The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Data Collection, Quality Assessment, and Data Synthesis
3. Results
3.1. Characteristics of the Included Studies in the Prevention of COVID-19 and/or Long-COVID
3.2. Characteristics of the Included Studies on the Management of COVID-19 by Vitamin Type
3.2.1. Vitamin Co-Administration
3.2.2. Vitamin A
3.2.3. Vitamin B
3.2.4. Vitamin C
3.2.5. Vitamin D
3.3. Main Findings of Vitamin Administration in the Prevention of COVID-19 and/or Long-COVID
3.4. Main Findings of Vitamin Administration in the Management of COVID-19 by Vitamin Type
3.4.1. Vitamin Co-Administration
3.4.2. Vitamin A
3.4.3. Vitamin B
3.4.4. Vitamin C
3.4.5. Vitamin D
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas, S. Pandemics and Pathology: A Reflection on Influenza, HIV/AIDS and SARS (COVID-19) Pandemic Infections. Diagn. Histopathol. 2021, 27, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Herrington, C.; Coates, P.; Duprex, W. Viruses and Disease: Emerging Concepts for Prevention, Diagnosis and Treatment. J. Pathol. 2015, 235, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Si, R.; Yao, Y.; Zhang, X.; Lu, Q.; Aziz, N. Investigating the Links Between Vaccination Against COVID-19 and Public Attitudes Toward Protective Countermeasures: Implications for Public Health. Front. Public Health 2021, 9, 702699. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, T.; Dooley, L.; Ferroni, E.; Al-Ansary, L.; van Driel, M.; Bawazeer, G.; Jones, M.; Hoffmann, T.; Clark, J.; Beller, E.; et al. Physical Interventions to Interrupt or Reduce the Spread of Respiratory Viruses. Cochrane Database Syst. Rev. 2023, CD006207. [Google Scholar] [CrossRef] [PubMed]
- Shenkin, A. Micronutrients in Health and Disease. Postgrad. Med. J. 2006, 82, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Speakman, L.L.; Michienzi, S.M.; Badowski, M.E. Vitamins, Supplements and COVID-19: A Review of Currently Available Evidence. Drugs Context 2021, 10, 2021-6-2. [Google Scholar] [CrossRef]
- Alpert, P.T. The Role of Vitamins and Minerals on the Immune System. Home Health Care Manag. Pract. 2017, 29, 199–202. [Google Scholar] [CrossRef]
- Weir, E.K.; Thenappan, T.; Bhargava, M.; Chen, Y. Does Vitamin D Deficiency Increase the Severity of COVID-19? Clin. Med. 2020, 20, e107–e108. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Soltani, D. The Effect of Supplementation with Vitamins A, B, C, D, and E on Disease Severity and Inflammatory Responses in Patients with COVID-19: A Randomized Clinical Trial. Trials 2021, 22, 802. [Google Scholar] [CrossRef]
- Li, R.; Wu, K.; Li, Y.; Liang, X.; Tse, W.K.F.; Yang, L.; Lai, K.P. Revealing the Targets and Mechanisms of Vitamin A in the Treatment of COVID-19. Aging 2020, 12, 15784–15796. [Google Scholar] [CrossRef]
- Hemilä, H.; Chalker, E. Vitamin C for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2013, CD000980. [Google Scholar] [CrossRef] [PubMed]
- Ao, G.; Li, J.; Yuan, Y.; Wang, Y.; Nasr, B.; Bao, M.; Gao, M.; Qi, X. Intravenous Vitamin C Use and Risk of Severity and Mortality in COVID-19: A Systematic Review and Meta-Analysis. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2022, 37, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Kow, C.S.; Hasan, S.S.; Ramachandram, D.S. The Effect of Vitamin C on the Risk of Mortality in Patients with COVID-19: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Inflammopharmacology 2023, 31, 3357–3362. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Roy, A.; Maitra, S.; Shankar, V.; Khanna, P.; Baidya, D.K. Vitamin D Supplementation and COVID-19 Treatment: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102189. [Google Scholar] [CrossRef] [PubMed]
- Olczak-Pruc, M.; Swieczkowski, D.; Ladny, J.R.; Pruc, M.; Juarez-Vela, R.; Rafique, Z.; Peacock, F.W.; Szarpak, L. Vitamin C Supplementation for the Treatment of COVID-19: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4217. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Grant, W.B.; Frias-Toral, E.; Sarno, G.; Vetrani, C.; Ceriani, F.; Garcia-Velasquez, E.; Contreras-Briceño, J.; Savastano, S.; et al. Vitamin D: A Role Also in Long COVID-19? Nutrients 2022, 14, 1625. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 978-1-119-53662-8. [Google Scholar]
- Manetti, S.; Dugdale, D.C.; Conaway, B. Vitamins. Available online: https://medlineplus.gov/ency/article/002399.htm (accessed on 26 May 2023).
- Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 14 December 2023).
- McGuinness, L.A.; Schmidt, L. Medrxivr: Accessing and Searching medRxiv and bioRxiv Preprint Data in R. J. Open Source Softw. 2020, 5, 2651. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. BMJ Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Holt, H.; Greenig, M.; Talaei, M.; Perdek, N.; Pfeffer, P.; Vivaldi, G.; Maltby, S.; Symons, J.; Barlow, N.L.; et al. Effect of a Test-and-Treat Approach to Vitamin D Supplementation on Risk of All Cause Acute Respiratory Tract Infection and COVID-19: Phase 3 Randomised Controlled Trial (CORONAVIT). BMJ 2022, 378, e071230. [Google Scholar] [CrossRef] [PubMed]
- Villasis-Keever, M.A.; López-Alarcón, M.G.; Miranda-Novales, G.; Zurita-Cruz, J.N.; Barrada-Vázquez, A.S.; González-Ibarra, J.; Martínez-Reyes, M.; Grajales-Muñiz, C.; Santacruz-Tinoco, C.E.; Martínez-Miguel, B.; et al. Efficacy and Safety of Vitamin D Supplementation to Prevent COVID-19 in Frontline Healthcare Workers. A Randomized Clinical Trial. Arch. Med. Res. 2022, 53, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Hakamifard, A.; Soltani, R.; Maghsoudi, A.; Rismanbaf, A.; Aalinezhad, M.; Tarrahi, M.J.; Mashayekhbakhsh, S.; Dolatshahi, K. The Effect of Vitamin E and Vitamin C in Patients with COVID-19 Pneumonia; a Randomized Controlled Clinical Trial. Immunopathol. Persa 2022, 8, e08. [Google Scholar] [CrossRef]
- Leal-Martínez, F.; Abarca-Bernal, L.; García-Pérez, A.; González-Tolosa, D.; Cruz-Cázares, G.; Montell-García, M.; Ibarra, A. Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 1172. [Google Scholar] [CrossRef] [PubMed]
- Rohani, M.; Mozaffar, H.; Mesri, M.; Shokri, M.; Delaney, D.; Karimy, M. Evaluation and Comparison of Vitamin A Supplementation with Standard Therapies in the Treatment of Patients with COVID-19. East. Mediterr. Health J. 2022, 28, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Somi, M.H.; Faghih Dinevari, M.; Taghizadieh, A.; Varshochi, M.; Sadeghi Majd, E.; Abbasian, S.; Nikniaz, Z. Effect of Vitamin A Supplementation on the Outcome Severity of COVID-19 in Hospitalized Patients: A Pilot Randomized Clinical Trial. Nutr. Health 2022, 1–6. [Google Scholar] [CrossRef]
- Majidi, N.; Bahadori, E.; Shekari, S.; Gholamalizadeh, M.; Tajadod, S.; Ajami, M.; Gholami, S.; Shadnoush, M.; Ahmadzadeh, M.; Dehnadi Moghadam, A.; et al. Effects of Supplementation with Low-Dose Group B Vitamins on Clinical and Biochemical Parameters in Critically Ill Patients with COVID-19: A Randomized Clinical Trial. Expert Rev. Anti-Infect. Ther. 2022, 1–7. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Q.-Y.; Peng, C.-F.; Ma, Z.; Han, Y.-L. Efficiency of Nicotinamide-Based Supportive Therapy in Lymphopenia for Patients with Ordinary or Severe COVID-19: A Randomized Controlled Trial. Medicine 2022, 101, 43. [Google Scholar] [CrossRef]
- Coppock, D.; Violet, P.-C.; Vasquez, G.; Belden, K.; Foster, M.; Mullin, B.; Magee, D.; Mikell, I.; Shah, L.; Powers, V.; et al. Pharmacologic Ascorbic Acid as Early Therapy for Hospitalized Patients with COVID-19: A Randomized Clinical Trial. Life 2022, 12, 453. [Google Scholar] [CrossRef]
- Fogleman, C.; Cohen, D.; Mercier, A.; Farrell, D.; Rutz, J.; Bresz, K.; Vernon, T. A Pilot of a Randomized Control Trial of Melatonin and Vitamin C for Mild-to-Moderate COVID-19. J. Am. Board Fam. Med. 2022, 35, 695–707. [Google Scholar] [CrossRef]
- Jamali Moghadam Siahkali, S.; Zarezade, B.; Koolaji, S.; SeyedAlinaghi, S.; Zendehdel, A.; Tabarestani, M.; Sekhavati Moghadam, E.; Abbasian, L.; Dehghan Manshadi, S.A.; Salehi, M.; et al. Safety and Effectiveness of High-Dose Vitamin C in Patients with COVID-19: A Randomized Open-Label Clinical Trial. Eur. J. Med. Res. 2021, 26, 20. [Google Scholar] [CrossRef]
- Kumar, V.; Bhushan, D.; Supriya, S.; Ganapule, A.A.; Lohani, P.; Shyama; Pandey, S.; Majhi, P.K.; Anand, U.; Kumar, R.; et al. Efficacy of Intravenous Vitamin C in Management of Moderate and Severe COVID-19: A Double Blind Randomized Placebo Controlled Trial. J. Fam. Med. Prim. Care 2022, 11, 4758–4765. [Google Scholar] [CrossRef]
- Kumari, P.; Dembra, S.; Dembra, P.; Bhawna, F.; Gul, A.; Ali, B.; Sohail, H.; Kumar, B.; Memon, M.K.; Rizwan, A. The Role of Vitamin C as Adjuvant Therapy in COVID-19. Cureus 2020, 12, e11779. [Google Scholar] [CrossRef]
- Labbani-Motlagh, Z.; Amini, S.; Aliannejad, R.; Sadeghi, A.; Shafiee, G.; Heshmat, R.; Jafary, M.; Talaschian, M.; Akhtari, M.; Jamshidi, A.; et al. High-Dose Intravenous Vitamin C in Early Stages of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Double-Blind, Randomized, Controlled Clinical Trial. J. Res. Pharm. Pract. 2022, 11, 64–72. [Google Scholar] [CrossRef]
- Majidi, N.; Rabbani, F.; Gholami, S.; Gholamalizadeh, M.; BourBour, F.; Rastgoo, S.; Hajipour, A.; Shadnoosh, M.; Akbari, M.E.; Bahar, B.; et al. The Effect of Vitamin C on Pathological Parameters and Survival Duration of Critically Ill Coronavirus Disease 2019 Patients: A Randomized Clinical Trial. Front. Immunol. 2021, 12, 717816. [Google Scholar] [CrossRef]
- Ried, K.; BinJemain, T.; Sali, A. Therapies to Prevent Progression of COVID-19, Including Hydroxychloroquine, Azithromycin, Zinc, and Vitamin D3 With or Without Intravenous Vitamin C: An International, Multicenter, Randomized Trial. Cureus 2021, 13, e19902. [Google Scholar] [CrossRef]
- Tehrani, S.; Yadegarynia, D.; Abrishami, A.; Moradi, H.; Gharaei, B.; Rauofi, M.; Maghsoudi Nejad, F.; Sali, S.; Khabiri, N.; Abolghasemi, S. An Investigation into the Effects of Intravenous Vitamin C on Pulmonary CT Findings and Clinical Outcomes of Patients with COVID 19 Pneumonia A Randomized Clinical Trial. Urol. J. 2022, 19, 460–465. [Google Scholar] [CrossRef]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; De Backer, D.; Xiang, H.; et al. Pilot Trial of High-Dose Vitamin C in Critically Ill COVID-19 Patients. Ann. Intensive Care 2021, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Abroug, H.; Maatouk, A.; Bennasrallah, C.; Dhouib, W.; Ben Fredj, M.; Zemni, I.; Kacem, M.; Mhalla, S.; Nouira, S.; Ben Belgacem, M.; et al. Effect of Vitamin D Supplementation versus Placebo on Recovery Delay among COVID-19 Tunisian Patients: A Randomized-Controlled Clinical Trial. Trials 2023, 24, 123. [Google Scholar] [CrossRef]
- Bishop, C.W.; Ashfaq, A.; Melnick, J.Z.; Vazquez-Escarpanter, E.; Fialkow, J.A.; Strugnell, S.A.; Choe, J.; Kalantar-Zadeh, K.; Federman, N.C.; Ng, D.; et al. REsCue Trial: Randomized Controlled Clinical Trial with Extended-Release Calcifediol in Symptomatic COVID-19 Outpatients. Nutrition 2023, 107, 111899. [Google Scholar] [CrossRef]
- Domazet Bugarin, J.; Dosenovic, S.; Ilic, D.; Delic, N.; Saric, I.; Ugrina, I.; Stojanovic Stipic, S.; Duplancic, B.; Saric, L. Vitamin D Supplementation and Clinical Outcomes in Severe COVID-19 Patients-Randomized Controlled Trial. Nutrients 2023, 15, 1234. [Google Scholar] [CrossRef]
- Bychinin, M.V.; Klypa, T.V.; Mandel, I.A.; Yusubalieva, G.M.; Baklaushev, V.P.; Kolyshkina, N.A.; Troitsky, A.V. Effect of Vitamin D3 Supplementation on Cellular Immunity and Inflammatory Markers in COVID-19 Patients Admitted to the ICU. Sci. Rep. 2022, 12, 18604. [Google Scholar] [CrossRef]
- Cannata-Andía, J.B.; Díaz-Sottolano, A.; Fernández, P.; Palomo-Antequera, C.; Herrero-Puente, P.; Mouzo, R.; Carrillo-López, N.; Panizo, S.; Ibañez, G.H.; Cusumano, C.A.; et al. A Single-Oral Bolus of 100,000 IU of Cholecalciferol at Hospital Admission Did Not Improve Outcomes in the COVID-19 Disease: The COVID-VIT-D-a Randomised Multicentre International Clinical Trial. BMC Med. 2022, 20, 18604. [Google Scholar] [CrossRef]
- De Niet, S.; Trémège, M.; Coffiner, M.; Rousseau, A.-F.; Calmes, D.; Frix, A.-N.; Gester, F.; Delvaux, M.; Dive, A.-F.; Guglielmi, E.; et al. Positive Effects of Vitamin D Supplementation in Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2022, 14, 3048. [Google Scholar] [CrossRef]
- Elamir, Y.M.; Amir, H.; Lim, S.; Rana, Y.P.; Lopez, C.G.; Feliciano, N.V.; Omar, A.; Grist, W.P.; Via, M.A. A Randomized Pilot Study Using Calcitriol in Hospitalized COVID-19 Patients. Bone 2022, 154, 116175. [Google Scholar] [CrossRef]
- Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; López Miranda, J.; Bouillon, R.; Quesada Gomez, J.M. Effect of Calcifediol Treatment and Best Available Therapy versus Best Available Therapy on Intensive Care Unit Admission and Mortality among Patients Hospitalized for COVID-19: A Pilot Randomized Clinical Study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- Karonova, T.L.; Golovatyuk, K.A.; Kudryavtsev, I.V.; Chernikova, A.T.; Mikhaylova, A.A.; Aquino, A.D.; Lagutina, D.I.; Zaikova, E.K.; Kalinina, O.V.; Golovkin, A.S.; et al. Effect of Cholecalciferol Supplementation on the Clinical Features and Inflammatory Markers in Hospitalized COVID-19 Patients: A Randomized, Open-Label, Single-Center Study. Nutrients 2022, 14, 2602. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Sahraian, M.A.; Jamalimoghadamsiahkali, S.; Asadi, A.; Zarei, A.; Zendehdel, A.; Varzandi, T.; Mohammadnabi, S.; Alijani, N.; Karimi, M.; et al. Treatment With 25-Hydroxyvitamin D3 (Calcifediol) Is Associated With a Reduction in the Blood Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients With COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2021, 27, 1242–1251. [Google Scholar] [CrossRef]
- Mariani, J.; Antonietti, L.; Tajer, C.; Ferder, L.; Inserra, F.; Cunto, M.S.; Brosio, D.; Ross, F.; Zylberman, M.; López, D.E.; et al. High-Dose Vitamin D versus Placebo to Prevent Complications in COVID-19 Patients: Multicentre Randomized Controlled Clinical Trial. PLoS ONE 2022, 17, e0267918. [Google Scholar] [CrossRef]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef]
- Murai, I.H.; Fernandes, A.L.; Antonangelo, L.; Gualano, B.; Pereira, R.M.R. Effect of a Single High-Dose Vitamin D3 on the Length of Hospital Stay of Severely 25-Hydroxyvitamin D-Deficient Patients with COVID-19. Clinics 2021, 76, e3549. [Google Scholar] [CrossRef]
- Fernandes, A.L.; Murai, I.H.; Reis, B.Z.; Sales, L.P.; Santos, M.D.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; et al. Effect of a Single High Dose of Vitamin D3 on Cytokines, Chemokines, and Growth Factor in Patients with Moderate to Severe COVID-19. Am. J. Clin. Nutr. 2022, 115, 790–798. [Google Scholar] [CrossRef]
- Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short Term, High-Dose Vitamin D Supplementation for COVID-19 Disease: A Randomised, Placebo-Controlled, Study (SHADE Study). Postgrad. Med. J. 2022, 98, 87–90. [Google Scholar] [CrossRef]
- Sánchez-Zuno, G.A.; González-Estevez, G.; Matuz-Flores, M.G.; Macedo-Ojeda, G.; Hernández-Bello, J.; Mora-Mora, J.C.; Pérez-Guerrero, E.E.; García-Chagollán, M.; Vega-Magaña, N.; Turrubiates-Hernández, F.J.; et al. Vitamin D Levels in COVID-19 Outpatients from Western Mexico: Clinical Correlation and Effect of Its Supplementation. J. Clin. Med. 2021, 10, 2378. [Google Scholar] [CrossRef]
- Zurita-Cruz, J.; Fonseca-Tenorio, J.; Villasís-Keever, M.; López-Alarcón, M.; Parra-Ortega, I.; López-Martínez, B.; Miranda-Novales, G. Efficacy and Safety of Vitamin D Supplementation in Hospitalized COVID-19 Pediatric Patients: A Randomized Controlled Trial. Front. Pediatr. 2022, 10, 943529. [Google Scholar] [CrossRef]
- Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients 2020, 12, 2358. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-Boosting Role of Vitamins D, C, E, Zinc, Selenium and Omega-3 Fatty Acids: Could They Help against COVID-19? Maturitas 2021, 143, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Alam, M.; Khatoon, F.; Fatima, U.; Elasbali, A.M.; Adnan, M.; Islam, A.; Hassan, M.I.; Snoussi, M.; De Feo, V. Natural Products Can Be Used in Therapeutic Management of COVID-19: Probable Mechanistic Insights. Biomed. Pharmacother. 2022, 147, 112658. [Google Scholar] [CrossRef] [PubMed]
- Atluri, K.; Aimlin, I.; Arora, S. Current Effective Therapeutics in Management of COVID-19. J. Clin. Med. 2022, 11, 3838. [Google Scholar] [CrossRef] [PubMed]
- Sinopoli, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The Effects of Orally Administered Lactoferrin in the Prevention and Management of Viral Infections: A Systematic Review. Rev. Med. Virol. 2022, 32, e2261. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K. Nutrition and the Immune System: An Introduction. Am. J. Clin. Nutr. 1997, 66, 460S–463S. [Google Scholar] [CrossRef] [PubMed]
- Sinopoli, A.; Caminada, S.; Isonne, C.; Santoro, M.M.; Baccolini, V. What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials. Nutrients 2022, 14, 4081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Yang, M.; Wang, Q. Effect of Vitamin D Supplementation on COVID-19 Patients: A Systematic Review and Meta-Analysis. Front. Nutr. 2023, 10, 11311033. [Google Scholar] [CrossRef]
- Tentolouris, N.; Samakidou, G.; Eleftheriadou, I.; Tentolouris, A.; Jude, E.B. The Effect of Vitamin D Supplementation on Mortality and Intensive Care Unit Admission of COVID-19 Patients. A Systematic Review, Meta-Analysis and Meta-Regression. Diabetes/Metab. Res. Rev. 2022, 38, e3517. [Google Scholar] [CrossRef] [PubMed]
- Zaazouee, M.S.; Eleisawy, M.; Abdalalaziz, A.M.; Elhady, M.M.; Ali, O.A.; Abdelbari, T.M.; Hasan, S.M.; Almadhoon, H.W.; Ahmed, A.Y.; Fassad, A.S.; et al. Hospital and Laboratory Outcomes of Patients with COVID-19 Who Received Vitamin D Supplementation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Roy, A.; Maitra, S.; Gulati, A.; Khanna, P.; Baidya, D.K. Vitamin C and COVID-19 Treatment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Metab. Syndr. 2021, 15, 102324. [Google Scholar] [CrossRef]
- Pal, R.; Banerjee, M.; Bhadada, S.K.; Shetty, A.J.; Singh, B.; Vyas, A. Vitamin D Supplementation and Clinical Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J. Endocrinol. Investig. 2022, 45, 53–68. [Google Scholar] [CrossRef]
- Shah, K.; Saxena, D.; Mavalankar, D. Vitamin D Supplementation, COVID-19 and Disease Severity: A Meta-Analysis. QJM Mon. J. Assoc. Physicians 2021, 114, 175–181. [Google Scholar] [CrossRef]
- Tiwari, A.V.; Dangore-Khasbage, S. Vitamin D and COVID-19: An Update on Evidence and Potential Therapeutic Implications. Cureus 2023, 15, e46121. [Google Scholar] [CrossRef] [PubMed]
- Bergman, P. Can Vitamin D Protect against Covid-19? BMJ 2022, 378, o1822. [Google Scholar] [CrossRef]
- Vollbracht, C.; Kraft, K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front. Pharmacol. 2022, 13, 899198. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.-Y.; Wang, N.; Zhang, Z.-J.; Lao, L.; Wong, C.-W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Roux-Lombard, P.; Grau, G.E.; Girardin, E.; Ricou, B.; Dayer, J.; Suter, P.M. Plasma Concentrations of Cytokines, Their Soluble Receptors, and Antioxidant Vitamins Can Predict the Development of Multiple Organ Failure in Patients at Risk. Crit. Care Med. 1996, 24, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yi, T.; Tan, S.; Xu, H.; Hu, Y.; Ma, J.; Xu, J. Association of Oral or Intravenous Vitamin C Supplementation with Mortality: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1848. [Google Scholar] [CrossRef] [PubMed]
- Schorah, C.J.; Downing, C.; Piripitsi, A.; Gallivan, L.; Al-Hazaa, A.H.; Sanderson, M.J.; Bodenham, A. Total Vitamin C, Ascorbic Acid, and Dehydroascorbic Acid Concentrations in Plasma of Critically Ill Patients. Am. J. Clin. Nutr. 1996, 63, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Khanna, D. The Role of Vitamin C in Human Immunity and Its Treatment Potential Against COVID-19: A Review Article. Cureus 2023, 15, e33740. [Google Scholar] [CrossRef]
- Miranda-Massari, J.R.; Toro, A.P.; Loh, D.; Rodriguez, J.R.; Borges, R.M.; Marcial-Vega, V.; Olalde, J.; Berdiel, M.J.; Riordan, N.H.; Martinez, J.M.; et al. The Effects of Vitamin C on the Multiple Pathophysiological Stages of COVID-19. Life 2021, 11, 1341. [Google Scholar] [CrossRef]
- Lin, L.; Chu, H. Quantifying Publication Bias in Meta-Analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Smolders, J.; van den Ouweland, J.; Geven, C.; Pickkers, P.; Kox, M. Letter to the Editor: Vitamin D Deficiency in COVID-19: Mixing up Cause and Consequence. Metabolism 2021, 115, 154434. [Google Scholar] [CrossRef] [PubMed]
- Benskin, L.L. A Basic Review of the Preliminary Evidence That COVID-19 Risk and Severity Is Increased in Vitamin D Deficiency. Front. Public Health 2020, 8, 513. [Google Scholar] [CrossRef] [PubMed]
- Daneshkhah, A.; Agrawal, V.; Eshein, A.; Subramanian, H.; Roy, H.K.; Backman, V. Evidence for Possible Association of Vitamin D Status with Cytokine Storm and Unregulated Inflammation in COVID-19 Patients. Aging Clin. Exp. Res. 2020, 32, 2141–2158. [Google Scholar] [CrossRef] [PubMed]
- Bignardi, P.R.; de Andrade Castello, P.; de Matos Aquino, B.; Delfino, V.D.A. Is the Vitamin D Status of Patients with COVID-19 Associated with Reduced Mortality? A Systematic Review and Meta-Analysis. Arch. Endocrinol. Metab. 2023, 67, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.S.; Juber, N.F.; Al-Naseri, H.; Heumann, C.; Ali, R.; Oliver, T. Association between Average Vitamin D Levels and COVID-19 Mortality in 19 European Countries—A Population-Based Study. Nutrients 2023, 15, 4818. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhou, T.; Heianza, Y.; Qi, L. Habitual Use of Vitamin D Supplements and Risk of Coronavirus Disease 2019 (COVID-19) Infection: A Prospective Study in UK Biobank. Am. J. Clin. Nutr. 2021, 113, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Kast, J.I.; McFarlane, A.J.; Głobińska, A.; Sokolowska, M.; Wawrzyniak, P.; Sanak, M.; Schwarze, J.; Akdis, C.A.; Wanke, K. Respiratory Syncytial Virus Infection Influences Tight Junction Integrity. Clin. Exp. Immunol. 2017, 190, 351–359. [Google Scholar] [CrossRef]
- Adams, J.S.; Ren, S.; Liu, P.T.; Chun, R.F.; Lagishetty, V.; Gombart, A.F.; Borregaard, N.; Modlin, R.L.; Hewison, M. Vitamin D-Directed Rheostatic Regulation of Monocyte Antibacterial Responses1. J. Immunol. 2009, 182, 4289–4295. [Google Scholar] [CrossRef]
- Hanff, T.C.; Harhay, M.O.; Brown, T.S.; Cohen, J.B.; Mohareb, A.M. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System? A Call for Epidemiologic Investigations. Clin. Infect. Dis. 2020, 71, 870–874. [Google Scholar] [CrossRef]
- Haddad, F.; Dokmak, G.; Karaman, R. A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life 2022, 12, 1758. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Quesada Gomez, J.M. Comparison of Calcifediol with Vitamin D for Prevention or Cure of Vitamin D Deficiency. J. Steroid Biochem. Mol. Biol. 2023, 228, 106248. [Google Scholar] [CrossRef] [PubMed]
- Cara, K.C.; Beauchesne, A.R.; Li, R.; Chung, M. Cochrane Review Summary on “Vitamin D Supplementation for the Treatment of COVID-19: A Living Systematic Review”. J. Diet. Suppl. 2022, 19, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Modes, M.E.; Directo, M.P.; Melgar, M.; Johnson, L.R.; Yang, H.; Chaudhary, P.; Bartolini, S.; Kho, N.; Noble, P.W.; Isonaka, S.; et al. Clinical Characteristics and Outcomes Among Adults Hospitalized with Laboratory-Confirmed SARS-CoV-2 Infection During Periods of B.1.617.2 (Delta) and B.1.1.529 (Omicron) Variant Predominance—One Hospital, California, July 15–September 23, 2021, and December 21, 2021–January 27, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 217–223. [Google Scholar] [CrossRef]
- Honarmand, K.; Penn, J.; Agarwal, A.; Siemieniuk, R.; Brignardello-Petersen, R.; Bartoszko, J.J.; Zeraatkar, D.; Agoritsas, T.; Burns, K.; Fernando, S.M.; et al. Clinical Trials in COVID-19 Management & Prevention: A Meta-Epidemiological Study Examining Methodological Quality. J. Clin. Epidemiol. 2021, 139, 68–79. [Google Scholar] [CrossRef]
Author, Year | Country | Population | Vitamin Status at Baseline | Vitamin Dose, Form, Route of Administration | Frequency of Administration | Follow-Up Time | Overall Risk of Bias |
---|---|---|---|---|---|---|---|
COVID-19 | |||||||
Jolliffe, 2022 # [25] | United Kingdom | 5979 non-hospitalized subjects, adults, 77% female | 25-OH-vitamin D levels [mean ± SD)]: Group I: 40.9 ± 16.4 nmol/L Group II: 41.5 ± 18.0 nmol/L Group III: >75 nmol/L 100% vitamin D deficient subjects in Group I and Group II (≤75 nmol/L) 100% vitamin D non-deficient subjects in Group III (>75 nmol/L) | Vitamin D3 3200 or 800 IU, oral | Once daily for 6 months | 6 months | High |
Villasis-Keever, 2022 [26] | Mexico | 321 healthcare workers, SARS-CoV-2 negative, adults, 70% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 18.3 (14.6–22.9) ng/mL Group II: 17.1 (13.6–21.3) ng/mL 67% vitamin D deficient subjects (<20 ng/mL) | Cholecalciferol 4000 IU, oral | Once daily for 30 days | 45 days | High |
Long-COVID | |||||||
Jolliffe, 2022 # [25] | United Kingdom | 5979 non-hospitalized subjects, adults, 77% female | 25-OH-vitamin D levels [mean ± SD)]: Group I: 40.9 ± 16.4 nmol/L Group II: 41.5 ± 18.0 nmol/L Group III: >75 nmol/L 100% vitamin D deficient subjects in Group I and Group II (≤75 nmol/L) 100% vitamin D non-deficient subjects in Group III (>75 nmol/L) | Vitamin D3 3200 or 800 IU, oral | Once daily for 6 months | 6 months | High |
Author, Year | Country | Population | Vitamin Status at Baseline | Vitamin Dose, Form, and Route of Administration | Frequency of Administration | Follow-Up Time | Overall Risk of Bias |
---|---|---|---|---|---|---|---|
Vitamin co-administration | |||||||
Beigmohammadi, 2021 [9] | Iran | 60 ICU-hospitalized patients with severe COVID-19, adults (20–60 years), 49% female | Group I: Vitamin A (median ± IQR): 0.20 ± 0.20 ng/mL Vitamin D (median ± IQR): 22.00 ± 9.07 ng/mL Vitamin E (mean ± SD): 11.30 ± 3.60 µg/mL Vitamin C (median ± IQR): 0.20 ± 0.20 mg/dL, Vitamin B9 (mean ± SD): 7.90 ± 3.80 ng/mL Vitamin B12 (mean ± SD): 480.34 ± 292.7 pg/mL Group II: Vitamin A (median ± IQR): 0.20 ± 0.22 ng/mL Vitamin D (median ± IQR): 22.00 ± 12.35 ng/mL Vitamin E (mean ± SD): 11.01 ± 2.53 µg/mL Vitamin C (median ± IQR): 0.10 ± 0.10 mg/dL Vitamin B9 (mean ± SD): 6.54 ± 3.10 ng/mL Vitamin B12 (mean ± SD): 521.25 ± 324.67 pg/mL | Vitamin A: 25,000 IU, intravenous Vitamin D: 600,000 IU, intravenous Vitamin E: 300 IU, intravenous Vitamin C: 0.5 g, intravenous Vitamin B-complex: thiamine nitrate 3.1 mg, sodium riboflavin phosphate 4.9 mg, nicotinamide 40 mg, pyridoxine hydrochloride 4.9 mg, sodium pantothenate 16.5 mg, biotin 60 μg, folic acid 400 μg, and cyanocobalamin 5 μg, intravenous | Vitamin A: once daily for 7 days Vitamin D: once Vitamin E: 2 times Vitamin C: 4 times/day for 7 days Vitamin B-complex: once daily for 7 days | 7 days | SC |
Hakamifard, 2022 [27] | Iran | 73 hospitalized patients with non-severe COVID-19, adults (≥18 years), 37% female | NA | Vitamin C: 1 g, oral Vitamin E: 400 IU, oral | Once daily until discharge | Until hospital discharge | High |
Leal-Martínez, 2022 [28] | Mexico | 80 hospitalized patients with severe COVID-19, adults (30–75 years), 35% female | NA | Vitamin C: 2 g, oral Vitamin D: 4000 IU, oral Vitamin B-complex: thiamin 100 mg, cyanocobalamin 10 mg, pyridoxine 100 mg, folic acid 5 mg, intramuscular | Vitamin C and D: 2 times/day for 21 days Vitamin B-complex: once daily for 5 days | 40 days | Low |
Vitamin A | |||||||
Rohani, 2022 [29] | Iran | 182 outpatients with COVID-19, adults (18–75 years), 41.8% female | NA | Vitamin A 25,000 IU, oral | Once daily for 10 days | Ten days | SC |
Somi, 2022 [30] | Iran | 30 hospitalized patients with COVID-19, adults (≥18 years), 36.7% female | NA | Vitamin A 50,000 IU, intramuscular | Once daily for two weeks | Until hospital discharge | Low |
Vitamin B | |||||||
Majidi, 2022 [31] | Iran | 85 ICU-hospitalized patients with severe COVID-19, adults (35–85 years), 49.0% female | NA | Vitamin B complex, including thiamine (10 mg), riboflavin (4 mg), nicotinamide (40 mg), and dexpanthenol (6 mg), intramuscular | Daily for two weeks | Two weeks | SC |
Hu, 2022 [32] | China | 24 hospitalized patients with COVID-19 and lymphopenia, adults (18–85 years), 54.2% female | NA | Nicotinamide 100 mg, not specified the route of administration | Five times daily for 2 days | Two days | High |
Vitamin C | |||||||
Coppock, 2022 [33] | United States | 66 hospitalized patients COVID-19, adults (≥18 years), 50% female | NA | Ascorbic acid 0.3 g/kg on day 0, 0.6 g/kg on day 1, 0.9 g/kg on days 2–5, intravenous | Once daily for 5 days | Until hospital discharge | Low |
Fogleman, 2022 [34] | United States | 104 non-hospitalized patients with mild or moderate COVID-19, adults (≥40 years), 80% female | NA | 1 g, oral | Once daily for 14 days | 30 days | High |
Jamali Moghadam Siahkali, 2021 [35] | Iran | 60 hospitalized patients with severe COVID-19, adults (>18 years), 50% female | NA | 1.5 g, intravenous | 4 times/day for 5 days | Until hospital discharge | High |
Kumar, 2022 [36] | India | 60 ICU-hospitalized patients with moderate or severe COVID-19, adults (>18 years), 22% female | NA | 1 g, intravenous | 3 times/day for 4 days | Until hospital discharge | Low |
Kumari, 2020 [37] | Pakistan | 150 hospitalized patients with severe COVID-19, adults (mean age: 52.5 years), 43% female | NA | 50 mg/kg, intravenous | Once daily, not specified the intervention duration | Until hospital discharge | High |
Labbani-Mothlag, 2022 [38] | Iran | 90 hospitalized patients with moderate or severe COVID-19, adults (>18 years), 43% female | NA | 12 g, intravenous | 2 times/day for 4 days | Until hospital discharge | Low |
Majidi, 2021 [39] | Iran | 120 ICU-hospitalized patients with severe COVID-19 and enteral nutrition, adults (35–75 years), 50% female | NA | 0.5 g, oral (enteral feeding) | Once daily for 14 days | Until hospital discharge | High |
Ried, 2021 [40] | Australia, Turkey | 237 hospitalized patients with COVID-19, adults (22–99 years), 50% female | NA | 50 mg/kg or 100 mg/kg, intravenous | 4 times/day for 8 days | 45 days | High |
Tehrani, 2021 [41] | Iran | 54 hospitalized patients with COVID-19, adults (>18 years), 61% female | NA | 2 g, intravenous | 4 times/day for 5 days | Until hospital discharge | High |
Thomas, 2021 [42] | United States | 214 non-hospitalized patients with COVID-19, adults (≥18 years), 62% female | NA | 8 g, oral | 2 or 3 times/day for 10 days | 28 days | SC |
Zhang, 2021 [43] | China | 56 ICU-hospitalized patients with severe COVID-19, adults (18–80 years), 44% female | NA | 12 g, intravenous | 2 times/day for 7 days | 28 days | SC |
Vitamin D | |||||||
Abroug, 2023 [44] | Tunisia | 117 individuals in isolation centers with COVID-19, adults (≥18 years), 44% female | NA | Cholecalciferol 200,000 IU/1 mL, oral | Single administration | 1 year after admission | SC |
Bishop, 2022 [45] | United States | 171 non-hospitalized patients with mild or moderate COVID-19, adults (18–71 years), 46% female | 25-OH-vitamin D levels (mean ± SD): Group I: 37.7 ± 12.1 ng/mL Group II: 37.1 ± 15.6 ng/mL | Calcifediol 30 μg, oral | 300 μg on days 1 to 3 and 60 μg on days 4 to 27 | 28 days | High |
Bugarin, 2023 [46] | Croatia | 152 ICU-hospitalized patients with COVID-19, adults (>18 years), 72% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 25.3 (17.9–36.9) nmol/L Group II: 27.3 (16.0–37.3) nmol/L | Cholecalciferol 10,000 IU, oral | Once daily for ICU stay or at least 14 days | Until hospital discharge | Some concerns |
Bychinin, 2022 [47] | Russia | 110 ICU-hospitalized patients with severe COVID-19, adults (≥18 years), 50% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 9.6 (5.6–21.0) ng/mL Group II: 11.0 (8.6–15.0) ng/mL 51% severe vitamin D deficient patients (<10 ng/mL) | Cholecalciferol 60,000 IU or 5000 IU, oral | High dose once/week followed by low dose once/day until discharge | Until hospital discharge | Low |
Cannata-Andía, 2022 [48] | Spain, Argentina, Guatemala, Chile | 548 hospitalized patients with moderate to severe COVID-19, adults (>18 years), 37% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 17.0 (11.8–22.0) ng/mL Group II: 16.1 (11.5–22.0) ng/mL | Cholecalciferol 100,000 IU, oral | Single administration | Until hospital discharge | SC |
De Niet, 2022 [49] | Belgium | 50 hospitalized patients with COVID-19 and vitamin D deficiency, adults (≥18 years), 40% female | 25-OH-vitamin D levels (mean ± SD): Group I: 17.9 ± 10.2 ng/mL, Group II: 6.9 ± 9.5 ng/mL, 100% Vitamin D deficient patients (<20 ng/mL) | Vitamin D3 25,000 IU, oral | Once daily for 4 consecutive days, then once weekly until hospital discharge or for 36 days | 9 weeks | SC |
Elamir, 2022 [50] | United States | 50 hospitalized patients with COVID-19, adults (≥18 years), 50% female | NA | Calcitriol 0.5 μg, oral | Once daily for 14 days or hospital discharge | Until hospital discharge | SC |
Entrenas Castillo, 2020 [51] | Spain | 76 hospitalized patients with severe COVID-19, adults (≥18 years), 61% female | NA | Calcifediol 0.532 mg or 0.266 mg, oral | 3 times/week in the first week, followed by once weekly until discharge or ICU admission | Until hospital discharge | Low |
Karonova, 2022 [52] | Russia | 129 hospitalized patients with COVID-19, adults (18–75 years), 49% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 17.8 (11.7–25.4) ng/mL Group II: 15.4 (11.0–22.9) ng/mL 81% vitamin D deficient patients (<30 ng/mL) | Cholecalciferol 50,000 IU, oral | 2 times, on day 1 and day 8 | 9 days | SC |
Maghbooli, 2021 [53] | Iran | 106 hospitalized patients with COVID-19 and vitamin D deficiency, adults (>18 years), 40% female | 25-OH-vitamin D levels (mean ± SD): Group I: 19 ± 8 ng/mL Group II: 18 ± 8 ng/mL 100% Vitamin D deficient patients (<30 ng/mL) | Calcifediol 25 μg (3000–6000 IU), oral | Once daily for 60 days | Two months after hospital discharge | High |
Mariani, 2022 [54] | Argentina | 218 hospitalized patients with mild or moderate COVID-19 and at least one risk factor for disease progression, adults (≥18 years), 47% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 32.5 (27.2–44.2) ng/mL Group II: 30.5 (22.5–36.2) ng/mL | Cholecalciferol 500,000 IU, oral | Single administration | Until hospital discharge | High |
Murai [§], 2021 A [55] | Brazil | 240 hospitalized patients with moderate or severe COVID-19, adults (≥18 years), 43% female | 25-OH-vitamin D levels (mean ± SD): Group I: 21.2 ± 10.1 ng/mL Group II: 20.6 ± 8 ng/mL 48% vitamin D deficient patients (<20 ng/mL) | Vitamin D3 200,000 IU, oral | Single administration | Until hospital discharge | Low |
Murai [§], 2021 B [56] | Brazil | 32 hospitalized patients with moderate or severe COVID-19 and severe vitamin D deficiency, adults (≥18 years), 44% female | 25-OH-vitamin D levels (mean ± SD): Group I: 7.7 ± 1.6 ng/mL Group II: 7.7 ± 1.9 ng/mL 100% severe vitamin D deficient patients (<10 ng/mL) | High | |||
Fernandes [§], 2022 [57] | Brazil | 240 hospitalized patients with moderate or severe COVID-19, adults (≥18 years), 43% female | 25-OH-vitamin D levels (mean ± SD): Group I: 21.1 ± 10.1 ng/mL Group II: 20.2 ± 8.1 ng/mL | 4 months | High | ||
Rastogi, 2021 [58] | India | 40 hospitalized patients with mild or moderate COVID-19, adults, 50% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 8.6 (7.1–13.1) ng/mL Group II: 9.54 (8.1–12.5) ng/mL 100% severe vitamin D deficient patients (<20 ng/mL) | Cholecalciferol 60,000 IU, oral | Once daily for 7 days, followed by once weekly for the following 7 days (if 25-OH-vitamin D levels > 50 ng/mL) or once daily for the following 7 days (if 25-OH-vitamin D levels <50 ng/mL) | 21 days | High |
Sánchez-Zuno, 2021 [59] | Mexico | 42 non-hospitalized patients with mild or moderate COVID-19, adults (>18 years), 52% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 20.2 (12.2–45.9) ng/mL Group II: 23.4 (12.1- 45.6) ng/mL 80% vitamin D deficient or insufficient patients (<30 ng/mL) | Vitamin D3 10,000 IU, oral | Once daily for 14 days | 14 days | SC |
Zurita-Cruz, 2022 [60] | Mexico | 45 hospitalized patients with moderate COVID-19, pediatric patients (1–17 years), 60% female | 25-OH-vitamin D levels [median (IQR)]: Group I: 13.8 (10.8–18.4) ng/mL Group II: 11.4 (8.7–13.1) ng/mL 100% severe Vitamin D deficient patients (<20 ng/mL) | Vitamin D3 1000 IU/day among children < 1 year or 2000 IU/day among children 1–17 years, oral | Once daily for 7–14 days | 14 days | High |
Author, Year | Intervention | Clinical Outcomes | Mortality | Side Effects or Adverse Events |
---|---|---|---|---|
COVID-19 | ||||
Jolliffe, 2022 [25] # | Group I: High dose vitamin D Group II: Low dose vitamin D Group III: No vitamin |
| NA |
|
Villasis-Keever, 2022 [26] | Group I: vitamin D3 Group II: Placebo |
| NA |
|
Long-COVID | ||||
Jolliffe, 2022 [25] # | Group I: High dose vitamin D Group II: Low dose vitamin D Group III: No vitamin |
|
|
|
Author, Year | Intervention | Immunological, Hematological, and Laboratory Outcomes | Clinical Outcomes and Mortality | Length of Hospitalization | Side Effects or Adverse Events |
---|---|---|---|---|---|
Vitamin co-administration | |||||
Beigmohammadi, 2021 [9] | Group I: Vitamin A + Vitamin D + Vitamin E + Vitamin C + Vitamin B (in combination) Group II: No vitamin |
|
|
|
|
Hakamifard, 2022 [27] | Group I: Vitamin C + Vitamin E + SoC Group II: SoC |
|
|
| NA |
Leal-Martínez, 2022 [28] | Group I: Vitamin C + Vitamin D + Vitamin B (in combination) Group II: No vitamin |
|
| NA | NA |
Vitamin A | |||||
Rohani, 2022 [29] | Group I: Vitamin A + SoC Group II: SoC + placebo |
|
| NA | NA |
Somi, 2022 [30] | Group I: Vitamin A + SoC Group II: SoC | NA |
|
|
|
Vitamin B | |||||
Majidi, 2022 [31] | Group I: Vitamin B complex Group II: nutritional support without Vitamin B complex |
|
| NA | NA |
Hu, 2022 [32] | Group I: Vitamin B + SoC Group II: SoC |
|
| NA | NA |
Vitamin C | |||||
Coppock, 2022 [33] | Group I: Vitamin C + SoC Group II: SoC | NA |
|
|
|
Fogleman, 2022 [34] | Group I: Vitamin C Group II: Melatonin Group III: Placebo | NA |
| NA | NA |
Jamali Moghadam Siahkali, 2021 [35] | Group I: Vitamin C + SoC Group II: SoC | NA |
|
|
|
Kumar, 2022 [36] | Group I: Vitamin C + SoC Group II: Placebo + SoC | NA |
| NA | NA |
Kumari, 2020 [37] | Group I: Vitamin C + SoC Group II: SoC | NA |
|
| NA |
Labbani-Mothlag, 2022 [38] | Group I: Vitamin C + SoC Group II: Placebo + SoC |
|
|
| NA |
Majidi, 2021 [39] | Group I: Vitamin C Group II: No vitamin |
|
| NA |
|
Ried, 2021 [40] | Group I: Vitamin C + Vitamin D + SoC Group II: Vitamin D + SoC | NA |
| NA |
|
Tehrani, 2021 [41] | Group I: Vitamin C + SoC Group II: SoC |
|
|
| NA |
Thomas, 2021 [42] | Group I: Vitamin C Group II: Zinc gluconate Group III: Zinc + Vitamin C Group IV: SoC | NA |
| NA |
|
Zhang, 2021 [43] | Group I: Vitamin C + SoC Group II: Placebo + SoC |
|
|
|
|
Author, Year | Intervention | Immunological, Hematological, and Laboratory Outcomes | Clinical Outcomes | Length of Hospitalization | Side Effects or Adverse Events |
---|---|---|---|---|---|
Abroug, 2023 [44] | Group I: Vitamin D Group II: Placebo |
|
| NA | NA |
Bishop, 2022 [45] | Group I: Vitamin D Group II: Placebo |
|
| NA | NA |
Bugarin, 2023 [46] | Group I: Vitamin D Group II: SoC |
|
|
|
|
Bychinin, 2022 [47] | Group I: Vitamin D Group II: Placebo |
|
|
|
|
Cannata-Andía, 2022 [48] | Group I: Vitamin D Group II: No vitamin |
|
|
| NA |
De Niet, 2022 [49] | Group I: Vitamin D + SoC Group II: Placebo + SoC | NA |
|
|
|
Elamir, 2022 [50] | Group I: Vitamin D + SoC Group II: SoC | NA |
|
|
|
Entrenas Castillo, 2020 [51] | Group I: Vitamin D + SoC Group II: SoC |
|
| NA |
|
Karonova, 2022 [52] | Group I: Vitamin D Group II: No vitamin |
|
|
| NA |
Maghbooli, 2021 [53] | Group I: Vitamin D + SoC Group II: Placebo + SoC |
|
|
|
|
Mariani, 2022 [54] | Group I: Vitamin D Group II: Placebo | NA |
|
|
|
Murai [§], 2021 A [55] | Group I: Vitamin D Group II: Placebo |
|
|
|
|
Murai [§], 2021 B [56] | Group I: Vitamin D Group II: Placebo | NA |
|
| NA |
Fernandes [§], 2022 [57] | Group I: Vitamin D Group II: Placebo |
| NA | NA | NA |
Rastogi, 2021 [58] | Group I: Vitamin D + SoC Group II: Placebo + SoC |
|
| NA | NA |
Sánchez-Zuno, 2021 [59] | Group I: Vitamin D Group II: SoC |
|
| NA | NA |
Zurita-Cruz, 2022 [60] | Group I: Vitamin D + SoC Group II: SoC | NA |
| NA |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinopoli, A.; Sciurti, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2024, 16, 1345. https://doi.org/10.3390/nu16091345
Sinopoli A, Sciurti A, Isonne C, Santoro MM, Baccolini V. The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients. 2024; 16(9):1345. https://doi.org/10.3390/nu16091345
Chicago/Turabian StyleSinopoli, Alessandra, Antonio Sciurti, Claudia Isonne, Maria Mercedes Santoro, and Valentina Baccolini. 2024. "The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials" Nutrients 16, no. 9: 1345. https://doi.org/10.3390/nu16091345
APA StyleSinopoli, A., Sciurti, A., Isonne, C., Santoro, M. M., & Baccolini, V. (2024). The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients, 16(9), 1345. https://doi.org/10.3390/nu16091345