Association of Glycemic Index, Glycemic Load, and Carbohydrate Intake with Antral Follicle Counts Among Subfertile Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Antral Follicle Count (AFC) Measurement
2.4. Statistical Analysis
2.5. Sensitivity Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penzias, A.; Azziz, R.; Bendikson, K.; Falcone, T.; Hansen, K.; Hill, M.; Hurd, W.; Jindal, S.; Kalra, S.; Mersereau, J.; et al. Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2020, 114, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Fertil. Steril. 2023, 108, 2447–2469. [Google Scholar] [CrossRef]
- Devine, K.; Mumford, S.L.; Wu, M.; DeCherney, A.H.; Hill, M.J.; Propst, A. Diminished Ovarian Reserve (DOR) in the US ART Population: Diagnostic Trends Among 181,536 Cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS). Fertil. Steril. 2015, 104, 612. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Mark Park, Y.-M.; Stanczyk, F.Z.; Sandler, D.P.; Nichols, H.B. Dietary factors and serum antimüllerian hormone concentrations in late premenopausal women. Fertil. Steril. 2018, 110, 1145–1153. [Google Scholar] [CrossRef]
- Maldonado-Cárceles, A.B.; Mínguez-Alarcón, L.; Souter, I.; Gaskins, A.J.; Arvizu, M.; Williams, P.L.; Ford, J.B.; Chavarro, J.E. Dietary patterns and ovarian reserve among women attending a fertility clinic. Fertil. Steril. 2020, 114, 610–617. [Google Scholar] [CrossRef]
- Mitsunami, M.; Mínguez-Alarcón, L.; Florio, A.A.; Wang, S.; Attaman, J.A.; Souter, I.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Intake of soy products and soy isoflavones in relation to ovarian reserve. Fertil. Steril. 2023, 119, 1017–1029. [Google Scholar] [CrossRef]
- Werner, L.; van der Schouw, Y.T.; de Kat, A.C. A systematic review of the association between modifiable lifestyle factors and circulating anti-Müllerian hormone. Hum. Reprod. Update 2024, 30, 262–308. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. A prospective study of dietary carbohydrate quantity and quality in relation to risk of ovulatory infertility. Eur. J. Clin. Nutr. 2009, 63, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018, 10, 1361. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Willett, W.C.; Yusuf, S.; Hu, F.B.; Glenn, A.J.; Liu, S.; Mente, A.; Miller, V.; Bangdiwala, S.I.; Gerstein, H.C.; et al. Association of glycaemic index and glycaemic load with type 2 diabetes, cardiovascular disease, cancer, and all-cause mortality: A meta-analysis of mega cohorts of more than 100 000 participants. Lancet Diabetes Endocrinol. 2024, 12, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Fernandez, M.L. Carbohydrate-restricted versus low-glycemic-index diets for the treatment of insulin resistance and metabolic syndrome. Nutr. Rev. 2009, 67, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.C.Y.; Brand-Miller, J.C.; Moses, R.G. Carbohydrates, Glycemic Index, and Pregnancy Outcomes in Gestational Diabetes. Curr Diab Rep 2013, 13, 6–11. [Google Scholar] [CrossRef]
- Kazemi, M.; Pierson, R.A.; McBreairty, L.E.; Chilibeck, P.D.; Zello, G.A.; Chizen, D.R. A randomized controlled trial of a lifestyle intervention with longitudinal follow-up on ovarian dysmorphology in women with polycystic ovary syndrome. Clin. Endocrinol. 2020, 92, 525–535. [Google Scholar] [CrossRef]
- Shang, Y.; Zhou, H.; Hu, M.; Feng, H. Effect of Diet on Insulin Resistance in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 3346–3360. [Google Scholar] [CrossRef]
- Stepto, N.K.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef]
- Messerlian, C.; Williams, P.L.; Ford, J.B.; Chavarro, J.E.; Mínguez-Alarcón, L.; Dadd, R.; Braun, J.M.; Gaskins, A.J.; Meeker, J.D.; James-Todd, T.; et al. The Environment and Reproductive Health (EARTH) Study: A prospective preconception cohort. Hum. Reprod. Open 2018, 2018, hoy001. [Google Scholar] [CrossRef]
- Macdiarmid, J.; Blundell, J. Assessing dietary intake: Who, what and why of under-reporting. Nutr. Res. Rev. 1998, 11, 231–253. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.K.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire 2017. Am. J. Epidemiol. 1985, 185, 1109–1123. [Google Scholar] [CrossRef]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and Validity of an Expanded Self-Administered Semiquantitative Food Frequency Questionnaire among Male Health Professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.E.; Subar, A.F.; Sampson, L.K.; Willett, W.C. Validity of a Dietary Questionnaire Assessed by Comparison with Multiple Weighed Dietary Records or 24-Hour Recalls. Am. J. Epidemiol. 2017, 185, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.E.; Rood, J.C.; Harnack, L.J.; Sampson, L.K.; et al. Relative Validity of Nutrient Intakes Assessed by Questionnaire, 24-Hour Recalls, and Diet Records as Compared with Urinary Recovery and Plasma Concentration Biomarkers: Findings for Women. Am. J. Epidemiol. 2018, 187, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaar, L.; Yuan, C.; Rosner, B.; Dean, S.B.; Ivey, K.L.; Clowry, C.M.; Sampson, L.A.; Barnett, J.B.; Rood, J.; Harnack, L.J.; et al. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire in Men Assessed by Multiple Methods. Am. J. Epidemiol. 2020, 190, 1122–1132. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef]
- The University of Sydney. Glycemic Index—Glycemic Index Research and GI News. Available online: https://glycemicindex.com/ (accessed on 9 February 2024).
- Salmerón, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, J.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997, 277, 472–477. [Google Scholar] [CrossRef]
- Panel on Macronutrients; Panel on the Definition of Dietary Fiber; Subcommittee on Upper Reference Levels of Nutrients; Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Food and Nutrition Board; Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005; p. 10490. ISBN 978-0-309-08525-0. [Google Scholar]
- Willett, W.; Stampfer, M.J. Total Energy Intake: Implications for Epidemiologic Analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Christ, J.P.; Cedars, M.I. Current Guidelines for Diagnosing PCOS. Diagnostics 2023, 13, 1113. [Google Scholar] [CrossRef]
- Ferraretti, A.P.; La Marca, A.; Fauser, B.C.J.M.; Tarlatzis, B.; Nargund, G.; Gianaroli, L.; on behalf of the ESHRE working group on Poor Ovarian Response Definition. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum. Reprod. 2011, 26, 1616–1624. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999-2016. JAMA 2019, 322, 1178. [Google Scholar] [CrossRef]
- Drewnowski, A.; Rehm, C.D. The use of low-calorie sweeteners is associated with self-reported prior intent to lose weight in a representative sample of US adults. Nutr Diabetes 2016, 6, e202. [Google Scholar] [CrossRef] [PubMed]
- Bergengren, O.; Enblad, A.P.; Garmo, H.; Bratt, O.; Holmberg, L.; Johansson, E.; Bill-Axelson, A. Changes in lifestyle among prostate cancer survivors: A nationwide population-based study. Psychooncology 2020, 29, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; McBreairty, L.E.; Chilibeck, P.D.; Pierson, R.A.; Chizen, D.R.; Zello, G.A. Knowledge, Attitudes, and Barriers towards Dietary Pulse Consumption in Women with Polycystic Ovary Syndrome Participating in a Multi-Disciplinary Lifestyle Intervention to Improve Women’s Health. Sexes 2021, 2, 88–103. [Google Scholar] [CrossRef]
- Lönn, A.; Kallings, L.V.; Andersson, G.; Paulsson, S.; Wallin, P.; Eriksson, J.S.; Ekblom-Bak, E. Lifestyle-related habits and factors before and after cardiovascular diagnosis: A case control study among 2,548 Swedish individuals. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 41. [Google Scholar] [CrossRef]
- Anderson, K.; Norman, R.J.; Middleton, P. Preconception lifestyle advice for people with subfertility. Cochrane Database Syst. Rev. 2010, 4, CD008189. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Chavarro, J.E. Diet and fertility: A review. Am. J. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef]
- Kellow, N.J.; Le Cerf, J.; Horta, F.; Dordevic, A.L.; Bennett, C.J. The Effect of Dietary Patterns on Clinical Pregnancy and Live Birth Outcomes in Men and Women Receiving Assisted Reproductive Technologies: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 857–874. [Google Scholar] [CrossRef]
- Winter, H.G.; Rolnik, D.L.; Mol, B.W.J.; Torkel, S.; Alesi, S.; Mousa, A.; Habibi, N.; Silva, T.R.; Oi Cheung, T.; Thien Tay, C.; et al. Can Dietary Patterns Impact Fertility Outcomes? A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2589. [Google Scholar] [CrossRef]
- Vause, T.D.R.; Jones, L.; Evans, M.; Wilkie, V.; Leader, A. Pre-conception Health Awareness in Infertility Patients. J. Obstet. Gynaecol. Can. 2009, 31, 717–720. [Google Scholar] [CrossRef]
- Dreischor, F.; Laan, E.T.M.; Peeters, F.; Peeraer, K.; Lambalk, C.B.; Goddijn, M.; Custers, I.M.; Dancet, E.A.F. The needs of subfertile couples continuing to attempt natural conception: In-depth interviews. Hum. Reprod. Open 2022, 2022, hoac037. [Google Scholar] [CrossRef]
- Hughes, E.G.; Lamont, D.A.; Beecroft, M.L.; Wilson, D.M.C.; Brennan, B.G.; Rice, S.C. Randomized trial of a “stage-of-change” oriented smoking cessation intervention in infertile and pregnant women. Fertil. Steril. 2000, 74, 498–503. [Google Scholar] [CrossRef]
- Nichols, H.B.; Baird, D.D.; Stanczyk, F.Z.; Steiner, A.Z.; Troester, M.A.; Whitworth, K.W.; Sandler, D.P. Anti-Müllerian Hormone Concentrations in Premenopausal Women and Breast Cancer Risk. Cancer Prev. Res. 2015, 8, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C.C.; Norris, L.E.; Oster, R.A.; Darnell, B.E.; Azziz, R.; Gower, B.A. Difference in dietary intake between women with polycystic ovary syndrome and healthy controls. Fertil. Steril. 2006, 86, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Baghestani, A.-R.; Eghtesad, S.; Hekmatdoost, A. Dietary carbohydrate composition is associated with polycystic ovary syndrome: A case–control study. J. Hum. Nutr. Diet. 2017, 30, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Hadi, A.; Pierson, R.A.; Lujan, M.E.; Zello, G.A.; Chilibeck, P.D. Effects of Dietary Glycemic Index and Glycemic Load on Cardiometabolic and Reproductive Profiles in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv Nutr 2020, 12, 161–178. [Google Scholar] [CrossRef]
- Kazemi, M.; McBreairty, L.E.; Chizen, D.R.; Pierson, R.A.; Chilibeck, P.D.; Zello, G.A. A Comparison of a Pulse-Based Diet and the Therapeutic Lifestyle Changes Diet in Combination with Exercise and Health Counselling on the Cardio-Metabolic Risk Profile in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Nutrients 2018, 10, 1387. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Christ, J.P.; Vanden Brink, H.; Brooks, E.D.; Pierson, R.A.; Chizen, D.R.; Lujan, M.E. Ultrasound features of polycystic ovaries relate to degree of reproductive and metabolic disturbance in polycystic ovary syndrome. Fertil. Steril. 2015, 103, 787–794. [Google Scholar] [CrossRef]
- Xu, S.; Wu, X.; Dong, Y.; Xu, M.; Li, Z.; Chen, S.; Zhuo, Y.; Lin, Y.; Che, L.; Fang, Z.; et al. Glucose activates the primordial follicle through the AMPK/mTOR signaling pathway. Clin. Transl. Med. 2020, 10, e122. [Google Scholar] [CrossRef]
- Dri, M.; Klinger, F.G.; De Felici, M. The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. Reprod. Fertil. 2021, 2, R103–R112. [Google Scholar] [CrossRef]
- Fleming, R.; Seifer, D.B.; Frattarelli, J.L.; Ruman, J. Assessing ovarian response: Antral follicle count versus anti-Müllerian hormone. Reprod. BioMedicine Online 2015, 31, 486–496. [Google Scholar] [CrossRef]
Total | Tertile 1 (Lowest) | Tertile 2 (Middle) | Tertile 3 (Highest) | ||
---|---|---|---|---|---|
n | 653 | 217 | 219 | 217 | |
Glycemic index, median (range) | 50.50 (30.92–60.20) | 46.70 (30.92–48.96) | 50.50 (48.97–51.98) | 53.81 (51.99–60.20) | |
Demographic characteristics | |||||
Age (y) | 35.0 (32.0–38.0) | 36.0 (32.0–39.0) | 35.0 (32.0–38.0) | 34.0 (31.0–37.5) | |
BMI (kg/m2) | 23.4 (21.2–26.4) | 23.6 (21.5–26.4) | 23.1 (21.1–25.8) | 23.3 (21.2–26.8) | |
Race and ethnicity | |||||
Non-Hispanic white, n (%) | 514 (78.7) | 174 (80.2) | 170 (77.6) | 170 (78.3) | |
Non-Hispanic Black, n (%) | 27 (4.1) | 6 (2.8) | 6 (2.7) | 15 (6.9) | |
Non-Hispanic Asian, n (%) | 66 (10.1) | 15 (6.9) | 27 (12.3) | 24 (11.1) | |
Non-Hispanic Other, n (%) | 13 (2.0) | 6 (2.8) | 5 (2.3) | 2 (0.9) | |
Hispanic, any race, n (%) | 32 (4.9) | 16 (7.4) | 11 (5.0) | 5 (2.3) | |
Smoking status, never, n (%) | 485 (74.3) | 153 (70.5) | 166 (75.8) | 166 (76.5) | |
Education, higher than college graduation, n (%) | 568 (87.0) | 190 (87.6) | 191 (87.2) | 187 (86.2) | |
Physical activity (hr/week) | 5.0 (2.5–9.5) | 6.4 (2.5–10.4) | 5.0 (2.5–9.7) | 4.5 (1.7–8.7) | |
Multivitamin intake, n (%) | 554 (84.8) | 189 (87.1) | 191 (87.2) | 174 (80.2) | |
Total calorie intake (kcal/day) | 1682.3 (1363.1–2058.5) | 1657.8 (1290.5–2062.3) | 1686.3 (1363.1–2056.7) | 1698.6 (1400.8–2058.5) | |
Carbohydrates (energy density [%]) | 48.3 (43.0–53.5) | 43.9 (38.7–49.0) | 50.6 (46.4–55.4) | 49.7 (44.7–54.8) | |
Protein (energy density [%]) | 16.5 (14.9–18.6) | 17.5 (15.5–19.4) | 16.4 (14.7–18.1) | 16.1 (14.7–17.9) | |
Total fat (energy density [%]) | 33.0 (29.5–37.4) | 35.7 (31.9–40.4) | 31.9 (28.9–35.1) | 32.3 (28.8–36.1) | |
Fiber (g/day) | 19.9 (15.3–26.4) | 21.1 (15.8–28.8) | 20.8 (16.0–27.5) | 18.0 (13.9–24.3) | |
Total sugar (g/day) | 82.4 (62.2–109.5) | 79.4 (57.7–104.3) | 90.9 (66.5–119.3) | 80.3 (63.9–105.3) | |
Alcohol (mg/day) | 4.7 (1.4–12.5) | 7.3 (2.0–13.4) | 4.7 (1.2–12.3) | 4.1 (1.2–11.2) | |
Caffeine (mg/day) | 105.0 (44.7–171.7) | 120.6 (52.6–241.9) | 97.6 (25.0–145.5) | 101.5 (38.2–148.2) | |
Glycemic load | 100.9 (75.8–129.9) | 83.0 (61.3–106.4) | 107.2 (81.6–133.9) | 113.2 (89.4–140.4) | |
Reproductive history | |||||
Previous infertility examination, n (%) | 524 (80.3) | 183 (84.3) | 174 (79.5) | 167 (77.0) | |
Previous infertility treatment, n (%) | 311 (47.6) | 103 (47.5) | 107 (48.9) | 101 (46.5) | |
History of past pregnancy, n (%) | 278 (42.6) | 101 (46.5) | 91 (41.6) | 86 (39.6) | |
Primary infertility diagnosis | |||||
Male factor | 159 (24.5) | 48 (22.3) | 61 (27.9) | 50 (23.2) | |
Female factor | DOR | 59 (9.1) | 22 (10.2) | 20 (9.1) | 17 (7.9) |
Endometriosis | 24 (3.7) | 8 (3.7) | 9 (4.1) | 7 (3.2) | |
Ovulatory | 76 (11.7) | 25 (11.6) | 22 (10.1) | 29 (13.4) | |
Tubal | 33 (5.1) | 9 (4.2) | 13 (5.9) | 11 (5.1) | |
Uterine | 11 (1.7) | 8 (3.7) | 2 (0.9) | 1 (0.5) | |
Unexplained | 288 (44.3) | 95 (44.2) | 92 (42.0) | 101 (46.8) |
Index Range | n | AFC | AFC, Relative Difference in Mean (95% CI) (%) | ||
---|---|---|---|---|---|
Median (IQR) | Age + Calorie-Adjusted Model | MV Model | |||
Glycemic index | 30.92–48.96 | 195 | 12.0 (8.0, 17.0) | Reference | Reference |
48.97–51.98 | 194 | 13.0 (9.0. 18.0) | 1.6 (−3.7, 7.1) | 1.0 (−4.4, 6.8) | |
51.99–60.20 | 190 | 13.0 (10.0, 19.0) | 6.2 (0.7, 12.0) | 6.3 (0.6, 12.3) | |
p, trend | p = 0.03 | p = 0.03 | |||
Glycemic load | 19.97–83.68 | 188 | 13.0 (9.0, 18.0) | Reference | Reference |
83.72–118.06 | 200 | 12.0 (9.0, 18.0) | −1.3 (−6.8, 4.6) | −1.1 (−6.7, 4.9) | |
118.55–306.67 | 191 | 13.0 (9.0, 18.0) | 2.3 (−5.3, 10.5) | 2.2 (−5.8, 10.8) | |
p, trend | p = 0.57 | p = 0.60 | |||
Carbohydrate (energy density) (%) | 16.58–44.68 | 191 | 13.0 (9.0, 18.0) | Reference | Reference |
44.70–51.67 | 194 | 13.0 (9.0, 18.0) | −4.3 (−9.3, 0.9) | −5.3 (−10.4, 0.0) | |
51.69–69.98 | 194 | 12.0 (9.0, 19.0) | −5.3 (−10.2, −0.1) | −7.7 (−12.8, −2.2) | |
p, trend | p = 0.05 | p = 0.007 |
Index Range | n/Women (%) | Odds Ratio (95% CI) (%) | ||
---|---|---|---|---|
Age + Calorie | MV Model | |||
Glycemic index | 30.92–48.96 | 19/216 (8.8) | Reference | Reference |
48.97–51.98 | 18/218 (8.3) | 0.82 (0.41, 1.63) | 0.81 (0.40, 1.67) | |
51.99–60.20 | 30/217 (13.8) | 1.38 (0.74, 2.58) | 1.40 (0.72, 2.71) | |
p, trend | p = 0.29 | p = 0.29 | ||
Glycemic load | 19.97–83.68 | 26/216 (12.0) | Reference | Reference |
83.72–118.06 | 18/217 (8.3) | 0.55 (0.28, 1.10) | 0.54 (0.26, 1.10) | |
118.55–306.67 | 23/218 (10.6) | 0.55 (0.22, 1.36) | 0.66 (0.25, 1.74) | |
p, trend | p = 0.18 | p = 0.36 | ||
Carbohydrate (energy density) (%) | 16.58–44.68 | 25/217 (11.5) | Reference | Reference |
44.70–51.67 | 29/218 (13.3) | 0.99 (0.55, 1.79) | 0.98 (0.52, 1.83) | |
51.69–69.98 | 13/216 (6.0) | 0.40 (0.20, 0.83) | 0.43 (0.20, 0.95) | |
p, trend | p = 0.02 | p = 0.05 |
Range | Women with History of Infertility Examination | Women without History of Infertility Examination | |||||||
---|---|---|---|---|---|---|---|---|---|
n | AFC Median (IQR) | Age + Calorie-Adjusted Model | MV Model | n | AFC Median (IQR) | Age + Calorie-Adjusted Model | MV Model | Pheterogeneity c | |
Glycemic index | |||||||||
30.92–48.96 | 165 | 12.0 (8.0, 17.0) | Reference | Reference | 24 | 11.0 (8.0, 17.5) | Reference | Reference | 0.11 |
48.97–51.98 | 154 | 13.0 (10.0, 18.0) | 2.1 (−3.8, 8,3) | 1.6 (−4.4, 8.0) | 32 | 12.5 (9.0, 18.0) | −4.7 (−18.2, 11.2) | −3.2 (−18.4, 14.7) | |
51.99–60.20 | 146 | 13.0 (9.0, 19.0) | 4.4 (−1.6, 10.8) | 3.5 (−2.6, 10.1) | 37 | 13.0 (11.0, 20.0) | 13.8 (−1.4, 31.4) | 21.1 (3.2, 42.2) | |
p, trend | p = 0.15 | p = 0.27 | p = 0.04 | p = 0.006 | |||||
Glycemic load | |||||||||
19.97–83.68 | 154 | 13.0 (9.0, 18.0) | Reference | Reference | 28 | 14.5 (10.0, 19.0) | Reference | Reference | 0.02 |
83.72–118.06 | 160 | 12.0 (9.0, 18.0) | 1.2 (−5.0, 7.7) | 1.8 (−4.6, 8.6) | 36 | 12.5 (10.0, 18.5) | −12.5 (−24.3, 1.1) | −10,0 (−23.0, 5.3) | |
118.55–306.67 | 151 | 13.0 (9.0, 18.0) | 3.5 (−5.0, 12.6) | 3.5 (−5.4, 13.2) | 29 | 11.0 (9.0, 17.0) | −15.0 (−30.7, 4.3) | −8.5 (−27.0, 14.7) | |
p, trend | p = 0.44 | p = 0.45 | p = 0.12 | p = 0.44 | |||||
Carbohydrate (energy density) (%) | |||||||||
16.58–44.68 | 153 | 13.0 (10.0, 18.0) | Reference | Reference | 33 | 11.0 (8.0, 17.0) | Reference | Reference | 0.20 |
44.70–51.67 | 145 | 13.0 (9.0, 18.0) | −6.6 (−12.0, −0.8) | −7.3 (−12.9, −1.4) | 36 | 13.0 (9.0, 18.5) | −0.9 (−12.9, 12.8) | −3.9 (−16.4, 10.5) | |
51.69–69.98 | 167 | 12.0 (9.0, 18.0) | −7.3 (−12.6, −1.8) | −10.0 (−15.5, −4.1) | 24 | 15.5 (10.0, 19.0) | 2.5 (−11.0, 18.2) | 7.4 (−8,8, 26.4) | |
p, trend | p = 0.01 | p = 0.001 | p = 0.75 | p = 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsunami, M.; Kazemi, M.; Nichols, A.R.; Mínguez-Alarcón, L.; Fitz, V.W.; Souter, I.; Hauser, R.; Chavarro, J.E., on behalf of the EARTH Study Team. Association of Glycemic Index, Glycemic Load, and Carbohydrate Intake with Antral Follicle Counts Among Subfertile Females. Nutrients 2025, 17, 382. https://doi.org/10.3390/nu17030382
Mitsunami M, Kazemi M, Nichols AR, Mínguez-Alarcón L, Fitz VW, Souter I, Hauser R, Chavarro JE on behalf of the EARTH Study Team. Association of Glycemic Index, Glycemic Load, and Carbohydrate Intake with Antral Follicle Counts Among Subfertile Females. Nutrients. 2025; 17(3):382. https://doi.org/10.3390/nu17030382
Chicago/Turabian StyleMitsunami, Makiko, Maryam Kazemi, Amy R. Nichols, Lidia Mínguez-Alarcón, Victoria W. Fitz, Irene Souter, Russ Hauser, and Jorge E. Chavarro on behalf of the EARTH Study Team. 2025. "Association of Glycemic Index, Glycemic Load, and Carbohydrate Intake with Antral Follicle Counts Among Subfertile Females" Nutrients 17, no. 3: 382. https://doi.org/10.3390/nu17030382
APA StyleMitsunami, M., Kazemi, M., Nichols, A. R., Mínguez-Alarcón, L., Fitz, V. W., Souter, I., Hauser, R., & Chavarro, J. E., on behalf of the EARTH Study Team. (2025). Association of Glycemic Index, Glycemic Load, and Carbohydrate Intake with Antral Follicle Counts Among Subfertile Females. Nutrients, 17(3), 382. https://doi.org/10.3390/nu17030382