The Olive Oil Phenolic S-(-)-Oleocanthal Suppresses Colorectal Cancer Progression and Recurrence by Modulating SMYD2-EZH2 and c-MET Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cell Lines and Culture Conditions
2.3. Experimental Treatments
2.4. Cell Viability Assay
2.5. Wound-Healing Assay
2.6. Colony Formation Assay
2.7. Western Blot Analysis
2.8. Luciferase Labeling of HCT-116 Cells Aided by Lentivirus Transduction
2.9. Animal Model and Treatment Mode
2.9.1. Progression Mode
2.9.2. Recurrence Mode
2.10. Statistics
3. Results
3.1. Comparison of the Expression of SYMD2 and c-MET in CRC Cells Versus the Non-Tumorigenic Colon Cells
3.2. Antiproliferative Activity of Olive Phenolics Against Diverse CRC Cell Lines
3.3. Effect of OC and PPRF on HCT-116 Migration
3.4. Effect of OC and PPRF on HCT-116 Cell Colony Formation
3.5. OC and EVOO PPRF Suppressed the Expression Levels of SMYD2, EZH2, and Activated c-MET in HCT-116 Cells
3.6. Comparison of OC Antiproliferative Activity Versus the Chemo and Targeted Therapies
3.7. Study Design of the In Vivo Assessment of Anti-CRC Activity of OC and EVOO-PPRF
3.8. Effect of OC and EVOO-PPRF on HCT-116-Luc CRC Cels Progression in a Nude Mouse Xenograft Model
3.9. OC and PPRF Effectively Suppressed HCT-116-Luc CRC Recurrences
3.10. OC and PPRF Effectively Suppressed the Epression Levels of SMYD2, EZH2 and c-MET in Collected HCT-116 Cell Primary Tumors
3.11. Effect of OC and PPRF Treatments on Mean Animal Body Weight Throughout Progression and Recurrence Phases of the Study Design
4. Discussion
4.1. Significance and Study Rationale
4.2. Uniqueness of the OC Anti-CRC Molecular Targets
4.3. The Recognition of OC as the Most Active Olive Phenolic Anti-CRC Hit, a Potency Comparison with Established CRC Therapies, and an Overview of Its Safety and Selectivity
4.4. Hit-to-Lead Validation of OC as a Novel Anti-CRC Entity
4.5. OC Versus EVOO: Anti-CRC Drug Entity, Food or Nutraceutical?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 1–36. [Google Scholar] [CrossRef]
- American Cancer Society. 2024—First Year the US Expects More than 2M New Cases of Cancer. Available online: https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html (accessed on 5 August 2024).
- ASCO-State of Cancer Care in America: February 2024. Available online: https://old-prod.asco.org/research-data/reports-studies/state-cancer-care-america (accessed on 5 August 2024).
- Cancer Trends Progress Report; National Cancer Institute, NIH, HHS: Bethesda, MD, USA, 2024. Available online: https://progressreport.cancer.gov (accessed on 5 August 2024).
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Pathak, P.S.; Chan, G.; Deming, D.A.; Chee, C.E. State-of-the-art management of colorectal cancer: Treatment advances and innovation. Am. Soc. Clin. Oncol. Educ. Book. 2024, 44, e438466. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, W.R.; Park, E.G.; Lee, D.H.; Kim, J.; Shin, H.J.; Jeong, H.; Roh, H.Y.; Kim, H.S. Exploring the key signaling pathways and ncRNAs in colorectal cancer. Int. J. Mol. Sci. 2024, 25, 4548. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Price, T.J.; Mohyieldin, O.; Borg, M.; Townsend, A.; Hardingham, J.E. KRAS G13D mutation and sensitivity to cetuximab or panitumumab in a colorectal cancer cell line model. Gastrointest. Cancer Res. 2014, 7, 23–26. [Google Scholar]
- Zheng, Q.; Zhang, W.; Rao, G.W. Protein lysine methyltransferase SMYD2: A promising small molecule target for cancer therapy. J. Med. Chem. 2022, 65, 10119–10132. [Google Scholar] [CrossRef]
- Rubio-Tomás, T. Novel insights into SMYD2 and SMYD3 inhibitors: From potential anti-tumoural therapy to a variety of new applications. Mol. Biol. Rep. 2021, 48, 7499–7508. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Qiu, R.; Yang, Y.; Gao, T.; Zheng, Y.; Huang, W.; Gao, J.; Zhang, K.; Liu, R.; Wang, S.; et al. Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep. 2019, 29, 1482–1498.e4. [Google Scholar] [CrossRef]
- Yi, X.; Jiang, X.J.; Fang, Z.M. Histone methyltransferase SMYD2: Ubiquitous regulator of disease. Clin. Epigenet. 2019, 11, 112. [Google Scholar] [CrossRef]
- Fabini, E.; Manoni, E.; Ferroni, C.; Rio, A.D.; Bartolini, M. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: Current trends. Future Med. Chem. 2019, 11, 901–921. [Google Scholar] [CrossRef] [PubMed]
- Han, T.S.; Kim, D.S.; Son, M.Y.; Cho, H.S. SMYD family in cancer: Epigenetic regulation and molecular mechanisms of cancer proliferation, metastasis, and drug resistance. Exp. Mol. Med. 2024, 56, 2325–2336. [Google Scholar] [CrossRef]
- Kaniskan, H.U.; Martini, M.L.; Jin, J. Inhibitors of protein methyltransferases and demethylases. Chem. Rev. 2018, 118, 989–1068. [Google Scholar] [CrossRef]
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef]
- Okano, S.; Yamashiro, Y.; Onagi, H.; Sasa, K.; Hayashi, T.; Takahashi, M.; Sugimoto, K.; Sakamoto, K.; Yao, T.; Saito, T. Tyrosine kinase alterations in colorectal cancer with emphasis on the distinct clinicopathological characteristics. Histopathology 2023, 83, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Bradley, C.A.; Salto-Tellez, M.; Laurent-Puig, P.; Bardelli, A.; Rolfo, C.; Tabernero, J.; Khawaja, H.A.; Lawler, M.; Johnston, P.G.; Van Schaeybroeck, S.; et al. Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges. Nat. Rev. Clin. Oncol. 2017, 14, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Xue, X.; Qiu, T.; Ying, J. MET alterations detection platforms and clinical implications in solid tumors: A comprehensive review of literature. Ther. Adv. Med. Oncol. 2024, 16, 17588359231221910. [Google Scholar] [CrossRef] [PubMed]
- UALCAN. SMYD2 Expression. Available online: https://ualcan.path.uab.edu/cgi-bin/TCGAExResultNew2.pl?genenam=SMYD2&ctype=COAD (accessed on 1 May 2024).
- TNMplot: Differential Gene Expression Analysis in Tumor, Normal, and Metastatic Tissues. Available online: https://tnmplot.com/analysis/ (accessed on 5 May 2024).
- Marrero, A.D.; Quesada, A.R.; Martínez-Poveda, B.; Medina, M.Á. Anti-cancer, anti-angiogenic, and anti-atherogenic potential of key phenolic compounds from virgin olive oil. Nutrients 2024, 16, 1283. [Google Scholar] [CrossRef] [PubMed]
- Morze, J.; Danielewicz, A.; Przybyłowicz, K.; Zeng, H.; Hoffmann, G.; Schwingshackl, L. An updated systematic review and meta-analysis on adherence to Mediterranean diet and risk of cancer. Eur. J. Nutr. 2021, 60, 1561–1586. [Google Scholar] [CrossRef]
- El Haouari, M.; Quintero, J.E.; Rosado, J.A. Anticancer molecular mechanisms of oleocanthal. Phytother. Res. 2020, 34, 2820–2834. [Google Scholar] [CrossRef] [PubMed]
- Elnagar, A.Y.; Sylvester, P.W.; El Sayed, K.A. (-)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Medica 2011, 77, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Qusa, M.H.; Abdelwahed, K.S.; Siddique, A.B.; El Sayed, K.A. Comparative gene signature of (−)-oleocanthal formulation treatments in heterogeneous triple negative breast tumor models: Oncological therapeutic target insights. Nutrients 2021, 13, 1706. [Google Scholar] [CrossRef]
- Siddique, A.B.; Ayoub, N.M.; Tajmim, A.; Meyer, S.A.; Hill, R.A.; El Sayed, K.A. (-)-Oleocanthal prevents breast cancer locoregional recurrence after primary tumor surgical excision and neoadjuvant targeted therapy in orthotopic nude mouse models. Cancers 2019, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.; Ebrahim, H.Y.; Tajmim, A.; King, J.; Abdelwahed, K.; Abd Elmageed, Z.Y.; El Sayed, K.A. Oleocanthal attenuates metastatic castration-resistant prostate cancer progression and recurrence by targeting SMYD2. Cancers 2022, 14, 3542. [Google Scholar] [CrossRef]
- Borzì, A.M.; Biondi, A.; Basile, F.; Luca, S.; Vicari, E.S.D.; Vacante, M. Olive oil effects on colorectal cancer. Nutrients 2018, 11, 32. [Google Scholar] [CrossRef]
- Cusimano, A.; Balasus, D.; Azzolina, A.; Augello, G.; Emma, M.R.; Di Sano, C.; Gramignoli, R.; Strom, S.C.; McCubrey, J.A.; Montalto, G.; et al. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int. J. Oncol. 2017, 51, 533–544. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Koumarianou, P.; Rigakou, A.; Diamantakos, P.; Frakolaki, E.; Vassilaki, N.; Chavdoula, E.; Melliou, E.; Magiatis, P.; Boleti, H. New affordable methods for large-scale isolation of major olive secoiridoids and systematic comparative study of their antiproliferative/cytotoxic effect on multiple cancer cell lines of different cancer origins. Int. J. Mol. Sci. 2023, 24, 3. [Google Scholar] [CrossRef]
- Sain, A.; Sahu, S.; Naskar, D. Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: A comprehensive review. Br. J. Nutr. 2022, 128, 1257–1273. [Google Scholar] [CrossRef]
- Siddique, A.B.; Ebrahim, H.; Mohyeldin, M.; Qusa, M.; Batarseh, Y.; Fayyad, A.; Tajmim, A.; Nazzal, S.; Kaddoumi, A.; El Sayed, K.A. Novel liquid-liquid extraction and self-emulsion methods for simplified isolation of extra-virgin olive oil phenolics with emphasis on (−)-oleocanthal and its oral anti-breast cancer activity. PLoS ONE 2019, 14, e0214798. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.; Eide, P.W.; Eilertsen, I.A.; Danielsen, S.A.; Eknæs, M.; Hektoen, M.; Lind, G.E.; Lothe, R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013, 2, e71. [Google Scholar] [CrossRef]
- Zheng, X.; He, K.; Zhang, L.; Yu, J. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells. Mol. Cancer Ther. 2013, 12, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Yu, C.-J.; Panda, S.S.; Chen, K.-C.; Liang, K.-H.; Huang, W.-C.; Wang, Y.-S.; Ho, P.-C.; Wu, H.-C. Epithelial cell adhesion molecule (EpCAM) regulates HGFR signaling to promote colon cancer progression and metastasis. J. Transl. Med. 2023, 21, 530. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, S.; Hu, X.; Wang, X.; Zhao, Y.; Li, Z. Partial response to crizotinib + regorafenib + PD-1 inhibitor in a metastatic BRAF V600EMT colon cancer patient with acquired c-MET amplification and TPM4-ALK fusion: A case report. AME Case Rep. 2024, 8, 38. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, X.; Long, C.; Wang, J.; Ding, L.; Zheng, Z.; Wu, H.; Yang, L.; Tao, L.; Gao, F. SMYD2 aggravates gastrointestinal stromal tumor via upregulation of EZH2 and downregulation of TET1. Cell Death Discov. 2022, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liu, X.; Lin, C.; Xu, L.; Liu, J.; Zhang, P.; Zhang, X.; Song, J.; Yan, Y.; Ren, Z.; et al. SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am. J. Cancer Res. 2020, 10, 997–1011. [Google Scholar] [PubMed]
- Cantelmo, A.R.; Cammarota, R.; Noonan, D.M.; Focaccetti, C.; Comoglio, P.M.; Prat, M.; Albini, A. Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene 2010, 29, 5286–5298. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.B.; King, J.A.; Meyer, S.A.; Abdelwahed, K.; Busnena, B.; El Sayed, K. Safety evaluations of single dose of the olive secoiridoid S-(-)-oleocanthal in Swiss albino mice. Nutrients 2020, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Damen, M.P.F.; van Rheenen, J.; Scheele, C.L.G.J. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J. 2021, 288, 6286–6303. [Google Scholar] [CrossRef]
- Uchikawa, E.; Chen, Z.; Xiao, G.Y.; Zhang, X.; Bai, X.C. Structural basis of the activation of c-MET receptor. Nat. Commun. 2021, 12, 4074. [Google Scholar] [CrossRef]
- Fu, J.; Su, X.; Li, Z.; Deng, L.; Liu, X.; Feng, X.; Peng, J. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence. Oncogene 2021, 40, 4625–4651. [Google Scholar] [CrossRef]
- de Bono, J.S.; Yap, T.A. c-MET: An exciting new target for anticancer therapy. Ther. Adv. Med. Oncol. 2011, 3 (Suppl. 1), S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Ikebuchi, F.; Oka, K.; Mizuno, S.; Fukuta, K.; Hayata, D.; Ohnishi, H.; Nakamura, T. Dissociation of c-Met phosphotyrosine sites in human cells in response to mouse hepatocyte growth factor but not human hepatocyte growth factor: The possible roles of different amino acids in different species. Cell Biochem. Funct. 2013, 31, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.J. Targeting receptor tyrosine kinase MET in cancer: Small molecule inhibitors and clinical progress. J. Med. Chem. 2014, 57, 4427–4453. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef] [PubMed]
Tested Compound | CRC Cell Line, IC50 (µM) | |||
---|---|---|---|---|
HCT-116 | SW48 | COLO-320DM | WiDr | |
PTX | 0.005 | 0.007 | 0.01 | 0.10 |
DOX | 0.17 | 0.19 | 0.21 | 0.4 |
OSI | 3.1 | 1.25 | 5.7 | 7.0 |
5-FU | 3.0 | 3.6 | 4.1 | 5.0 |
OC | 4.2 | 4.9 | 9.8 | 14.5 |
BAY-598 | 8.0 | 13.13 | NT | 9.18 |
SU11274 | 4.9 | 7.9 | 8.7 | 13.2 |
GFT | 5.8 | 8.0 | 11.1 | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarun, M.T.I.; Elsayed, H.E.; Ebrahim, H.Y.; El Sayed, K.A. The Olive Oil Phenolic S-(-)-Oleocanthal Suppresses Colorectal Cancer Progression and Recurrence by Modulating SMYD2-EZH2 and c-MET Activation. Nutrients 2025, 17, 397. https://doi.org/10.3390/nu17030397
Tarun MTI, Elsayed HE, Ebrahim HY, El Sayed KA. The Olive Oil Phenolic S-(-)-Oleocanthal Suppresses Colorectal Cancer Progression and Recurrence by Modulating SMYD2-EZH2 and c-MET Activation. Nutrients. 2025; 17(3):397. https://doi.org/10.3390/nu17030397
Chicago/Turabian StyleTarun, Md Towhidul Islam, Heba E. Elsayed, Hassan Y. Ebrahim, and Khalid A. El Sayed. 2025. "The Olive Oil Phenolic S-(-)-Oleocanthal Suppresses Colorectal Cancer Progression and Recurrence by Modulating SMYD2-EZH2 and c-MET Activation" Nutrients 17, no. 3: 397. https://doi.org/10.3390/nu17030397
APA StyleTarun, M. T. I., Elsayed, H. E., Ebrahim, H. Y., & El Sayed, K. A. (2025). The Olive Oil Phenolic S-(-)-Oleocanthal Suppresses Colorectal Cancer Progression and Recurrence by Modulating SMYD2-EZH2 and c-MET Activation. Nutrients, 17(3), 397. https://doi.org/10.3390/nu17030397