Correlates of Inaccuracy in Reporting of Energy Intake Among Persons with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Total Energy Expenditure
2.3.2. Self-Reported Energy Intake
2.3.3. Total Body Water
2.3.4. Cognitive Assessments
2.3.5. Physical Activity
2.3.6. Participant Demographics and Clinical Characteristics
2.4. Data Analyses
3. Results
3.1. Participants
3.2. Bivariate Correlations Between Inaccuracy in Reporting of Energy Intake and Outcomes of Interest
3.3. Linear Regression Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASA24 | Automated Self-Administered 24 h |
BICAMS | Brief International Cognitive Assessment for Multiple Sclerosis |
BVMT-R | Brief Visuospatial Memory Test—Revised |
CVLT-II | California Verbal Learning Test—Second Edition |
CNS | central nervous system |
DLW | doubly labeled water |
LPA | light physical activity |
MVPA | moderate-to-vigorous physical activity |
MS | multiple sclerosis |
SDMT | Symbol Digit Modalities Test |
TBW | total body water |
TEE | total energy expenditure |
References
- National Multiple Sclerosis Society. What Is MS. 2021. Available online: https://www.nationalmssociety.org/What-is-MS (accessed on 27 November 2021).
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 2019, 92, e1029–e1040. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.; Carnero Contentti, E.; Imhoff, G.; Lopez, P.A.; Rubstein, A.; Tizio, S. Barriers against a successful MS treatment: The importance of effectiveness beyond efficacy. Mult. Scler. Relat. Disord. 2019, 30, 129–135. [Google Scholar] [CrossRef]
- Dunn, M.; Bhargava, P.; Kalb, R. Your patients with multiple sclerosis have set wellness as a high priority-and the National Multiple Sclerosis Society is responding. US Neurol. 2015, 11, 80–86. [Google Scholar] [CrossRef]
- Kister, I.; Bacon, T.E.; Chamot, E.; Salter, A.R.; Cutter, G.R.; Kalina, J.T.; Herbert, J. Natural history of multiple sclerosis symptoms. Int. J. MS Care 2013, 15, 146–156. [Google Scholar] [CrossRef]
- Russell, R.D.; Black, L.J.; Sherriff, J.L.; Begley, A. Dietary responses to a multiple sclerosis diagnosis: A qualitative study. Eur. J. Clin. Nutr. 2019, 73, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Payne, A. Nutrition and diet in the clinical management of multiple sclerosis. J. Hum. Nutr. Diet. 2001, 14, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Bitarafan, S.; Harirchian, M.-H.; Nafissi, S.; Sahraian, M.-A.; Togha, M.; Siassi, F.; Saedisomeolia, A.; Alipour, E.; Mohammadpour, N.; Chamary, M.; et al. Dietary intake of nutrients and its correlation with fatigue in multiple sclerosis patients. Iran. J. Neurol. 2014, 13, 28–32. [Google Scholar] [PubMed]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2018, 90, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Hadgkiss, E.J.; Jelinek, G.A.; Weiland, T.J.; Pereira, N.G.; Marck, C.H.; van der Meer, D.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr. Neurosci. 2015, 18, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Rotstein, D.L.; Cortese, M.; Fung, T.T.; Chitnis, T.; Ascherio, A.; Munger, K.L. Diet quality and risk of multiple sclerosis in two cohorts of US women. Mult. Scler. J. 2018, 25, 1773–1780. [Google Scholar] [CrossRef]
- Silveira, S.L.; Jeng, B.; Gower, B.A.; Motl, R.W. Feasibility, Acceptability, and Preliminary Validity of Self-Report Dietary Assessment in Adults with Multiple Sclerosis: Comparison with Doubly Labeled Water Measured Total Energy Expenditure. Nutrients 2021, 13, 1198. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Amato, M.P. Cognitive Impairment in Multiple Sclerosis: An Update on Assessment and Management. NeuroSci. 2022, 3, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Williams, D. Management of bladder dysfunction in patients with multiple sclerosis. Nurs. Stand. 2012, 26, 39–46. [Google Scholar] [CrossRef]
- Klaren, R.E.; Motl, R.W.; Dlugonski, D.; Sandroff, B.M.; Pilutti, L.A. Objectively quantified physical activity in persons with multiple sclerosis. Arch. Phys. Med. Rehabil. 2013, 94, 2342–2348. [Google Scholar] [CrossRef]
- Westerterp, K.R. Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Front. Physiol. 2013, 4, 90. [Google Scholar] [CrossRef]
- Goran, M.I. Variation in total energy expenditure in humans. Obes. Res. 1995, 3, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Guo, J.; Chen, K.Y.; Leibel, R.L.; Reitman, M.L.; Rosenbaum, M.; Smith, S.R.; Ravussin, E. Methodologic considerations for measuring energy expenditure differences between diets varying in carbohydrate using the doubly labeled water method. Am. J. Clin. Nutr. 2019, 109, 1328–1334. [Google Scholar] [CrossRef]
- Coward, W.A. The doubly-labelled-water (2H218O) method: Principles and practice. Proc. Nutr. Soc. 1988, 47, 209–218. [Google Scholar] [CrossRef]
- Speakman, J.R.; Yamada, Y.; Sagayama, H.; Berman, E.S.F.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; et al. A standard calculation methodology for human doubly labeled water studies. Cell Rep. Med. 2021, 2, 100203. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Cheng, F.W.; Still, C.D.; Jensen, G.L. A Validation of Automated Self-Administered 24-Hour Dietary Recalls (ASA24) Relative to Interviewer-Administered Recalls using the Nutrition Data System for Research (NDSR). FASEB J. 2016, 30, 43.3. [Google Scholar] [CrossRef]
- Mishra, S.; Barnard, N.D.; Gonzales, J.; Xu, J.; Agarwal, U.; Levin, S. Nutrient intake in the GEICO multicenter trial: The effects of a multicomponent worksite intervention. Eur. J. Clin. Nutr. 2013, 67, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.L.; Winter, L.L.; Clark, R.; Ledoux, T.; Robinson-Whelen, S. Baseline dietary intake of individuals with spinal cord injury who are overweight or obese. J. Acad. Nutr. Diet. 2019, 119, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; Amato, M.P.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hamalainen, P.; Hartung, H.; Krupp, L.; Penner, I.; et al. Brief International Cognitive Assessment for MS (BICAMS): International standards for validation. BMC Neurol. 2012, 12, 55. [Google Scholar] [CrossRef]
- Smith, A. Symbol Digit Modalities Test; Western Psychological Services: Los Angeles, CA, USA, 1973. [Google Scholar]
- Benedict, R.H.; DeLuca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 721–733. [Google Scholar] [CrossRef]
- Stegen, S.; Stepanov, I.; Cookfair, D.; Schwartz, E.; Hojnacki, D.; Weinstock-Guttman, B.; Benedict, R.H.B. Validity of the California Verbal Learning Test–II in multiple sclerosis. Clin. Neuropsychol. 2010, 24, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California Verbal Learning Test--Second Edition (CVLT–II) [Database Record]. APA PsycTests. (1987–2000). Available online: https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft15072-000 (accessed on 22 January 2025).
- Hildebrandt, H.; Hahn, H.K.; Kraus, J.A.; Schulte-Herbrüggen, A.; Schwarze, B.; Schwendemann, G. Memory performance in multiple sclerosis patients correlates with central brain atrophy. Mult. Scler. J. 2006, 12, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; Schretlen, D.; Groninger, L.; Dobraski, M.; Shpritz, B. Revision of the Brief Visuospatial Memory Test: Studies of normal performance, reliability, and validity. Psychol. Assess. 1996, 8, 145. [Google Scholar] [CrossRef]
- Jacobs, D.A.; Galetta, S.L. Multiple sclerosis and the visual system. Ophthalmol Clin N. Am. 2004, 17, 265–273. [Google Scholar] [CrossRef]
- Houtchens, M.K.; Benedict, R.; Killiany, R.; Sharma, J.; Jaisani, Z.; Singh, B.; Weinstock-Guttman, B.; Guttmann, C.R.; Bakshi, R. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2007, 69, 1213–1223. [Google Scholar] [CrossRef]
- Actilife [Computer Software], Version 6.13.3; Actigraph: Pensacola, FL, USA, 2016.
- Sandroff, B.M.; Riskin, B.J.; Agiovlasitis, S.; Motl, R.W. Accelerometer cut-points derived during over-ground walking in persons with mild, moderate, and severe multiple sclerosis. J. Neurol. Sci. 2014, 340, 50–57. [Google Scholar] [CrossRef]
- Motl, R.W.; McAuley, E.; Klaren, R. Reliability of physical-activity measures over six months in adults with multiple sclerosis: Implications for designing behavioral interventions. Behav. Med. 2014, 40, 29–33. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Motl, R.W.; Sandroff, B.M.; Pula, J.H.; Cadavid, D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Statistics for Windows [Computer Software], Version 27.0; IBM Corp: Armonk, NY, USA, 2020.
- Parmenter, B.A.; Testa, S.M.; Schretlen, D.J.; Weinstock-Guttman, B.; Benedict, R.H.B. The utility of regression-based norms in interpreting the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Int. J. Neuropsychol. Soc. 2010, 16, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Thompson, F.E.; Subar, A.F. Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 5–48. [Google Scholar]
- Klaren, R.E.; Hubbard, E.A.; Motl, R.W.; Pilutti, L.A.; Wetter, N.C.; Sutton, B.P. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis. Behav. Neurol. 2015, 2015, 482536. [Google Scholar] [CrossRef]
- Barnard, J.; Tapsell, L.C.; Davies, P.; Brenninger, V.; Storlien, L. Relationship of high energy expenditure and variation in dietary intake with reporting accuracy on 7 day food records and diet histories in a group of healthy adult volunteers. Eur. J. Clin. Nutr. 2002, 56, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.B.; Matthiessen, J.; Biltoft-Jensen, A.; Tetens, I. Characteristics of misreporters of dietary intake and physical activity. Public. Health Nutr. 2007, 10, 230–237. [Google Scholar] [CrossRef]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Cooper, J.A.; vanDellen, M.R. Self-reported Changes in Energy Balance Behaviors during COVID-19-related Home Confinement: A Cross-sectional Study. Am. J. Health Behav. 2021, 45, 756–770. [Google Scholar] [CrossRef]
Variable, Units | Mean ± SD |
---|---|
Age, years | 39.8 ± 9.6 |
MS a Duration, years | 10.0 ± 6.5 |
PDDS b, rating | Median (IQR) 0 (2) |
Sex Female Male | N (%) 24 (85.7) 4 (14.3) |
Marital Status Married Single/Divorced/Widowed | 14 (50.0) 14 (50.0) |
Employed Yes No | 19 (67.9) 9 (32.1) |
Race and Ethnicity Non-Hispanic White Non-Hispanic Black or African American Hispanic or Latino | 11 (39.3) 16 (57.1) 1 (3.6) |
Education High School-Some College College Graduate or More | 9 (32.1) 19 (67.9) |
Annual Household Income $50,000 or Less Greater than $50,000 | 11 (40.7) 16 (59.3) |
MS Clinical Course Relapsing Remitting MS Progressive | 26 (92.9) 2 (7.1) |
Variable, Units | Mean ± SD |
---|---|
Absolute Difference EI a, kcals | 585 ± 529 |
Percent Difference EI, % | 24.6 ± 21.3 |
TBW b, kg | 35.6 ± 5.2 |
TBW%, % | 45.1 ± 5.5 |
SDMT c, z-score | −0.90 ± 1.06 |
CLVT-II d, z-score | −0.97 ± 1.02 |
BVMT-R e, z-score | −0.48 ± 1.18 |
LPA f, Minutes/day | 296.0 ± 78.7 |
MVPA g, Minutes/day | 23.1 ± 18.3 |
Measure | Total Energy Expenditure | EI a | Absolute Difference EI | Percent Difference EI | TBW b | TBW % | SDMT c | CVLT-II d | BVMT-R e | LPA f |
---|---|---|---|---|---|---|---|---|---|---|
Total Energy Expenditure | - | |||||||||
EI | 0.16 | - | ||||||||
Absolute Difference EI | 0.43 * | −0.60 *** | - | |||||||
Percent Difference EI | 0.40 * | 0.72 *** | 0.97 *** | - | ||||||
TBW | 0.41 * | −0.08 | 0.22 | 0.32 | - | |||||
TBW% | 0.15 | 0.08 | 0.06 | 0.02 | −0.11 | - | ||||
SDMT z-score | 0.09 | 0.15 | −0.37 | −0.35 | −0.12 | −0.19 | - | |||
CVLT-II z-score | −0.35 | 0.10 | −0.53 ** | −0.48 * | −0.12 | −0.06 | 0.57 *** | - | ||
BVMT-R z-score | 0.13 | 0.01 | −0.23 | −0.18 | 0.10 | 0.08 | 0.61 *** | 0.58 *** | - | |
LPA minutes/day | 0.33 | −0.10 | 0.46 * | 0.42 * | 0.08 | 0.03 | −0.13 | −0.18 | −0.04 | - |
MVPA g minutes/day | 0.21 | 0.23 | −0.05 | −0.09 | −0.12 | 0.08 | 0.20 | 0.32 | 0.20 | 0.38 * |
Variable, Units | B | 95% CI | β | T | p |
---|---|---|---|---|---|
Absolute Difference EI a | |||||
Constant CVLT-II b z-score LPA c minutes/day Note: R2 = 0.40 | −363.94 −233.39 2.44 | −1019.22, 291.34 −402.33, −64.46 0.25, 4.63 | - −0.45 0.36 | −1.14 −2.85 2.30 | 0.26 0.01 0.03 |
Percent Difference EI, % | |||||
Constant CVLT-II z-score LPA minutes/day Note: R2 = 0.33 | −9.90 −8.54 0.09 | −37.90, 18.11 −15.76, −1.32 −0.01, 0.18 | - −0.41 0.33 | −0.73 −2.44 1.95 | 0.47 0.02 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, S.L.; Jeng, B.; Gower, B.A.; Cutter, G.R.; Motl, R.W. Correlates of Inaccuracy in Reporting of Energy Intake Among Persons with Multiple Sclerosis. Nutrients 2025, 17, 438. https://doi.org/10.3390/nu17030438
Silveira SL, Jeng B, Gower BA, Cutter GR, Motl RW. Correlates of Inaccuracy in Reporting of Energy Intake Among Persons with Multiple Sclerosis. Nutrients. 2025; 17(3):438. https://doi.org/10.3390/nu17030438
Chicago/Turabian StyleSilveira, Stephanie L., Brenda Jeng, Barbara A. Gower, Gary R. Cutter, and Robert W. Motl. 2025. "Correlates of Inaccuracy in Reporting of Energy Intake Among Persons with Multiple Sclerosis" Nutrients 17, no. 3: 438. https://doi.org/10.3390/nu17030438
APA StyleSilveira, S. L., Jeng, B., Gower, B. A., Cutter, G. R., & Motl, R. W. (2025). Correlates of Inaccuracy in Reporting of Energy Intake Among Persons with Multiple Sclerosis. Nutrients, 17(3), 438. https://doi.org/10.3390/nu17030438