | 215 (26%) | 25 (29%) | 2.58 | 0.99, 6.75 | 0.053 | 2.69 | 1.03, 7.04 | 0.043 * |
0.33–0.70 | 259 (32%) | 26 (30%) | 2.28 | 0.87, 5.93 | 0.092 | 2.69 | 1.02, 7.05 | 0.044 * |
0.71–10.89 | 228 (28%) | 30 (35%) | 2.74 | 1.06, 7.06 | 0.037 * | 4.63 | 1.62, 13.2 | 0.004 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derkacz, R.; Marciniak, W.; Baszuk, P.; Wysokińska, M.; Chrzanowska, N.; Lener, M.; Huzarski, T.; Gronwald, J.; Dębniak, T.; Cybulski, C.; et al. Blood Cadmium Level Is a Marker of Cancer Risk in Men. Nutrients 2024, 16, 1309. https://doi.org/10.3390/nu16091309
Derkacz R, Marciniak W, Baszuk P, Wysokińska M, Chrzanowska N, Lener M, Huzarski T, Gronwald J, Dębniak T, Cybulski C, et al. Blood Cadmium Level Is a Marker of Cancer Risk in Men. Nutrients. 2024; 16(9):1309. https://doi.org/10.3390/nu16091309
Chicago/Turabian StyleDerkacz, Róża, Wojciech Marciniak, Piotr Baszuk, Monika Wysokińska, Natalia Chrzanowska, Marcin Lener, Tomasz Huzarski, Jacek Gronwald, Tadeusz Dębniak, Cezary Cybulski, and et al. 2024. "Blood Cadmium Level Is a Marker of Cancer Risk in Men" Nutrients 16, no. 9: 1309. https://doi.org/10.3390/nu16091309
APA StyleDerkacz, R., Marciniak, W., Baszuk, P., Wysokińska, M., Chrzanowska, N., Lener, M., Huzarski, T., Gronwald, J., Dębniak, T., Cybulski, C., Jakubowska, A., Scott, R. J., & Lubiński, J. (2024). Blood Cadmium Level Is a Marker of Cancer Risk in Men. Nutrients, 16(9), 1309. https://doi.org/10.3390/nu16091309