The Influence of Probiotic Lactobacilli on COVID-19 and the Microbiota
Highlights
- This review supports lactobacillus use as a potential adjunct therapy for COVID-19.
- Lactobacilli may offer protection against COVID-19 through various mechanisms.
- The findings provide new probiotic research avenues in viral infection management.
Abstract
:1. Introduction
2. Search Strategy and Selection Process
3. Selected Studies
4. The Probiotic Lactobacilli in the Management of COVID-19
4.1. Study Results Analysis
4.2. Critical Discussion on Main Findings
5. Risk of Bias and Quality Assessment
6. The Probiotic Lactobacilli in the Management of Other Viral Infections
6.1. Clinical Studies
6.2. Preclinical Studies
7. Protective Mechanisms of Probiotic Lactobacilli against COVID-19
7.1. Immunomodulatory Mechanisms
7.2. Anti-inflammatory Mechanisms
7.3. Direct Antiviral Mechanisms
8. NGS Approaches to Unraveling the Effects of Probiotic Lactobacilli on COVID-19
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pradhan, D.; Biswasroy, P.; Kar, B.; Bhuyan, S.K.; Ghosh, G.; Rath, G. Clinical interventions and budding applications of probiotics in the treatment and prevention of viral infections. Arch. Med. Res. 2022, 53, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.T.; Cheng, P.C.; Pan, T.M. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 2012, 96, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Heeney, D.D.; Gareau, M.G.; Marco, M.L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 2018, 49, 140–147. [Google Scholar] [CrossRef]
- Rossi, M.; Martínez-Martínez, D.; Amaretti, A.; Ulrici, A.; Raimondi, S.; Moya, A. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environ. Microbiol. Rep. 2016, 8, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.R.; Frøkiær, H.; Pestka, J.J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168, 171–178. [Google Scholar] [CrossRef]
- Park, M.-K.; NGO, V.; Kwon, Y.-M.; Lee, Y.-T.; Yoo, S.; Cho, Y.-H.; Hong, S.-M.; Hwang, H.S.; Ko, E.-J.; Jung, Y.-J.; et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS ONE 2013, 8, e75368. [Google Scholar] [CrossRef] [PubMed]
- de Vos, P.; Mujagic, Z.; de Haan, B.J.; Siezen, R.J.; Bron, P.A.; Meijerink, M.; Wells, J.M.; Masclee, A.A.M.; Boekschoten, M.V.; Faas, M.M.; et al. Lactobacillus plantarum strains can enhance human mucosal and systemic immunity and prevent non-steroidal anti-inflammatory drug induced reduction in T regulatory cells. Front. Immunol. 2017, 8, 1–18. [Google Scholar] [CrossRef]
- Eslami, M.; Abdolshahi, A.; Emadi, A.; Yousefi, B. Importance of probiotics in the prevention and treatment of COVID-19. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e4594. [Google Scholar] [CrossRef]
- Kullar, R.; Johnson, S.; McFarland, L.V.; Goldstein, E.J.C. Potential roles for probiotics in the treatment of COVID-19 patients and prevention of complications associated with increased antibiotic use. Antibiotics 2021, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210–220. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Borrazzo, C.; Pinacchio, C.; Santinelli, L.; Innocenti, G.P.; Cavallari, E.N.; Celani, L.; Marazzato, M.; Alessandri, F.; Ruberto, F.; et al. Oral bacteriotherapy in patients with COVID-19: A retrospective cohort study. Front. Nutr. 2021, 7, 613928. [Google Scholar] [CrossRef] [PubMed]
- d’Ettorre, G.; Ceccarelli, G.; Marazzato, M.; Campagna, G.; Pinacchio, C.; Alessandri, F.; Ruberto, F.; Rossi, G.; Celani, L.; Scagnolari, C.; et al. Challenges in the management of SARS-CoV2 infection: The role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front. Med. 2020, 7, 389. [Google Scholar] [CrossRef] [PubMed]
- Laterza, L.; Putignani, L.; Settanni, C.R.; Petito, V.; Varca, S.; De Maio, F.; Macari, G.; Guarrasi, V.; Gremese, E.; Tolusso, B.; et al. Ecology and machine learning-based classification models of gut microbiota and inflammatory markers may evaluate the effects of probiotic supplementation in patients recently recovered from COVID-19. Int. J. Mol. Sci. 2023, 24, 6623. [Google Scholar] [CrossRef]
- Saviano, A.; Potenza, A.; Siciliano, V.; Petruzziello, C.; Tarli, C.; Migneco, A.; Nasella, F.; Franceschi, F.; Ojetti, V. COVID-19 pneumonia and gut inflammation: The role of a mix of three probiotic strains in reducing inflammatory markers and ened for oxygen support. J. Clin. Med. 2022, 11, 3758. [Google Scholar] [CrossRef]
- Khodadoostan, M.; Aghadavood Marnani, M.; Moravejolahkami, A.R.; Askari, G.; Iraj, B. Effect of synbiotics on inflammatory markers and white blood cell count in COVID-19 patients: A randomized, double-blind, placebo-controlled clinical trial. Nutr. Food Sci. 2023, 53, 714–725. [Google Scholar] [CrossRef]
- Vaezi, M.; Ravanshad, S.; Akbari Rad, M.; Zarrinfar, H.; Kabiri, M. The effect of synbiotic adjunct therapy on clinical and paraclinical outcomes in hospitalized COVID-19 patients: A randomized placebo-controlled trial. J. Med. Virol. 2023, 95, e28463. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, F.; Xu, Q.; Su, Y.; Cai, X.; Zeng, F.; Zhang, Y. The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients. Int. Immunopharmacol. 2021, 95, 107531. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Lu, C.; Qiu, L.; Song, X.; Jia, H.; Cui, D.; Zhang, G. The efficacy of probiotics in patients with severe COVID-19. Ann. Palliat. Med. 2021, 10, 12374–12380. [Google Scholar] [CrossRef]
- De Boeck, I.; Cauwenberghs, E.; Spacova, I.; Gehrmann, T.; Eilers, T.; Delanghe, L.; Wittouck, S.; Bron, P.A.; Henkens, T.; Gamgami, I.; et al. Randomized, double-blind, placebo-controlled trial of a throat spray with selected lactobacilli in COVID-19 outpatients. Microbiol. Spectr. 2022, 10, e01682-22. [Google Scholar] [CrossRef]
- Navarro-López, V.; Hernández-Belmonte, A.; Pérez Soto, M.I.; Ayo-González, M.; Losa-Rodríguez, G.; Ros-Sánchez, E.; Martínez-Gabarrón, M.; Sánchez-Pellicer, P.; Aguera-Santos, J.; Núñez-Delegido, E.; et al. Oral intake of Kluyveromyces marxianus B0399 plus Lactobacillus rhamnosus CECT 30579 to mitigate symptoms in COVID-19 patients: A randomized open label clinical trial. Med. Microecol. 2022, 14, 100061. [Google Scholar] [CrossRef]
- Ivashkin, V.; Fomin, V.; Moiseev, S.; Brovko, M.; Maslennikov, R.; Ulyanin, A.; Sholomova, V.; Vasilyeva, M.; Trush, E.; Shifrin, O.; et al. Efficacy of a probiotic consisting of Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium bifidum PDV 0903, Bifidobacterium longum subsp. infantis PDV 1911, and Bifidobacterium longum subsp. longum PDV 2301 in the treatment of hospitalized patients wit. Probiotics Antimicrob. Proteins 2023, 15, 460–468. [Google Scholar] [CrossRef]
- Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; et al. Management of COVID-19: The Zhejiang experience. Zhejiang Da Xue Xue Bao. Yi Xue Ban. 2020, 49, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, D.; Murphy, M.; Fokar, A.; Hernandez, R.K.; Park, H.; Nsouli, H.; Sanders, M.E.; Davis, B.A.; Niborski, V.; Tondu, F.; et al. Use of a fermented dairy probiotic drink containing Lactobacillus casei (DN-114 001) to decrease the rate of illness in kids: The DRINK study A patient-oriented, double-blind, cluster-randomized, placebo-controlled, clinical trial. Eur. J. Clin. Nutr. 2010, 64, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H.; Mrukowicz, J.Z. Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: A systematic review of published randomized, double-blind, placebo-controlled trials. J. Pediatr. Gastroenterol. Nutr. 2001, 33, S17–S25. [Google Scholar] [CrossRef] [PubMed]
- Berggren, A.; Lazou Ahrén, I.; Larsson, N.; Önning, G. Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur. J. Nutr. 2011, 50, 203–210. [Google Scholar] [CrossRef]
- Rizzardini, G.; Eskesen, D.; Calder, P.C.; Capetti, A.; Jespersen, L.; Clerici, M. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12 ® and Lactobacillus paracasei ssp. paracasei, L. casei 431 ® in an influenza vaccination model: A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2012, 107, 876–884. [Google Scholar] [CrossRef]
- Cox, A.J.; Pyne, D.B.; Saunders, P.U.; Fricker, P.A. Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br. J. Sports Med. 2010, 44, 222–226. [Google Scholar] [CrossRef]
- Makino, S.; Ikegami, S.; Kume, A.; Horiuchi, H.; Sasaki, H.; Orii, N. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br. J. Nutr. 2010, 104, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-J.; Lee, Y.-T.; Ngo, V.L.; Cho, Y.-H.; Ko, E.-J.; Hong, S.-M.; Kim, K.-H.; Jang, J.-H.; Oh, J.-S.; Park, M.-K.; et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci. Rep. 2017, 7, 17360. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Nakamura, R.; Hirose, Y.; Murosaki, S.; Yamamoto, Y.; Kase, T.; Yoshikai, Y. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol. 2009, 9, 1122–1125. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Makino, S.; Ikegami, S.; Itoh, H.; Yamada, H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11, 2246–2250. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Saito, T.; Uematsu, T.; Kishi, K.; Toba, M.; Kohda, N.; Suzuki, T. Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.N.; Lee, D.H.; Lee, Y.N.; Park, J.K.; Yuk, S.S.; Yang, S.Y.; Lee, H.J.; Woo, S.H.; Kim, H.M.; Lee, J.B.; et al. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antiviral Res. 2012, 93, 138–143. [Google Scholar] [CrossRef]
- Gabryszewski, S.J.; Bachar, O.; Dyer, K.D.; Percopo, C.M.; Killoran, K.E.; Domachowske, J.B.; Rosenberg, H.F. Lactobacillus -mediated priming of the respiratory mucosa protects against lethal pneumovirus infection. J. Immunol. 2011, 186, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Mahooti, M.; Miri, S.M.; Abdolalipour, E.; Ghaemi, A. The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb. Pathog. 2020, 148, 104452. [Google Scholar] [CrossRef]
- Makino, S.; Sato, A.; Goto, A.; Nakamura, M.; Ogawa, M.; Chiba, Y.; Hemmi, J.; Kano, H.; Takeda, K.; Okumura, K.; et al. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J. Dairy. Sci. 2016, 99, 915–923. [Google Scholar] [CrossRef]
- Aziz, N.; Bonavida, B. Activation of natural killer cells by probiotics. For. Immunopathol. Dis. Therap. 2016, 7, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.T.; Fukata, M.; Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 2005, 174, 4453–4460. [Google Scholar] [CrossRef] [PubMed]
- Castillo, N.A.; Perdigán, G.; De Moreno De Leblanc, A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 2011, 11, 177. [Google Scholar] [CrossRef]
- Giahi, L.; Aumueller, E.; Elmadfa, I.; Haslberger, A.G. Regulation of TLR4, p38 MAPkinase, IκB and mirnas by inactivated strains of lactobacilli in human dendritic cells. Benef. Microbes 2012, 3, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tohno, M.; Shimosato, T.; Aso, H.; Kitazawa, H. Immunobiotic Lactobacillus strains augment NLRP3 expression in newborn and adult porcine gut-associated lymphoid tissues. Vet. Immunol. Immunopathol. 2011, 144, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.M.; Valenti, V.; Rockel, C.; Hermann, C.; Pot, B.; Boneca, I.G.; Grangette, C. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 2011, 60, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Amrouche, T.; Chikindas, M.L. Probiotics for immunomodulation in prevention against respiratory viral infections with special emphasis on COVID-19. AIMS Microbiol. 2022, 8, 338–356. [Google Scholar] [CrossRef] [PubMed]
- Maragkoudakis, P.A.; Chingwaru, W.; Gradisnik, L.; Tsakalidou, E.; Cencic, A. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int. J. Food Microbiol. 2010, 141, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Synodinou, K.D.; Nikolaki, M.D.; Triantafyllou, K.; Kasti, A.N. Immunomodulatory effects of probiotics on COVID-19 infection by targeting the gut–lung axis microbial cross-talk. Microorganisms 2022, 10, 1764. [Google Scholar] [CrossRef]
- Wells, J.M. Immunomodulatory mechanisms of lactobacilli. Microb. Cell Fact. 2011, 10, S17. [Google Scholar] [CrossRef]
- Han, S.K.; Shin, Y.J.; Lee, D.Y.; Kim, K.M.; Yang, S.J.; Kim, D.S.; Choi, J.W.; Lee, S.; Kim, D.H. Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without lipopolysaccharide-induced systemic inflammation. BMC Microbiol. 2021, 21, 146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, N.; Caicedo, R.; Neu, J. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α-induced interleukin-8 production in Caco-2 cells. J. Nutr. 2005, 135, 1752–1756. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.T.; Yang, A.J.; Kao, M.; Gankhuyag, U.; Zayabaatar, E.; Jin, S.C.; Huang, C. Gut probiotic Lactobacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. J. Nutr. Biochem. 2021, 98, 108821. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.-T.; Girardin, S.E.; Regnault, B.; Le Bourhis, L.; Dillies, M.-A.; Coppée, J.-Y.; Bourdet-Sicard, R.; Sansonetti, P.J.; Pédron, T. Anti-inflammatory effect of Lactobacillus casei on Shigella -infected human intestinal epithelial cells. J. Immunol. 2006, 176, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Henry, K.C.; Nadjafi, M.; Avitzur, Y.; Mitchell, D.J.; Ngan, B.Y.; Galindo-Mata, E.; Jones, N.L.; Sherman, P.M. Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. J. Infect. Dis. 2005, 191, 2106–2117. [Google Scholar] [CrossRef] [PubMed]
- Kaci, G.; Lakhdari, O.; Doré, J.; Ehrlich, S.D.; Renault, P.; Blottière, H.M.; Delorme, C. Inhibition of the NF-κB pathway in human intestinal epithelial cells by commensal Streptococcus salivarius. Appl. Environ. Microbiol. 2011, 77, 4681–4684. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fatheree, N.Y.; Mangalat, N.; Rhoads, J.M. Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Hwang, K.T.; Jun, W.J.; Park, C.S.; Lee, M.Y. Antiinflammatory effect of lactic acid bacteria: Inhibition of cyclooxygenase-2 by suppressing nuclear factor-κB in Raw264.7 macrophage cells. J. Microbiol. Biotechnol. 2008, 18, 1683–1688. [Google Scholar] [PubMed]
- Sun, K.-Y.; Xu, D.-H.; Xie, C.; Plummer, S.; Tang, J.; Yang, X.F.; Ji, X.H. Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine 2017, 92, 1–11. [Google Scholar] [CrossRef]
- Petrof, E.O.; Claud, E.C.; Sun, J.; Abramova, T.; Guo, Y.; Waypa, T.S.; He, S.M.; Nakagawa, Y.; Chang, E.B. Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm. Bowel Dis. 2009, 15, 1537–1547. [Google Scholar] [CrossRef]
- Jang, S.E.; Hyam, S.R.; Han, M.J.; Kim, S.Y.; Lee, B.G.; Kim, D.H. Lactobacillus brevis G-101 ameliorates colitis in mice by inhibiting NF-κB, MAPK and AKT pathways and by polarizing M1 macrophages to M2-like macrophages. J. Appl. Microbiol. 2013, 115, 888–896. [Google Scholar] [CrossRef]
- Wang, Y.; Moon, A.; Huang, J.; Sun, Y.; Qiu, H.-J. Antiviral effects and underlying mechanisms of probiotics as promising antivirals. Front. Cell. Infect. Microbiol. 2022, 12, 928050. [Google Scholar] [CrossRef] [PubMed]
- Mattar, A.F.; Teitelbaum, D.H.; Drongowski, R.A.; Yongyi, F.; Harmon, C.M.; Coran, A.G. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr. Surg. Int. 2002, 18, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Mack, D.R.; Ahrné, S.; Hyde, L.; Wei, S.; Hollingsworth, M.A. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003, 52, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Cole-Jeffrey, C.T.; Liu, M.; Katovich, M.J.; Raizada, M.K.; Shenoy, V. ACE2 and microbiota: Emerging targets for cardiopulmonary disease therapy. J. Cardiovasc. Pharmacol. 2015, 66, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Altayb, H.N.; Al-Abbasi, F.A.; Al-Malki, A.L.; Kamal, M.A.; Kumar, V. Antiviral effects of probiotic metabolites on COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 4175–4184. [Google Scholar] [CrossRef] [PubMed]
- Balmeh, N.; Mahmoudi, S.; Fard, N.A. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Informatics Med. Unlocked 2021, 23, 100515. [Google Scholar] [CrossRef]
- Rather, I.A.; Choi, S.-B.; Kamli, M.R.; Hakeem, K.R.; Sabir, J.S.M.; Park, Y.-H.; Hor, Y.-Y. Potential adjuvant therapeutic effect of Lactobacillus plantarum Probio-88 postbiotics against SARS-COV-2. Vaccines 2021, 9, 1067. [Google Scholar] [CrossRef]
- Chen, X.; Kang, Y.; Luo, J.; Pang, K.; Xu, X.; Wu, J.; Li, X.; Jin, S. Next-Generation Sequencing Reveals the Progression of COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 632490. [Google Scholar] [CrossRef]
- Hizo, G.H.; Rampelotto, P.H. The Impact of Probiotic Bifidobacterium on Liver Diseases and the Microbiota. Life 2024, 14, 239. [Google Scholar] [CrossRef]
- Alqutami, F.; Senok, A.; Hachim, M. COVID-19 Transcriptomic Atlas: A Comprehensive Analysis of COVID-19 Related Transcriptomics Datasets. Front. Genet. 2021, 12, 755222. [Google Scholar] [CrossRef] [PubMed]
- English, A.; McDaid, D.; Lynch, S.M.; McLaughlin, J.; Cooper, E.; Wingfield, B.; Kelly, M.; Bhavsar, M.; McGilligan, V.; Irwin, R.E.; et al. Genomic, Proteomic, and Phenotypic Biomarkers of COVID-19 Severity: Protocol for a Retrospective Observational Study. JMIR Res. Protoc. 2024, 13, e50733. [Google Scholar] [CrossRef] [PubMed]
Study | Country | N 1 | COVID-19 Severity | Groups | Probiotics | Probiotic Regimen Duration | Outcome |
---|---|---|---|---|---|---|---|
Ceccarelli, G. et al., 2020 [13] | Italy | 200 | Missing information | 88 probiotic group 112 non-probiotic group | Lactobacillus acidophilus DSM 32241, Lactobacillus brevis DSM 27961, Bifidobacterium lactis DSM 32246 and DSM 32247, Lactobacillus helveticus DSM 32242, Lactobacillus paracasei DSM 32243, Lactobacillus plantarum DSM 32244, Streptococcus thermophilus DSM 32245, (Sivomixx®, Ormendes SA, Jouxtens-Mézery, Switzerland) | Not informed | Significant reduction in the risk of death |
De Boeck, I. et al., 2022 [21] | Belgium | 64 | Missing information | 34 probiotic group 30 non-probiotic group | Lacticaseibacillus casei AMBR2, Lacticaseibacillus rhamnosus GG, and Lactiplantibacillus plantarum WCFS1 | 14 days | Score of acute symptoms negatively associated with administered lactobacilli |
d’Ettorre, G. et al., 2020 [14] | Italy | 70 | Missing information | 28 probiotic group 42 non-probiotic group | Lactobacillus acidophilus DSM 32241, Lactobacillus brevis DSM 27961, Bifidobacterium lactis DSM 32246 and DSM 32247, Lactobacillus helveticus DSM 32242, Lactobacillus paracasei DSM 32243, Lactobacillus plantarum DSM 32244, Streptococcus thermophilus DSM 32245, (Sivomixx®, Ormendes SA, Jouxtens-Mézery, Switzerland) | 14 days | Remission of diarrhea, reduction in other symptoms, 8x lower risk of developing respiratory failure |
Ivashkin, V. et al., 2021 [23] | Russian | 200 | Missing information | 99 probiotic group 101 non-probiotic group | Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium longum subsp. longum PDV 2301, Bifidobacterium bifidum PDV 0903, and Bifidobacterium longum subsp. infantis PDV 1911 (Florasan-D) | No more than 14 days | Average reduction of two days in the duration of viral diarrhea and prevention of hospital-acquired diarrhea for patients receiving a single antibiotic |
Khodadoostan, M. et al., 2023 [17] | Iran | 55 | Missing information | 28 probiotic group 27 non-probiotic group | Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus rhamnosus, Bifidobacterium longum, Bifidobacterium breve, and Streptococcus thermophilus | 8 weeks | No significant differences were observed |
Laterza, L. et al., 2023 [15] | Italy | 19 | Missing information | 19 post-COVID-19 patients | Lactobacillus paracasei BP07, Lactobacillus helveticus BD08, Lactobacillus plantarum BP06, Lactobacillus acidophilus BA05, Bifidobacterium animalis subsp. lactis BL03, Bifidobacterium breve BB02, Bifidobacterium animalis subsp. lactis BI04, and Streptococcus thermophilus BT01 (VSL#3®, lot number 909031, VSL Pharmaceuticals, Gaithersburg, MD, USA) | 8 weeks | Significant reduction in citrulline, TNF-ALFA, IL-6, and IL-12RA |
Li, Q. et al., 2021 [19] | China | 311 | Severe | 123 probiotic group 188 non-probiotic group | Lactobacillus acidophilus, Lactobacillus bulgaricus, Bacillus cereus, Bacillus subtilis Bifidobacterium infantis, Dung enterococcus, Bifidobacterium longum, Streptococcus termophiles, and Enterococcus faecium | Mean duration was 12.94 days | No significant differences were observed |
Navarro-López, V. et al., 2022 [22] | Spain | 41 | Missing information | 26 (24 1) probiotics group 15 non-probiotic group | Lactobacillus rhamnosus CECT 30579 and Kluyveromyces marxianus B0399 | 30 days | Improvement in symptoms of pyrosis and abdominal pain; overall symptom improvement |
Saviano, A. et al., 2022 [16] | Italy | 80 | Mild | 40 probiotic group 40 non-probiotic group | Lactobacillus salivarius LA 302, Lactobacillus acidophilus LA 201, and Bifidobacterium lactis LA 304 (Lactibiane Iki®, PiLeJe, Champtoceaux, France) | 10 days | Lower mean length of hospitalization, faster and continuous reduction needed for O2 support, reduction in the inflammatory marker CRP, lower values of fecal calprotectin |
Vaezi, M. et al., 2023 [18] | Iran | 76 | Missing information | 38 probiotic group 38 non-probiotic group | Lactobacillus rhamnosus, Lactobacillu helveticus, Lactobacillus casei, Bifidobacterium lactis, Lactobacillus acidophilus, Bifidobacterium breve, Lactobacillus bulgaricus, Bifidobacteriumlongum, Lactobacillus plantarum, Bifidobacterium bifidum, Lactobacillus gasseri, and Streptococcus thermophilus (LactoCare®, Kindstrom-Schmoll, Sycamore, IL, USA) | 14 days | Reduction in IL-6 levels and white blood cell count |
Wang, H. et al., 2021 [20] | China | 58 | Severe to critical | 23 probiotic group 35 non-probiotic group | Bifidobacterium longum, live Lactobacillus bulgaricus, and Streptococcus thermophilus | Not informed | Reduction in diarrhea and inflammatory markers PCT and CRP; increase in albumin levels and lymphocyte count. Shorter time to negative SARS-CoV-2 test |
Study | Clinical Parameters | Biochemical Parameters | Hematological and Immunological Parameters |
---|---|---|---|
Ceccarelli, G., et al., 2020 [13] | Length of hospital stays | ||
Risk of death | |||
Incidence of ICU, incidence of bacterial and fungal superinfections in the ICU | |||
De Boeck, I., et al., 2022 [21] | Overall symptoms | IgG antibody response | |
Severity of symptoms, time for improvement | |||
d’Ettorre, G., et al., 2020 [14] | Overall symptoms, diarrhea, respiratory outcome | ||
Ivashkin, V., et al., 2021 [23] | Hospital-acquired diarrhea (received only one antibiotic), diarrhea | C-reactive protein, creatinine, ferritin, fibrinogen, alanine aminotransferase, albumin, aspartate aminotransferase, total bilirubin | Erythrocyte sedimentation rate, white blood cells, neutrophils, lymphocytes |
Duration of illness, length of hospital stays, incidence of ICU admission, oxygen support or need for mechanical ventilation, survival rates | |||
Khodadoostan, M., et al., 2023 [17] | IL-6, C-reactive protein | Erythrocyte sedimentation rate, white blood cells | |
Laterza, L., et al., 2023 [15] | Gastrointestinal symptoms | IL-6, TNF-α, IL-12RA, citrulline | |
Li, Q., et al., 2021 [19] | IL-6 | Lymphocytes, natural killer cells, CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio | |
Navarro-López, V., et al., 2022 [22] | Overall symptoms, overall symptom evolution, gastrointestinal symptoms | ||
Saviano, A., et al., 2022 [16] | Oxygen support, length of hospital stays | C-reactive protein, calprotectin | White blood cells |
Vaezi, M., et al., 2023 [18] | Overall symptoms, duration of symptoms, length of hospital stays | IL-6 | White blood cells |
C-reactive protein, alanine aminotransferase, aspartate aminotransferase, creatinine | Hemoglobin, lymphocytes, platelet, erythrocyte sedimentation rate, polymorphonuclear neutrophil, blood urea nitrogen | ||
Wang, H., et al., 2021 [20] | Diarrhea, time to negative SARS-CoV-2 test | Albumin | Lymphocytes count |
C -reactive protein, procalcitonin | White blood cells count and neutrophil count |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taufer, C.R.; da Silva, J.; Rampelotto, P.H. The Influence of Probiotic Lactobacilli on COVID-19 and the Microbiota. Nutrients 2024, 16, 1350. https://doi.org/10.3390/nu16091350
Taufer CR, da Silva J, Rampelotto PH. The Influence of Probiotic Lactobacilli on COVID-19 and the Microbiota. Nutrients. 2024; 16(9):1350. https://doi.org/10.3390/nu16091350
Chicago/Turabian StyleTaufer, Clarissa Reginato, Juliana da Silva, and Pabulo Henrique Rampelotto. 2024. "The Influence of Probiotic Lactobacilli on COVID-19 and the Microbiota" Nutrients 16, no. 9: 1350. https://doi.org/10.3390/nu16091350
APA StyleTaufer, C. R., da Silva, J., & Rampelotto, P. H. (2024). The Influence of Probiotic Lactobacilli on COVID-19 and the Microbiota. Nutrients, 16(9), 1350. https://doi.org/10.3390/nu16091350