Calcium, Phosphate, and Vitamin D in Children and Adolescents with Chronic Diseases: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Design, and Participants
2.2. Ethical Consideration
2.3. Clinical Evaluation
2.4. Assessment of Phenotypical Characteristics
2.5. Dietary Assessment
2.6. Laboratory Exploration
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Clinical Status
4.2. Vitamin D
4.3. Calcium
4.4. Phosphorus
4.5. Serum Calcium/Phosphorus Ratio
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA | Physical activity |
BMI | Body mass index |
BF% | Body fat percentage |
FFM | Fat-free mass |
FM | Fat mass |
BIA | Bioelectrical impedance analysis |
%DRI | % Dietary Reference Intake |
FUNIBER | Fundación Universitaria Iberoamericana |
WHO | World Health Organization |
NHANES | National Health and Nutrition Examination Survey |
EsNuPI | Estudio Nutricional en Población Infantil Española |
ANIVA | Antropometría y Nutrición Infantil de Valencia |
ANIBES | Anthropometry, Intake, and Energy Balance in Spain |
IDEFICS | Identification and prevention of dietary- and lifestyle-induced health effects in children and infants |
References
- The Children & Non-Communicable Disease: Global Burden Report 2019. Available online: https://www.ncdchild.org/2019/01/28/children-non-communicable-disease-global-burden-report-2019/ (accessed on 22 July 2023).
- Westwood, A. Nutrition in children with long-term health conditions. S. Afr. Med. J. 2015, 105, 606. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nutrition in Adolescence: Issues and Challenges for the Health Sector. Available online: https://www.who.int/publications/i/item/9241593660 (accessed on 24 January 2024).
- Available online: https://www.cdc.gov/chronicdisease/resources/publications/factsheets/children-health.htm (accessed on 11 January 2023).
- Sentenac, M.; Santos, T.; Augustine, L.; Michelsen, S.I.; Movsesyan, Y.; Ng, K.; Małkowska-Szkutnik, A.; Godeau, E. Chronic health conditions and school experience in school-aged children in 19 European countries. Eur. Child. Adolesc. Psychiatry 2023, 32, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Román, J.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugán-Miguelsanz, J.M. Copper and Copper/Zn Ratio in a Series of Children with Chronic Diseases: A Cross-Sectional Study. Nutrients 2021, 13, 3578. [Google Scholar] [CrossRef]
- Escobedo-Monge, M.F.; Barrado, E.; Alonso Vicente, C.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugán-Miguelsanz, J.M.; Redondo del Río, M.P. Copper and Copper/Zinc Ratio in a Series of Cystic Fibrosis Patients. Nutrients 2020, 12, 3344. [Google Scholar] [CrossRef]
- World Health Organization. WHO Discussion Papers on Adolescence: The Adolescent with a Chronic Condition. Available online: https://www.who.int/publications/i/item/9789241595704 (accessed on 24 January 2024).
- Malnutrition. World Health Organization. Available online: https://www.who.int/health-topics/malnutrition#tab=tab_1 (accessed on 12 January 2024).
- de Lamas, C.; de Castro, M.J.; Gil-Campos, M.; Gil, Á.; Couce, M.L.; Leis, R. Effects of Dairy Product Consumption on Height and Bone Mineral Content in Children: A Systematic Review of Controlled Trials. Adv. Nutr. 2019, 10, S88–S96. [Google Scholar] [CrossRef]
- Cuadrado-Soto, E.; López-Sobaler, A.M.; Jiménez-Ortega, A.I.; Aparicio, A.; Bermejo, L.M.; Hernández-Ruiz, Á.; Lara Villoslada, F.; Leis, R.; Martínez de Victoria, E.; Moreno, J.M.; et al. Usual Dietary Intake, Nutritional Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D of Spanish Children Aged One to <10 Years. Findings from the EsNuPI Study. Nutrients 2020, 12, 1787. [Google Scholar] [CrossRef]
- Civitelli, R.; Ziambaras, K. Calcium and phosphate homeostasis: Concerted interplay of new regulators. J. Endocrinol. Investig. 2011, 34 (Suppl. S7), 3–7. [Google Scholar]
- Szymczak-Pajor, I.; Drzewoski, J.; Śliwińska, A. The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int. J. Mol. Sci. 2020, 21, 6644. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Uday, S. Vitamin D Deficiency in Chronic Childhood Disorders: Importance of Screening and Prevention. Nutrients 2023, 15, 2805. [Google Scholar] [CrossRef]
- Sun, M.; Wu, X.; Yu, Y.; Wang, L.; Xie, D.; Zhang, Z.; Chen, L.; Lu, A.; Zhang, G.; Li, F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front. Cell Dev. Biol. 2020, 8, 576110. [Google Scholar] [CrossRef]
- Escobedo-Monge, M.F.; Torres-Hinojal, M.C.; Barrado, E.; Escobedo-Monge, M.A.; Marugán-Miguelsanz, J.M. Zinc Nutritional Status in a Series of Children with Chronic Diseases: A Cross-Sectional Study. Nutrients 2021, 13, 1121. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Román, J.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugán-Miguelsanz, J.M. Magnesium Status and Ca/Mg Ratios in a Series of Children and Adolescents with Chronic Diseases. Nutrients 2022, 14, 2941. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Marcos-Temprano, M.; Parodi-Román, J.; Escobedo-Monge, M.A.; Alonso-Vicente, C.; Torres-Hinojal, M.C.; Marugán-Miguelsanz, J.M. Calcium, Phosphorus, and Vitamin D Levels in a Series of Cystic Fibrosis Patients: A Cross-Sectional Study. Int. J. Mol. Sci. 2024, 25, 1900. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Activity Surveillance. Noncommunicable Disease Surveillance, Monitoring and Reporting. Available online: www.who.int/teams/noncommunicable-diseases/surveillance/systems-tools/physical-activity-surveillance (accessed on 11 May 2023).
- Frisancho, A.R. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am. J. Clin. Nutr. 1981, 34, 2540–2545. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Sobradillo, B.; Aguirre, A.; Aresti, U.; Bilbao, A.; Fernández-Ramos, C.; Lizárraga, A.; Lorenzo, H.; Madariaga, L.; Rica, I. Curvas y Tablas de Crecimiento (Estudios Longitudinal y Transversal); Fundación Faustino Orbegozo: Bilbao, Spain, 1985. [Google Scholar]
- Waterlow, J.C. Classification and definition of protein-calorie malnutrition. Br. Med. J. 1972, 3, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.B.V.; Veiga, G.V.; Azeredo, V.B.; Sichieri, R.; Pereira, R.A. High dietary calcium intake and low adiposity: Findings from a longitudinal study in Brazilian adolescents. Cad. Saude Publica. 2022, 38, e00144521. [Google Scholar] [CrossRef] [PubMed]
- Mataix Verdú, J.; García Diaz, J. NUTRIBER. V. 1.0; Fundación Universitaria Iberoamericana: Barcelona, Spain, 2005. [Google Scholar]
- Cuervo, M.; Corbalán, M.; Baladía, E.; Cabrerizo, L.; Formiguera, X.; Iglesias, C.; Lorenzo, H.; Polanco, I.; Quiles, J.; De Avila, M.D.R.; et al. Comparison of dietary reference intakes (DRI) between different countries of the European Union, The United States and the World Health Organization. Nutr. Hosp. 2009, 24, 384–414. [Google Scholar] [PubMed]
- Shroff, R.; Wan, M.; Nagler, E.V.; Bakkaloglu, S.; Fischer, D.C.; Bishop, N.; Cozzolino, M.; Bacchetta, J.; Edefonti, A.; Stefanidis, C.J.; et al. Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2–5 and on dialysis. Nephrol. Dial. Transplant. 2017, 32, 1098–1113. [Google Scholar] [CrossRef]
- Bordelon, P.; Ghetu, M.V.; Langan, R.C. Recognition and management of vitamin D deficiency. Am. Fam. Physician 2009, 80, 841–846. [Google Scholar]
- Goltzman, D. Approach to Hypercalcemia. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2019. [Google Scholar]
- Pagana, K.D.; Pagana, T.J.; Pagana, T.N. Mosby’s Diagnostic & Laboratory Test Reference, 14th ed.; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Stokes, V.J.; Nielsen, M.F.; Hannan, F.M.; Thakker, R.V. Hypercalcemic Disorders in Children. J. Bone Miner. Res. 2017, 32, 2157–2170. [Google Scholar] [CrossRef]
- Díaz Romero, C.; Henríquez Sánchec, P.; López Blanco, F.; Rodríguez Rodríguez, E.; Serra Majem, L. Concentrations of Na, K, Ca, and P in serum from a representative sample of the Canary Islands population. Nutr. Hosp. 2002, 17, 204–212. [Google Scholar]
- Akkuş, S.Y.; Ayhan, A.B. Investigation of the behavioral problems and life quality of the children with chronic diseases. Turk. J. Pediatr. Dis. 2020, 14, 129–135. [Google Scholar]
- Child and Adolescent Health Measurement Initiative. National Survey of Children’s Health (NSCH) Data Query. Data Resource Center for Child and Adolescent Health Supported by the U.S. Department of Health and Human Services, Health Resources and Services Administration (HRSA), Maternal and Child Health Bureau (MCHB). Available online: https://www.childhealthdata.org/ (accessed on 28 February 2024).
- Çavuşoğlu., H. Çocuk Sağlığı Hemşireliği, (12. Baskı). Cilt-1. Sist. Ofset Basımevi Ank. 2019, 113–128. [Google Scholar]
- Habas, E.; Eledrisi, M.S.; Khan, F.; Elzouki, A.Y. Secondary Hyperparathyroidism in Chronic Kidney Disease: Pathophysiology and Management. Cureus 2021, 13, e16388. [Google Scholar] [CrossRef]
- Li, S.; Nor, N.M.; Kaliappan, S.R. Long-term effects of child nutritional status on the accumulation of health human capital. SSM Popul. Health 2023, 24, 101533. [Google Scholar] [CrossRef]
- Sahiledengle, B.; Mwanri, L.; Kumie, A.; Beressa, G.; Atlaw, D.; Tekalegn, Y.; Zenbaba, D.; Desta, F.; Kene, C.; Seyoum, K.; et al. The coexistence of stunting and overweight or obesity in Ethiopian children: Prevalence, trends and associated factors. BMC Pediatr. 2023, 23, 218. [Google Scholar] [CrossRef]
- World Health Organization. Double Burden of Malnutrition. 2022. Available online: http://www.who.int/nutrition/double-burden-malnutrition/en/ (accessed on 15 February 2024).
- National Health Survey Body Mass Index in the Population. Encuesta Nacional de Salud Índice de Masa Corporal en la Población. Available online: https://pegv.gva.es/auto/scpd/web/30405ENS/aecv00236_c.html (accessed on 19 February 2024).
- Salles, J.; Chanet, A.; Guillet, C.; Vaes, A.M.; Brouwer-Brolsma, E.M.; Rocher, C.; Giraudet, C.; Patrac, V.; Meugnier, E.; Montaurier, C.; et al. Vitamin D status modulates mitochondrial oxidative capacities in skeletal muscle: Role in sarcopenia. Commun. Biol. 2022, 5, 1288. [Google Scholar] [CrossRef] [PubMed]
- Hanks, L.J.; Casazza, K.; Ashraf, A.; Fernandez, J.R. Calcium homeostasis may influence resting energy expenditure with effects most apparent in early pubertal girls. Acta Paediatr. 2012, 101, e363–e368. [Google Scholar] [CrossRef] [PubMed]
- Abdouni, L.; Olabi, A.; Obeid, O. Postprandial energy expenditure of protein is affected by its phosphorus content. J. Therm. Biol. 2018, 78, 214–218. [Google Scholar] [CrossRef]
- Acar-Tek, N.; Ağagündüz, D.; Şahin, T.Ö.; Baygut, H.; Uzunlar, E.A.; Zakkour, H.K.; Karaçallı, A. Validation of predictive equations for resting energy expenditure in children and adolescents with different body mass indexes. Nutr. J. 2023, 22, 39. [Google Scholar] [CrossRef]
- Charoenngam, N.; Ayoub, D.; Holick, M.F. Nutritional rickets and vitamin D deficiency: Consequences and strategies for treatment and prevention. Expert Rev. Endocrinol. Metab. 2022, 17, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services and US Department of Agriculture 2015–2020 Dietary Guidelines for Americans. Available online: https://health.gov/dietaryguidelines/2015/guidelines/[Reflist] (accessed on 14 February 2020).
- Scazzone, C.; Agnello, L.; Bivona, G.; Lo Sasso, B.; Ciaccio, M. Vitamin d and genetic susceptibility to multiple sclerosis. Biochem Genet 2021, 59, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Abugoukh, T.M.; Al Sharaby, A.; Elshaikh, A.O.; Joda, M.; Madni, A.; Ahmed, I.; Abdalla, R.S.; Ahmed, K.; Elazrag, S.E.; Abdelrahman, N. Does Vitamin D Have a Role in Diabetes? Cureus 2022, 14, e30432. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; De Lorenzo, R.; Giustina, A.; Rovere-Querini, P.; Conte, C. Vitamin D in Osteosarcopenic Obesity. Nutrients 2022, 14, 1816. [Google Scholar] [CrossRef] [PubMed]
- Ghaseminejad-Raeini, A.; Ghaderi, A.; Sharafi, A.; Nematollahi-Sani, B.; Moossavi, M.; Derakhshani, A.; Sarab, G.A. Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Front. Immunol. 2023, 14, 950465. [Google Scholar] [CrossRef]
- Antonucci, R.; Locci, C.; Clemente, M.G.; Chicconi, E.; Antonucci, L. Vitamin D deficiency in childhood: Old lessons and current challenges. J. Pediatr. Endocrinol. Metab. 2018, 31, 247–260. [Google Scholar] [CrossRef]
- Alaklabi, A.M.; Alsharairi, N.A. Current Evidence on Vitamin D Deficiency and Metabolic Syndrome in Obese Children: What Does the Evidence from Saudi Arabia Tell Us? Children 2018, 5, 11. [Google Scholar] [CrossRef]
- Esposito, S.; Leonardi, A.; Lanciotti, L.; Cofini, M.; Muzi, G.; Penta, L. Vitamin D and growth hormone in children: A review of the current scientific knowledge. J. Transl. Med. 2019, 17, 87. [Google Scholar] [CrossRef]
- Caprio, M.; Infante, M.; Calanchini, M.; Mammi, C.; Fabbri, A. Vitamin D: Not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat. Weight. Disord. 2017, 22, 27–41. [Google Scholar] [CrossRef]
- Santoro, D.; Sebekova, K.; Teta, D.; De Nicola, L. Extraskeletal Functions of Vitamin D. Biomed. Res. Int. 2015, 2015, 294719. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Afrose, A.; Sharmin, S.; Rezwan, R.; Rahman, M.R.; Neelotpol, S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed. Pharmacother. 2022, 153, 113285. [Google Scholar] [CrossRef] [PubMed]
- Ganji, V.; Martineau, B.; Van Fleit, W.E. Association of serum vitamin D concentrations with dietary patterns in children and adolescents. Nutr. J. 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study. Nutrients. 2017, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Yonden, Z.; Shabestari, A.M.; Ghayourvahdat, A.; Azimizonuzi, H.; Hosseini, S.T.; Daemi, A. How anti-inflammatory and antioxidant dietary supplements are effective in undermining COVID-19 pathogenesis: The role of vitamin C and D. Med. Balear. 2022, 37, 158–164. [Google Scholar]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S. Editorial of Special Issue “Magnesium in Human Health and Disease”. Nutrients 2021, 13, 2490. [Google Scholar] [CrossRef] [PubMed]
- Molenda, M.; Kolmas, J. The Role of Zinc in Bone Tissue Health and Regeneration-a Review. Biol. Trace Elem. Res. 2023, 201, 5640–5651. [Google Scholar] [CrossRef] [PubMed]
- Amos, A.; Razzaque, M.S. Zinc and its role in vitamin D function. Curr. Res. Physiol. 2022, 5, 203–207. [Google Scholar] [CrossRef]
- Haimi, M.; Kremer, R. Vitamin D deficiency/insufficiency from childhood to adulthood: Insights from a sunny country. World J. Clin. Pediatr. 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Díaz-López, A.; Paz-Graniel, I.; Alonso-Sanz, R.; Marqués Baldero, C.; Mateos Gil, C.; Arija Val, V. Vitamin D deficiency in primary health care users at risk in Spain. Nutr. Hosp. 2021, 38, 1058–1067. [Google Scholar] [PubMed]
- Holick, M.F. The One-Hundred-Year Anniversary of the Discovery of the Sunshine Vitamin D3: Historical, Personal Experience and Evidence-Based Perspectives. Nutrients 2023, 15, 593. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Balasundaram, P. Public Health Considerations Regarding Obesity. [Updated 2023 Jun 5]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572122/ (accessed on 15 April 2024).
- NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [CrossRef] [PubMed]
- Yanovski, J.A. Obesity: Trends in underweight and obesity—Scale of the problem. Nat. Rev. Endocrinol. 2018, 14, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Fiamenghi, V.I.; Mello, E.D. Vitamin D deficiency in children and adolescents with obesity: A meta-analysis. J. Pediatr. 2021, 97, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Çığrı, E.; İnan, F.Ç. The Relationship between Anthropometric Measurements and Vitamin D Levels and Insulin Resistance in Obese Children and Adolescents. Children 2022, 9, 1837. [Google Scholar] [CrossRef] [PubMed]
- Kao, K.T.; Abidi, N.; Ranasinha, S.; Brown, J.; Rodda, C.; McCallum, Z.; Zacharin, M.; Simm, P.J.; Magnussen, C.G.; Sabin, M.A.; et al. Low vitamin D is associated with hypertension in paediatric obesity. J. Paediatr. Child. Health 2015, 51, 1207–1213. [Google Scholar] [CrossRef]
- Nimitphong, H.; Park, E.; Lee, M.J. Vitamin D regulation of adipogenesis and adipose tissue functions. Nutr. Res. Pract. 2020, 14, 553–567. [Google Scholar] [CrossRef]
- Song, C.; Sun, H.; Wang, B.; Song, C.; Lu, H. Association Between Vitamin D Status and Undernutrition Indices in Children: A Systematic Review and Meta-Analysis of Observational Studies. Front. Pediatr. 2021, 9, 665749. [Google Scholar] [CrossRef]
- Prasadajudio, M.; Devaera, Y.; Noormanto, N.; Kuswiyanto, R.B.; Sudarmanto, B.; Andriastuti, M.; Sidiartha, I.G.L.; Sitorus, N.L.; Basrowi, R.W. Disease-Related Malnutrition in Pediatric Patients with Chronic Disease: A Developing Country Perspective. Curr. Dev. Nutr. 2022, 7, 100021. [Google Scholar] [CrossRef]
- Rivera-Paredez, B.; Hidalgo-Bravo, A.; León-Reyes, G.; León-Maldonado, L.S.; Aquino-Gálvez, A.; Castillejos-López, M.; Denova-Gutiérrez, E.; Flores, Y.N.; Salmerón, J.; Velázquez-Cruz, R. Total, Bioavailable, and Free 25-Hydroxyvitamin D Equally Associate with Adiposity Markers and Metabolic Traits in Mexican Adults. Nutrients 2021, 13, 3320. [Google Scholar] [CrossRef] [PubMed]
- Popovska Jovičić, B.; Raković, I.; Gavrilović, J.; Sekulić Marković, S.; Petrović, S.; Marković, V.; Pavković, A.; Čanović, P.; Radojević Marjanović, R.; Irić-Čupić, V.; et al. Vitamin D, Albumin, and D-Dimer as Significant Prognostic Markers in Early Hospitalization in Patients with COVID-19. J. Clin. Med. 2023, 12, 2825. [Google Scholar] [CrossRef] [PubMed]
- di Filippo, L.; Uygur, M.; Locatelli, M.; Nannipieri, F.; Frara, S.; Giustina, A. Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 2023, 80, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Mogire, R.M.; Muriuki, J.M.; Morovat, A.; Mentzer, A.J.; Webb, E.L.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; Cutland, C.L.; Sirima, S.B.; et al. Vitamin D Deficiency and Its Association with Iron Deficiency in African Children. Nutrients 2022, 14, 1372. [Google Scholar] [CrossRef] [PubMed]
- Lysne, V.; Strandler, H.S. Riboflavin: A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023, 67, 10315. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.R.; Jeong, S.J. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites 2019, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Wolters, M.; Marron, M.; Foraita, R.; Hadjigeorgiou, C.; De Henauw, S.; Eiben, G.; Lauria, F.; Iglesia, I.; Moreno, L.A.; Molnár, D.; et al. Longitudinal Associations Between Vitamin D Status and Cardiometabolic Risk Markers Among Children and Adolescents. J. Clin. Endocrinol. Metab. 2023, 108, e1731–e1742. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, H.; Rostami, H.; Avan, A.; Bagherniya, M.; Ferns, G.A.; Khayyatzadeh, S.S.; Ghayour-Mobarhan, M. High dose vitamin D supplementation is associated with an improvement in serum markers of liver function. Biofactors 2019, 45, 335–342. [Google Scholar] [CrossRef]
- Guo, J.Y.; Zhang, Y.Q.; Li, Y.; Li, H. Comparison of the difference in serum insulin growth factor-1 levels between chronological age and bone age among children. Clin. Biochem. 2021, 96, 63–70. [Google Scholar] [CrossRef]
- Gou, Z.; Li, F.; Qiao, F.; Maimaititusvn, G.; Liu, F. Causal associations between insulin-like growth factor 1 and vitamin D levels: A two-sample bidirectional Mendelian randomization study. Front. Nutr. 2023, 10, 1162442. [Google Scholar] [CrossRef]
- Mortensen, C.; Mølgaard, C.; Hauger, H.; Kristensen, M.; Damsgaard, C.T. Winter vitamin D3 supplementation does not increase muscle strength, but modulates the IGF-axis in young children. Eur. J. Nutr. 2019, 58, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Gallo, D.; Baci, D.; Kustrimovic, N.; Lanzo, N.; Patera, B.; Tanda, M.L.; Piantanida, E.; Mortara, L. How Does Vitamin D Affect. Immune Cells Crosstalk in Autoimmune Diseases? Int. J. Mol. Sci. 2023, 24, 4689. [Google Scholar] [CrossRef] [PubMed]
- Wall-Gremstrup, G.; Holt, R.; Yahyavi, S.K.; Jorsal, M.J.; Juul, A.; Jørgensen, N.; Blomberg Jensen, M. High-dose vitamin D3 supplementation shows no beneficial effects on white blood cell counts, acute phase reactants, or frequency of respiratory infections. Respir. Res. 2024, 25, 11. [Google Scholar] [CrossRef] [PubMed]
- Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Hu, B.; Zhou, Z.; Xing, X.; Wu, Y.; Gao, J.; He, Y.; Hu, Y.; Cheng, Q.; Gong, Q. Vitamin D levels correlate with lymphocyte subsets in elderly patients with age-related diseases. Sci. Rep. 2018, 8, 7708. [Google Scholar] [CrossRef] [PubMed]
- Rubio-López, N.; Llopis-González, A.; Picó, Y.; Morales-Suárez-Varela, M. Dietary Calcium Intake and Adherence to the Mediterranean Diet in Spanish Children: The ANIVA Study. Int. J. Environ. Res. Public Health 2017, 14, 637. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweigh (accessed on 25 February 2024).
- Fiorentino, M.; Landais, E.; Bastard, G.; Carriquiry, A.; Wieringa, F.T.; Berger, J. Nutrient Intake Is Insufficient among Senegalese Urban School Children and Adolescents: Results from Two 24 h Recalls in State Primary Schools in Dakar. Nutrients 2016, 8, 650. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, Y.; Ba, D.M.; Veldheer, S.J.; Sun, L.; Geng, T.; Gao, X. Trends in Calcium Intake among the US Population: Results from the NHANES (1999–2018). Nutrients 2024, 16, 726. [Google Scholar] [CrossRef] [PubMed]
- Tytusa, A.; Wyszyńska, J.; Yatsula, M.; Nyankovskyy, S.; Mazur, A.; Dereń, K. Deficiency of Daily Calcium and Vitamin D in Primary School Children in Lviv, Ukraine. Int. J. Environ. Res. Public Health 2022, 19, 5429. [Google Scholar] [CrossRef]
- Bouziani, A.; Saeid, N.; Benkirane, H.; Qandoussi, L.; Taboz, Y.; El Hamdouchi, A.; El Kari, K.; El Mzibri, M.; Aguenaou, H. Dietary Calcium Intake in Sample of School Age Children in City of Rabat, Morocco. J. Nutr. Metab. 2018, 2018, 8084623. [Google Scholar] [CrossRef]
- Torres-Costoso, A.; Martínez-Vizcaíno, V.; Fernández-Rodríguez, R.; Sequí-Dominguez, I.; Reina-Gutiérrez, S.; Núñez de Arenas-Arroyo, S.; Garrido-Miguel, M. Dietary Calcium Intake and Fat Mass in Spanish Young Adults: The Role of Muscle Strength. Nutrients 2021, 13, 4498. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A. Protein and Micronutrient Intakes Are Associated with Child Growth and Morbidity from Infancy to Adulthood in the Philippines. J. Nutr. 2016, 146, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Nappo, A.; Sparano, S.; Intemann, T.; Kourides, Y.A.; Lissner, L.; Molnar, D.; Moreno, L.A.; Pala, V.; Sioen, I.; Veidebaum, T.; et al. Dietary calcium intake and adiposity in children and adolescents: Cross-sectional and longitudinal results from IDEFICS/I. Family cohort. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 440–449. [Google Scholar] [CrossRef]
- Li, P.; Fan, C.; Lu, Y.; Qi, K. Effects of calcium supplementation on body weight: A meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Jürimäe, J.; Mäestu, E.; Mengel, E.; Remmel, L.; Purge, P.; Tillmann, V. Association between Dietary Calcium Intake and Adiposity in Male Adolescents. Nutrients 2019, 11, 1454. [Google Scholar] [CrossRef] [PubMed]
- Castro Burbano, J.; Fajardo Vanegas, P.; Robles Rodríguez, J.; Pazmiño Estévez, K. Relationship between dietary calcium intake and adiposity in female adolescents. Endocrinol. Nutr. 2016, 63, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ye, J.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; Jiang, Q.; Wang, S. Anti-Obesity Effects of Dietary Calcium: The Evidence and Possible Mechanisms. Int. J. Mol. Sci. 2019, 20, 3072. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Miller, S.L. Dietary calcium and dairy modulation of adiposity and obesity risk. Nutr. Rev. 2004, 62, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.R.; Levine, M.A. Diagnostic Approach and Treatment of the Pediatric Patient with Hypercalcemia. In Hypercalcemia. Contemporary Endocrinology; Walker, M.D., Ed.; Humana: Cham, Switzerland, 2022. [Google Scholar]
- López-Sobaler, A.M.; Aparicio, A.; González-Rodríguez, L.G.; Cuadrado-Soto, E.; Rubio, J.; Marcos, V.; Sanchidrián, R.; Santos, S.; Pérez-Farinós, N.; Dal Re, M.Á.; et al. Adequacy of Usual Vitamin and Mineral Intake in Spanish Children and Adolescents: ENALIA Study. Nutrients 2017, 9, 131. [Google Scholar] [CrossRef]
- Sadiq, N.M.; Naganathan, S.; Badireddy, M. Hypercalcemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kusumi, K.; Narla, D.; Mahan, J.D. Evaluation and Treatment of Pediatric Calcium Disorders. Curr. Treat. Options Peds 2021, 7, 60–81. [Google Scholar] [CrossRef]
- Çullas İlarslan, N.E.; Şıklar, Z.; Berberoğlu, M. Childhood Sustained Hypercalcemia: A Diagnostic Challenge. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 315–322. [Google Scholar] [CrossRef]
- Tebben, P.J.; Singh, R.J.; Kumar, R. Vitamin D-Mediated Hypercalcemia: Mechanisms, Diagnosis, and Treatment. Endocr. Rev. 2016, 37, 521–547. [Google Scholar] [CrossRef]
- Rizzoli, R. Hypercalcemia: Other causes than primary hyperparathroididsm. Encycl. Endocr. Dis. 2019, 4, 160–167. [Google Scholar]
- Peng, Y.; Hu, L.; Nie, X.; Cai, S.; Yan, R.; Liu, Y.; Cai, Y.; Song, W.; Peng, X. The Role of Serum Calcium Levels in Pediatric Dyslipidemia: Are There Any? Front. Pediatr. 2021, 9, 712160. [Google Scholar] [CrossRef]
- He, H.; Pan, L.; Du, J.; Liu, F.; Jin, Y.; Ma, J.; Wang, L.; Jia, P.; Hu, Z.; Shan, G. Body Composition and Serum Total Calcium Were Associated With Blood Pressure Among Children and Adolescents Aged 7–18 in China: A Cross-Sectional Study. Front. Pediatr. 2019, 7, 411. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.W.; Fang, W.H.; Chen, Y.Y.; Wang, C.C.; Kao, T.W.; Wu, C.J.; Chen, W.L. Association between Serum Calcium and Risk of Cardiometabolic Disease among Community-dwelling Adults in Taiwan. Sci. Rep. 2020, 10, 3192. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A. Intestinal Absorption and Factors Influencing Bioavailability of Magnesium-An Update. Curr. Nutr. Food Sci. 2017, 13, 260–278. [Google Scholar] [CrossRef]
- Costello, R.B.; Rosanoff, A.; Dai, Q.; Saldanha, L.G.; Potischman, N.A. Perspective: Characterization of Dietary Supplements Containing Calcium and Magnesium and Their Respective Ratio-Is a Rising Ratio a Cause for Concern? Adv. Nutr. 2021, 12, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Takeuchi, Y.; Matsuda, K.; Saito, A.; Kagaya, S.; Fukami, H.; Ojima, Y.; Nagasawa, T. Evaluation of the Predictive Value of the Serum Calcium-Magnesium Ratio for All-Cause and Cardiovascular Mortality in Incident Dialysis Patients. Cardiorenal. Med. 2017, 8, 50–60. [Google Scholar] [CrossRef]
- Cheteu Wabo, T.M.; Wu, X.; Sun, C.; Boah, M.; Ngo Nkondjock, V.R.; Kosgey Cheruiyot, J.; Amporfro Adjei, D.; Shah, I. Association of dietary calcium, magnesium, sodium, and potassium intake and hypertension: A study on an 8-year dietary intake data from the National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2022, 16, 74–93. [Google Scholar] [CrossRef]
- Suárez-Ortegón, M.F.; Jiménez, P.; Mosquera, M.; Pradilla, A.G.; Gracia, A.B.; Aguilar de Plata, C. Inverse correlation between serum calcium and copper levels in male urban Colombian preschool children: Relationships with anthropometry and age. Biol. Trace Elem. Res. 2011, 144, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Shaker, J.L.; Deftos, L. Calcium and Phosphate Homeostasis. [Updated 2023 May 17]. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman., M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279023/ (accessed on 26 February 2024).
- van de Vijver, L.P.; Kardinaal, A.F.; Charzewska, J.; Rotily, M.; Charles, P.; Maggiolini, M.; Ando, S.; Väänänen, K.; Wajszczyk, B.; Heikkinen, J.; et al. Calcium intake is weakly but consistently negatively associated with iron status in girls and women in six European countries. J. Nutr. 1999, 129, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Román, J.; Escobedo-Monge, M.A.; Marcos-Temprano, M.; Marugán-Miguelsanz, J.M. Magnesium Status and Calcium/Magnesium Ratios in a Series of Cystic Fibrosis Patients. Nutrients 2022, 14, 1793. [Google Scholar] [CrossRef] [PubMed]
- Ogun, A.S.; Adeyinka, A. Biochemistry, Transferrin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sabbir, M.G. CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis. Cell Commun. Signal 2020, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Choudhuri, D. Calcium supplementation shows a hepatoprotective effect against high-fat diet by regulating oxidative-induced inflammatory response and lipogenesis activity in male rats. J. Tradit. Complement. Med. 2019, 10, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Van Hemelrijck, M.; Shanmugalingam, T.; Bosco, C.; Wulaningsih, W.; Rohrmann, S. The association between circulating IGF1, IGFBP3, and calcium: Results from NHANES III. Endocr. Connect. 2015, 4, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yan, W.; Zhao, Q.; Ji, B.; Ban, B.; Zhang, M. Association Between Serum Calcium and Phosphorus Levels and Insulin-Like Growth Factor-1 in Chinese Children and Adolescents with Short Stature. Int. J. Gen. Med. 2020, 13, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Akiba, Y.; Akiba, N.; Nagasawa, M.; Cooper, L.F.; Uoshima, K. Insulin-like growth factor binding Protein-3 suppresses osteoblast differentiation via bone morphogenetic protein-2. Biochem. Biophys. Res. Commun. 2018, 507, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sanchez, J.J.; Alam, A.; Haque, A.; Mahfuz, M.; Ahmed, T.; Long, K.Z. Dietary Magnesium, Vitamin D, and Animal Protein Intake and Their Association to the Linear Growth Trajectory of Children from Birth to 24 Months of Age: Results from MAL-ED Birth Cohort Study Conducted in Dhaka, Bangladesh. Food Nutr. Bull. 2020, 41, 200–210. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef]
- Trebak, M.; Kinet, J.P. Calcium signalling in T cells. Nat. Rev. Immunol. 2019, 19, 154–169. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, A.; Vaeth, M.; Feske, S. Calcium regulation of T cell metabolism. Curr. Opin. Physiol. 2020, 17, 207–223. [Google Scholar] [CrossRef]
- Bacchetta, J.; Bernardor, J.; Garnier, C.; Naud, C.; Ranchin, B. Hyperphosphatemia and Chronic Kidney Disease: A Major Daily Concern Both in Adults and in Children. Calcif. Tissue Int. 2021, 108, 116–127. [Google Scholar] [CrossRef]
- Docio, P.; Llorente-Pelayo, S.; García-Unzueta, M.T.; Lavin-Gómez, B.A.; Puente, N.; Mateos, F.; Riancho-Zarrabeitia, L.; Gonzalez-Lamuño, D.; Riancho, J.A. Associated Conditions in Children: The Need for a Comprehensive Approach. Int. J. Mol. Sci. 2022, 24, 687. [Google Scholar] [CrossRef]
- Verploegen, M.F.A.; Vargaserum Poussou, R.; Walsh, S.B.; Alpay, H.; Amouzegar, A.; Ariceta, G.; Atmis, B.; Bacchetta, J.; Bárány, P.; Baron, S.; et al. Parathyroid hormone and phosphate homeostasis in patients with Bartter and Gitelman syndrome: An international cross-sectional study. Nephrol. Dial. Transplant. 2022, 37, 2474–2486. [Google Scholar] [CrossRef]
- Park, W.; Kim, B.S.; Lee, J.E.; Huh, J.K.; Kim, B.J.; Sung, K.C.; Kang, J.H.; Lee, M.H.; Park, J.R.; Rhee, E.J.; et al. Serum phosphate levels and the risk of cardiovascular disease and metabolic syndrome: A double-edged sword. Diabetes Res. Clin. Pract. 2009, 83, 119–125. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. (2011) 2017, 7, 1–59, Corrected in Kidney Int. Suppl. (2011) 2017, 7, e1. [Google Scholar] [CrossRef]
- Adeli, K.; Higgins, V.; Trajcevski, K.; White-Al Habeeb, N. The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper. Crit. Rev. Clin. Lab. Sci. 2017, 54, 358–413. [Google Scholar] [CrossRef]
- Koljonen, L.; Enlund-Cerullo, M.; Hauta-Alus, H.; Holmlund-Suila, E.; Valkama, S.; Rosendahl, J.; Andersson, S.; Pekkinen, M.; Mäkitie, O. Phosphate Concentrations and Modifying Factors in Healthy Children From 12 to 24 Months of Age. J. Clin. Endocrinol. Metab. 2021, 106, 2865–2875. [Google Scholar] [CrossRef]
- de Boer, I.H.; Rue, T.C.; Kestenbaum, B. Serum phosphorus concentrations in the third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 2009, 53, 399–407. [Google Scholar] [CrossRef]
- Goyal, R.; Jialal, I. Hyperphosphatemia. [Updated 2023 June 12]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551586/ (accessed on 2 April 2024).
- Shah, S.K.; Irshad, M.; Gupta, N.; Kabra, S.K.; Lodha, R. Hypophosphatemia in Critically Ill Children: Risk Factors, Outcome and Mechanism. Indian. J. Pediatr. 2016, 83, 1379–1385. [Google Scholar] [CrossRef]
- Akimbekov, N.S.; Digel, I.; Sherelkhan, D.K.; Razzaque, M.S. Vitamin D and Phosphate Interactions in Health and Disease. Adv. Exp. Med. Biol. 2022, 1362, 37–46. [Google Scholar]
- Picard, K.; Mager, D.R.; Richard, C. The Impact of Protein Type on Phosphorus Intake, Serum Phosphate Concentrations, and Nutrition Status in Adults with Chronic Kidney Disease: A Critical Review. Adv. Nutr. 2021, 12, 2099–2111, Corrected in Adv. Nutr. 2023, 14, 1656. [Google Scholar] [CrossRef]
- Jafari Giv, Z.; Avan, A.; Hamidi, F.; Tayefi, M.; Khayyatzadeh, S.S.; Javandoost, A.; Nematy, M.; Ferns, G.A.; Mobarhan, M.G. Nutrients intake, and serum calcium and phosphorus levels: An evidence-based study. J. Clin. Lab. Anal. 2018, 32, e22235. [Google Scholar] [CrossRef]
- Bosman, A.; Campos-Obando, N.; Medina-Gomez, C.; Voortman, T.; Uitterlinden, A.G.; Zillikens, M.C. Serum Phosphate, BMI, and Body Composition of Middle-Aged and Older Adults: A Cross-Sectional Association Analysis and Bidirectional Mendelian Randomization Study. J. Nutr. 2022, 152, 276–285. [Google Scholar] [CrossRef]
- Lind, L.; Lithell, H.; Hvarfner, A.; Pollare, T.; Ljunghall, S. On the relationships between mineral metabolism, obesity and fat distribution. Eur. J. Clin. Investig. 1993, 23, 307–310. [Google Scholar] [CrossRef]
- Dhingra, R.; Sullivan, L.M.; Fox, C.S.; Wang, T.J.; D’Agostino, R.B.S.; Gaziano, J.M.; Vasan, R.S. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch. Intern. Med. 2007, 167, 879–885. [Google Scholar] [CrossRef]
- Wong, S.K. A Review of Current Evidence on the Relationship between Phosphate Metabolism and Metabolic Syndrome. Nutrients 2022, 14, 4525. [Google Scholar] [CrossRef]
- Billington, E.O.; Gamble, G.D.; Bristow, S.; Reid, I.R. Serum phosphate is related to adiposity in healthy adults. Eur. J. Clin. Investig. 2017, 47, 486–493. [Google Scholar] [CrossRef]
- André, J.; Zhukouskaya, V.V.; Lambert, A.S.; Salles, J.P.; Mignot, B.; Bardet, C.; Chaussain, C.; Rothenbuhler, A.; Linglart, A. Growth hormone treatment improves final height in children with X-linked hypophosphatemia. Orphanet J. Rare Dis. 2022, 17, 444. [Google Scholar] [CrossRef]
- Bacchetta, J.; Edouard, T.; Laverny, G.; Bernardor, J.; Bertholet-Thomas, A.; Castanet, M.; Garnier, C.; Gennero, I.; Harambat, J.; Lapillonne, A.; et al. Vitamin D and calcium intakes in general pediatric populations: A French expert consensus paper. Arch. Pediatr. 2022, 29, 312–325. [Google Scholar] [CrossRef]
- Jacquillet, G.; Unwin, R.J. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch. 2019, 471, 83–98. [Google Scholar] [CrossRef]
- Naffaa, M.E.; Mustafa, M.; Azzam, M.; Nasser, R.; Andria, N.; Azzam, Z.S.; Braun, E. Serum inorganic phosphorus levels predict 30-day mortality in patients with community acquired pneumonia. BMC Infect. Dis. 2015, 15, 332. [Google Scholar] [CrossRef]
- Charlotte, M.E.; Eva, W.; Sonja, S.; Markus, R.; Ludwig, E.; Rainer, M.; Volker, S. Impact of phosphorus on the immune system and intestinal microbiota. Nutr. Res. Rev. 2015, 28, 67–82. [Google Scholar]
- Alagawany, M.; Abd El-Hack, M.E.; Ashour, E.A.; El-Sayed, S.A.; Ahmed, S.Y.A.; El-Kholy, M.S. Consequences of varying dietary calcium and phosphorus levels on lipid profile, antioxidant and immunity parameters of growing Egyptian geese. Ital. J. Anim. Sci. 2020, 19, 1500–1507. [Google Scholar] [CrossRef]
- Madeo, B.; De Vincentis, S.; Repaci, A.; Altieri, P.; Vicennati, V.; Kara, E.; Vescini, F.; Amadori, P.; Balestrieri, A.; Pagotto, U.; et al. The calcium-to-phosphorous (Ca/P) ratio in the diagnosis of primary hyperparathyroidism and hypoparathyroidism: A multicentric study. Endocrine 2020, 68, 679–687. [Google Scholar] [CrossRef]
- Madeo, B.; Kara, E.; Cioni, K.; Vezzani, S.; Trenti, T.; Santi, D.; Simoni, M.; Rochira, V. Serum Calcium to Phosphorous (Ca/P) Ratio Is a Simple, Inexpensive, and Accurate Tool in the Diagnosis of Primary Hyperparathyroidism. JBMR Plus 2017, 2, 109–117. [Google Scholar] [CrossRef]
- Loughrill, E.; Wray, D.; Christides, T.; Zand, N. Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: Possible implications for bone health. Matern. Child. Nutr. 2017, 13, e12368. [Google Scholar] [CrossRef]
- Bestepe, N.; Cuhaci, F.N.; Polat, B.; Ogmen, B.E.; Ozdemir, D.; Ersoy, R.; Cakir, B. Serum Calcium/Phosphorus Ratio in Biochemical Screening of Primary Hyperparathyroidism. Rev. Assoc. Med. Bras. (1992) 2022, 68, 1668–1674. [Google Scholar] [CrossRef]
- De Vincentis, S.; Del Sindaco, G.; Pagnano, A.; Brigante, G.; Moretti, A.; Zirilli, L.; Rochira, V.; Simoni, M.; Mantovani, G.; Madeo, B. Application of calcium-to-phosphorus (Ca/P) ratio in the diagnosis of pseudohypoparathyroidism: Another piece in the puzzle of diagnosis of Ca-P metabolism disorders. Front. Endocrinol. 2023, 14, 1268704. [Google Scholar] [CrossRef]
- Song, L. Calcium and Bone Metabolism Indices. Adv. Clin. Chem. 2017, 82, 1–46. [Google Scholar] [PubMed]
- Scott, J.P.; Sale, C.; Greeves, J.P.; Casey, A.; Dutton, J.; Fraser, W.D. Treadmill running reduces parathyroid hormone concentrations during recovery compared with a nonexercising control group. J. Clin. Endocrinol. Metab. 2014, 99, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 78) | Obesity (n = 24) | Undernutrition (n = 30) | Eutrophic (n = 24) | p-Value |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
Body fat percentage | 21.7 ± 11.9 | 35.6 ± 5.0 | 11.4 ± 5.2 | 20.6 ± 8.8 | <0.001 * |
Fat mass index | 4.9 ± 4.3 | 10.2 ± 3.2 | 1.6 ± 0.9 | 4.0 ± 2.3 | <0.001 * |
Fat-free mass index | 14.6 ± 3.0 | 17.9 ± 2.9 | 12.0 ± 0.9 | 14.4 ± 0.9 | <0.001 * |
IGF-1 (ng/mL) | 212 ± 136 | 264 ± 119 | 149 ± 115 | 241 ± 152 | 0.004 * |
IGFBP3 (µg/mL) | 2.8 ± 0.8 | 3.2 ± 0.8 | 2.4 ± 0.8 | 2.9 ± 0.8 | 0.004 * |
Basal energy expenditure | 954 ± 454 | 1283 ± 350 | 610 ± 324 | 1014 ± 199 | 0.000 * |
Vitamin C (%DRI) | 183 ± 212 | 256 ± 340 | 106 ± 77 | 202 ± 112 | 0.030 * |
Vitamin D (%DRI) | 107 ± 289 | 86 ± 177 | 82 ± 113 | 157 ± 474 | 0.589 |
Folic acid (%DRI) | 167 ± 86 | 189 ± 83 | 133 ± 70 | 187 ± 96 | 0.024 * |
Calcium intake (%DRI) | 102 ± 37 | 94 ± 28 | 103 ± 34 | 110 ± 46 | 0.338 |
Vitamin D (ng/mL) | 23.1 ± 13.6 | 17.7 ± 7.8 | 26.2 ± 16.3 | 24.9 ± 13.2 | 0.054 |
Serum calcium (mg/dL) | 9.9 ± 0.4 | 9.8 ± 0.4 | 10 ± 0.4 | 9.8 ± 0.4 | 0.118 |
Serum phosphorus (mg/dL) | 4.8 ± 0.6 | 4.8 ± 0.6 | 4.9 ± 0.6 | 4.6 ± 0.5 | 0.233 |
Serum calcium/phosphorus ratio | 2.1 ± 0.2 | 2.1 ± 0.3 | 2.1 ± 0.2 | 2.1 ± 0.2 | 0.503 |
Deficient vitamin D intake (%) | 58 (74.3) | 19 (24.3) | 21 (27) | 18 (23.0) | |
Deficient calcium intake (%) | 27 (34.6) | 11 (15.0) | 7 (8.9) | 9 (11.5) | |
Deficiency serum vitamin D (%) | 37 (47.4) | 16 (20.5) | 11 (14.1) | 10 (12.9) | |
Insufficiency serum vitamin D (%) | 29 (37.2) | 8 (10.2) | 13 (16.7) | 8 (10.2) | |
Hypophosphatemia (%) | 29 (37.2) | 7 (8.9) | 10 (12.9) | 12 (15.4) |
Gender | Female (n = 43) | Male (n = 35) | p-Value |
---|---|---|---|
Serum vitamin D (ng/mL) | 27.4 ± 16.6 | 19.7 ± 9.5 | 0.020 |
Age group | Children (n = 42) | Adolescents (n = 36) | |
Calcium intake (%DRI) | 119 ± 36 | 83 ± 27 | <0.001 |
Body fat percentage | 16.5 ± 10.9 | 27.7 ± 10.2 | <0.001 |
Fat mass index | 3.1 ± 2.9 | 7.1 ± 4.9 | <0.001 |
Fat-free mass index | 13.3 ± 7.8 | 16.1 ± 3.5 | <0.001 |
Serum calcium (mg/dL) | 10.0 ± 0.4 | 9.8 ± 0.4 | 0.015 |
Serum phosphorus (mg/dL) | 5.0 ± 0.5 | 4.5 ± 0.5 | <0.001 |
Serum calcium/phosphorus ratio | 2.01 ± 0.17 | 2.21 ± 0.26 | 0.000 |
Insulin-like growth factor -1 (ng/mL) | 143 ± 125 | 288 ± 105 | 0.000 |
Insulin-like growth factor-binding protein 3 (µg/mL) | 2.4 ± 0.8 | 3.2 ± 0.6 | 0.000 |
Serum vitamin D | Deficiency (n = 36) | Normal (n = 42) | |
Zinc (% Dietary Reference Intake) | 80 ± 42 | 59 ± 27 | 0.010 |
Weight for age (kg) | 45 ± 26 | 33 ± 25 | 0.041 |
Height for age (cm) | 139 ± 27 | 124 ± 32 | 0.037 |
Fat mass (kg) anthropometry | 13.8 ± 12.3 | 8.2 ± 9.7 | 0.029 |
Body fat percentage | 25.6 ± 12.3 | 18.0 ± 10.6 | 0.002 |
Fat mass index | 6.2 ± 4.7 | 3.8 ± 3.2 | 0.007 |
Waterlow I (%) | 115.2 ± 38 | 98.7 ± 29 | 0.033 |
Serum vitamin D (mg/dL) | 13.7 ± 3.8 | 31.4 ± 13.7 | 0.000 |
Serum magnesium (mg/dL) | 2.03 ± 0.17 | 2.13 ± 0.19 | 0.026 |
Calcium intake (% Dietary Reference Intake) | Deficient (n = 28) | Normal (n = 50) | |
Weight for age (kg) | 51 ± 28 | 32 ± 22 | 0.001 |
Height for age (cm) | 145 ± 27 | 125 ± 30 | 0.005 |
Hip circumference (cm) | 86 ± 25 | 71 ± 22 | 0.009 |
Body mass index | 22 ± 8 | 18 ± 6 | 0.037 |
Fat mass (kg) anthropometry | 16.2 ± 12.9 | 8.2 ± 9.2 | 0.006 |
Fat-free mass (kg) anthropometry | 35.3 ± 15.6 | 24.2 ± 14.2 | 0.002 |
Fat mass bioelectric impedancia analysis | 17.1 ± 13.3 | 8.9 ± 8.6 | 0.008 |
Body fat percentage | 25.6 ± 12.5 | 19.9 ± 11.2 | 0.023 |
Fat mass index | 6.5 ± 4.6 | 4.3 ± 3.9 | 0.016 |
Fat-free mass index | 15.6 ± 3.3 | 14.1 ± 2.8 | 0.027 |
Magnesium (% Dietary Reference Intake) | 86 ± 29 | 115 ± 39 | 0.000 |
Serum phosphorus (mg/dL) | 4.52 ± 0.52 | 4.93 ± 0.55 | 0.002 |
Serum calcium/phosphorus ratio | 2.21 ± 0.27 | 2.04 ± 0.21 | 0.003 |
Copper (mg/dL) | 106.2 ± 25.9 | 123.8 ± 29.6 | 0.011 |
Insulin-like growth factor-1 (ng/mL) | 258 ± 127 | 189 ± 136 | 0.033 |
Leucocytes (cell/mm3) | 6378 ± 2286 | 8024 ± 2024 | 0.002 |
Lymphocytes (cell/mm3) | 2462 ± 904 | 3373 ± 1551 | 0.002 |
Platelets (cell/mm3) | 257 ± 75 | 309 ± 92 | 0.014 |
Calcium/magnesium intake ratio | 0.84 ± 0.25 | 1.18 ± 0.56 | 0.000 |
Serum phosphorus | Deficiency (n = 28) | Normal (n = 50) | |
Weight for age (kg) | 46 ± 28 | 34 ± 24 | 0.040 |
Height for age (cm) | 142 ± 31 | 124 ± 30 | 0.018 |
Fat-free mass (kg) anthropometry | 33.1 ± 16.3 | 24.5 ± 14.7 | 0.020 |
Zinc (% Dietary Reference Intake) | 57 ± 24 | 77 ± 39 | 0.019 |
Serum calcium (mg/dL) | 9.8 ± 0.3 | 10.0 ± 0.04 | 0.032 |
Serum calcium/phosphorus ratio | 2.35 ± 0.20 | 1.96 ± 0.12 | 0.000 |
Creatinine (mg/dL) | 0.58 ± 0.23 | 0.45 ± 0.15 | 0.006 |
Copper (mg/dL) | 108.4 ± 26.1 | 123.7 ± 30.1 | 0.028 |
Leucocytes (cell/mm3) | 6425 ± 1864 | 8030 ± 2271 | 0.002 |
Lymphocytes (cell/mm3) | 2597 ± 871 | 3351 ± 1640 | 0.011 |
Platelets (cell/mm3) | 256 ± 74 | 309 ± 88 | 0.006 |
Erythrocyte sedimentation rate | Normal (n = 56) | High (n = 22) | |
Serum calcium (mg/dL) | 9.9 ± 0.4 | 10.1 ± 0.4 | 0.045 |
Fisher’s Exact Test | Odds Ratio | 95% Confidence Interval | Cochran’s | Mantel–Haenszel | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Deficient vitamin D intake | ||||||
Deficient lipid intake | 0.037 | 6.786 | 0.835 | 55.166 | 0.043 | 0.091 |
Deficient kilocalories intake | 0.037 | 4.500 | 0.944 | 21.441 | 0.044 | 0.087 |
Deficient carbohydrate intake | 0.014 | 3.714 | 1.272 | 10.842 | 0.013 | 0.028 |
Deficient vitamin E intake | 0.014 | 3.714 | 1.272 | 10.842 | 0.013 | 0.028 |
Serum vitamin D deficiency | ||||||
Excess body adiposity | 0.031 | 2.727 | 1.054 | 7.058 | 0.036 | 0.065 |
Age-for-50° height < 5-year-old | 0.020 | 1.436 | 1.048 | 1.967 | 0.022 | 0.042 |
Deficient calcium intake | ||||||
Deficit vitamin A intake | <0.001 | 6.071 | 2.133 | 17.279 | <0.001 | <0.001 |
Deficit kilocalories intake | 0.003 | 4.875 | 1.675 | 14.190 | 0.003 | 0.006 |
Deficit magnesium intake | 0.008 | 4.200 | 1.439 | 12.262 | 0.007 | 0.015 |
Higher weight for height | 0.046 | 3.071 | 0.992 | 9.514 | 0.046 | 0.091 |
Adolescents | <0.001 | 2.910 | 1.802 | 4.700 | <0.001 | <0.001 |
Deficit carbohydrate intake | 0.034 | 2.857 | 1.026 | 7.954 | 0.041 | 0.073 |
Deficit vitamin E intake | 0.034 | 2.857 | 1.026 | 7.954 | 0.041 | 0.073 |
Females | 0.034 | 1.530 | 1.038 | 2.254 | 0.040 | 0.072 |
Age-for-50° height ≥ 5-year-old | 0.019 | 1.420 | 1.078 | 1.870 | 0.023 | 0.045 |
Hypophosphatemia | ||||||
Microcephalia | 0.008 | 4.529 | 1.444 | 14.208 | 0.007 | 0.016 |
Deficit vitamin A intake | 0.009 | 3.647 | 1.348 | 9.865 | 0.009 | 0.019 |
Deficit kilocalories intake | 0.023 | 3.438 | 1.168 | 10.118 | 0.021 | 0.044 |
Deficit magnesium intake | 0.023 | 3.438 | 1.168 | 10.118 | 0.021 | 0.044 |
Adolescents | 0.014 | 1.815 | 1.133 | 2.908 | 0.015 | 0.029 |
Age-for-50° height ≥ 5-year-old | 0.028 | 1.408 | 1.048 | 1.891 | 0.033 | 0.062 |
Stunted growth | ||||||
Wasting | <0.001 | 19.800 | 4.673 | 83.901 | <0.001 | <0.001 |
Underweight | ||||||
Stunting | <0.001 | 5.029 | 2.674 | 9.457 | <0.001 | <0.001 |
Serum Vitamin D (ng/mL) | Calcium Intake (%DRI) | Serum Calcium (mg/dL) | Serum Phosphorus (mg/dL) | Serum Ca/P Ratio |
---|---|---|---|---|
Linear | regression | analysis | ||
Age (years) R2 = 0.085, p = 0.010 | Age (years) R2 = 0.087, p = 0.009 | Age (years) R2 = 0.135, p = 0.001 | Age (years) R2 = 0.293, p = <0.001 | Age (years) R2 = 0.215, p = <0.001 |
Hip circumference R2 = 0.098, p = 0.008 | Hip circumference R2 = 0.085, p = 0.012 | Head circumference R2 = 0.128, p = 0.002 | Height for age R2 = 0.187, p = <0.001 | MAMC R2 = 0.178, p = 0.004 |
Body fat percentage R2 = 0.079, p = 0.013 | Body fat percentage R2 = 0. 067, p = 0.023 | Fat-free mass index R2 = 0.083, p = 0.012 | Body mass index R2 = 0.078, p = 0.014 | Disease duration R2 = 0.054, p = 0.043 |
FFM kg by BIA R2 = 0.085, p = 0.047 | FM by BIA R2 = 0.141, p = 0.008 | FFM kg by A R2 = 0.121, p = 0.004 | TTSPA R2 = 0.103, p = 0.012 | TTSPA R2 = 0.096, p = 0.015 |
Energy expenditure R2 = 0.090, p = 0.041 | Energy expenditure R2 = 0.163 p = 0.006 | Energy expenditure R2 = 0.122, p = 0.019 | ||
Vitamin B2 (%DRI) R2 = 0.071, p = 0.020 | Fiber (%DRI) R2 = 0.071, p = 0.021 | Serum phosphorus R2 = 0.851, p = <0.001 | ||
Triglycerides R2 = 0.116, p = 0.004 | IGF-1 R2 = 0.052, p = 0.050 | IGF-1 R2 = 0.083, p = 0.012 | AST R2 = 0.119, p = 0.004 | |
Lymphocytes R2 = 0.211, p = <0.001 | Lymphocytes R2 = 0.100, p = 0.005 | |||
Multilinear | regression | analysis | ||
FFM kg by A and MAMC R2 = 0.261, p = 0.001 | Weight for age and waist circumference R2 = 0.163, p = 0.002 | |||
Ca/Mg intake ratio and magnesium (%DRI) R2 = 0.812, p = <0.001 | Protein, fiber, and magnesium (%DRI) R2 = 0.224, p = 0.004 | Protein and zinc (%DRI) R2 = 0.207, p = <0.001 | ||
Vitamin C and serum magnesium R2 = 0.200, p = <0.001 | Serum vitamin B 12 and phosphorus R2 = 0.243, p = <0.001 | Serum phosphorus and Mg/Ca ratio R2 = 0.379, p = <0.001 | Serum Ca/P ratio and serum calcium R2 = 0.982, p = <0.001 | |
Creatinine, albumin, alkaline phosphatase R2 = 0.330, p = <0.001 | AST and creatinine R2 = 0.231, p = <0.001 | |||
Leucocytes and IgG3 R2 = 0.201, p = 0.002 | Lymphocytes and CD16 + 56 T-lymphocytes R2 = 0.204, p = <0.001 | Lymphocytes and platelets R2 = 0.266, p = <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobedo-Monge, M.F.; Bahillo-Curieses, P.; Parodi-Román, J.; Escobedo-Monge, M.A.; Alonso-López, P.; Marugán-Miguelsanz, J.M. Calcium, Phosphate, and Vitamin D in Children and Adolescents with Chronic Diseases: A Cross-Sectional Study. Nutrients 2024, 16, 1349. https://doi.org/10.3390/nu16091349
Escobedo-Monge MF, Bahillo-Curieses P, Parodi-Román J, Escobedo-Monge MA, Alonso-López P, Marugán-Miguelsanz JM. Calcium, Phosphate, and Vitamin D in Children and Adolescents with Chronic Diseases: A Cross-Sectional Study. Nutrients. 2024; 16(9):1349. https://doi.org/10.3390/nu16091349
Chicago/Turabian StyleEscobedo-Monge, Marlene Fabiola, Pilar Bahillo-Curieses, Joaquín Parodi-Román, María Antonieta Escobedo-Monge, Pedro Alonso-López, and José Manuel Marugán-Miguelsanz. 2024. "Calcium, Phosphate, and Vitamin D in Children and Adolescents with Chronic Diseases: A Cross-Sectional Study" Nutrients 16, no. 9: 1349. https://doi.org/10.3390/nu16091349
APA StyleEscobedo-Monge, M. F., Bahillo-Curieses, P., Parodi-Román, J., Escobedo-Monge, M. A., Alonso-López, P., & Marugán-Miguelsanz, J. M. (2024). Calcium, Phosphate, and Vitamin D in Children and Adolescents with Chronic Diseases: A Cross-Sectional Study. Nutrients, 16(9), 1349. https://doi.org/10.3390/nu16091349